JPH05222615A - Sheath-core type polyester conjugate fiber - Google Patents

Sheath-core type polyester conjugate fiber

Info

Publication number
JPH05222615A
JPH05222615A JP5661492A JP5661492A JPH05222615A JP H05222615 A JPH05222615 A JP H05222615A JP 5661492 A JP5661492 A JP 5661492A JP 5661492 A JP5661492 A JP 5661492A JP H05222615 A JPH05222615 A JP H05222615A
Authority
JP
Japan
Prior art keywords
fiber
core
sheath
intrinsic viscosity
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5661492A
Other languages
Japanese (ja)
Other versions
JP2989365B2 (en
Inventor
Keiji Fukuda
啓司 福田
Takao Akagi
孝夫 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4056614A priority Critical patent/JP2989365B2/en
Publication of JPH05222615A publication Critical patent/JPH05222615A/en
Application granted granted Critical
Publication of JP2989365B2 publication Critical patent/JP2989365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject fiber containing polyethylene naphthalate having a specific intrinsic viscosity as the core component and polyethylene terephthalate having a specified intrinsic viscosity as the sheath component, having a high strength, a high elastic modulus and high dimensional stability and useful for reinforcing rubbers, etc. CONSTITUTION:(A) Polyethylene naphthalate having an intrinsic viscosity [eta]of >=0.6 and mainly containing ethylene-2,6-naphthalate units and (B) polyethylene terephthalate having an intrinsic viscosity [eta] of >=0.95 and mainly containing ethylene terephthalate units are used as the core component and the sheath component, respectively. The melted products of the components are fed into a conjugate spinning pack so that the ratio of the core part occupying in the conjugate fiber is 50-90wt.%, spun from a sheath-core type spinneret, quenched, solidified, oiled and subsequently drawn to obtain the objective sheath- core type polyester conjugate fiber having a Young modulus of >=100g/d at 120 deg.C, a dry heat shrinkage degree of <=2% at 150 deg.C, a high strength, a high elastic modulus and good thermal dimensional stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度で高弾性率を有す
るポリエステル複合繊維に関する。詳細には、高強度、
高モジュラス、良好な熱寸法安定性という優れた機械特
性を有する産業資材用として適するポリエステル複合繊
維に関し、特に本発明のポリエステル繊維をゴムの補強
に使用した場合には、ゴムの熱変形回復性(例えば耐フ
ラットスポット性等)を大幅に向上することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester composite fiber having high strength and high elastic modulus. In detail, high strength,
The present invention relates to a polyester composite fiber suitable for industrial materials having excellent mechanical properties such as high modulus and good thermal dimensional stability, and particularly when the polyester fiber of the present invention is used for reinforcing rubber, thermal deformation recovery property of rubber ( (For example, flat spot resistance, etc.) can be significantly improved.

【0002】[0002]

【従来の技術】ポリエステル繊維、特にポリエチレンテ
レフタレート繊維は、そのヤング率がポリアミド繊維よ
りも高くてレーヨンと同程度であり、且つ他の繊維素材
に比べて物性のバランスがとれていることから、タイヤ
コード等のゴム補強材として汎用されている。
2. Description of the Related Art A polyester fiber, particularly a polyethylene terephthalate fiber, has a Young's modulus higher than that of polyamide fiber and is about the same as that of rayon, and has a better balance of physical properties than other fiber materials. It is widely used as a rubber reinforcing material for cords.

【0003】しかしながら、ポリエチレンテレフタレー
ト繊維は室温では比較的高いヤング率を有するものの、
加熱時にはヤング率が低下して寸法安定性が劣ったもの
になる。そのため、ゴム補強用等の産業資材用に製造さ
れた高ヤング率のポリエチレンテレフタレート繊維であ
っても、加熱時にはそのヤング率が通常の衣料用ポリエ
チレンテレフタレート繊維と同じ程度まで低下するとい
う欠点がある。
However, although polyethylene terephthalate fiber has a relatively high Young's modulus at room temperature,
When heated, the Young's modulus decreases and the dimensional stability becomes poor. Therefore, even a high Young's modulus polyethylene terephthalate fiber manufactured for industrial materials such as rubber reinforcement has a drawback that its Young's modulus is lowered to the same degree as that of a normal clothing polyethylene terephthalate fiber when heated.

【0004】一方、充分な延伸熱処理を施したポリエチ
レンナフタレート繊維は室温においてポリエチレンテレ
フタレート繊維の2倍近いヤング率を有している。しか
も、そのようなポリエチレンナフタレート繊維は、10
0℃以上の加熱条件下でも100g/d以上の高いヤン
グ率を有し、さらに150℃での乾熱収縮率が2%以下
という優れた熱寸法安定性を有していることから、タイ
ヤコード等のゴム補強材としての使用が試みられてい
る。
On the other hand, the polyethylene naphthalate fiber which has been subjected to a sufficient drawing heat treatment has a Young's modulus at room temperature which is almost twice that of the polyethylene terephthalate fiber. Moreover, such polyethylene naphthalate fiber has 10
The tire cord has a high Young's modulus of 100 g / d or more even under heating conditions of 0 ° C. or higher and excellent thermal dimensional stability of 2% or less in dry heat shrinkage at 150 ° C. Attempts have been made to use it as a rubber reinforcing material.

【0005】しかし、ポリエチレンナフタレート繊維
は、ポリエチレンテレフタレート繊維に比べてゴムとの
接着性に劣っており、特にタイヤコードとして使用した
場合には、自動車走行時に発生した熱がタイヤ内に蓄積
されて高温となるとゴムとの接着性を失い剥離を生ずる
という欠点を有する。
However, polyethylene naphthalate fiber is inferior in adhesiveness to rubber as compared with polyethylene terephthalate fiber, and particularly when used as a tire cord, heat generated during running of a vehicle accumulates in the tire. At a high temperature, it has a drawback that it loses adhesiveness with rubber and causes peeling.

【0006】ポリエチレンナフタレート繊維をタイヤコ
ードとして用いた場合に生ずる上記の欠点を改良するこ
とを目的として、芯成分をポリエチレンナフタレートか
ら構成し、鞘成分をポリアミド、またはポリエチレンナ
フタレートとポリアミドとのブレンド物から構成した芯
鞘型複合繊維が近年提案されている(特開平3−146
713号公報、特開平3−161514号公報および特
開平3−161516号公報)。
[0006] For the purpose of improving the above-mentioned drawbacks caused when polyethylene naphthalate fiber is used as a tire cord, the core component is composed of polyethylene naphthalate, and the sheath component is made of polyamide or polyethylene naphthalate and polyamide. In recent years, a core-sheath type composite fiber composed of a blend has been proposed (Japanese Patent Laid-Open No. 3-146).
713, JP-A-3-161514 and JP-A-3-161516).

【0007】しかしながら、ポリエステルとポリアミド
とは元来互いに接着しにくいため、ポリエステルを芯成
分としポリアミドを鞘成分とした上記の複合繊維では、
芯部分と鞘部分とが剥離し易いという欠点がある。また
ポリエチレンナフタレートとポリアミドとのブレンド物
を鞘成分とした場合には鞘部分で両方の重合体が均一に
混合されず、良好な物性を有する複合繊維が得られにく
いという欠点がある。
However, since the polyester and the polyamide are originally difficult to adhere to each other, the above-mentioned composite fiber containing polyester as the core component and polyamide as the sheath component is
There is a drawback that the core portion and the sheath portion are easily separated. Further, when a blend of polyethylene naphthalate and polyamide is used as a sheath component, both polymers are not uniformly mixed in the sheath portion, and it is difficult to obtain a composite fiber having good physical properties.

【0008】また、繊維で補強されたタイヤでは自動車
の乗り心地を大きく損なういわゆるフラットスポット現
象が起きる場合が多いが、このフラットスポット現象
は、自動車走行時の内部発熱によってタイヤの温度が補
強繊維(タイヤコード)の2次転移点(以後「Tg」と
いう)を越えるとタイヤコードのヤング率が低下して変
形を生じ、この変形が自動車が走行していない冷却時
(駐車時)にも回復されないために生ずる現象である。
In addition, a so-called flat spot phenomenon often occurs in a tire reinforced with a fiber, which greatly impairs the riding comfort of an automobile. In the flat spot phenomenon, the temperature of the tire is reinforced by the internal heat generated while the automobile is running. When the secondary transition point (hereinafter referred to as "Tg") of the tire cord is exceeded, the Young's modulus of the tire cord decreases and deformation occurs, and this deformation is not recovered even when the automobile is not running (cooling) while cooling. This is a phenomenon that occurs because of this.

【0009】ところで、ポリアミド繊維はヤング率が低
く且つTgも低いため(例えばナイロン6のTg=45
〜50℃、ナイロン6,6のTg=40℃)、タイヤコ
ードに使用した場合は上記したフラットスポット現象が
顕著に現れる傾向があり、したがって、鞘成分にポリア
ミドを使用している上記公報に記載されている従来の芯
鞘型複合繊維では、タイヤコードとして使用した場合に
フラットスポット現象の回避が困難である。
By the way, polyamide fiber has a low Young's modulus and a low Tg (for example, Tg = 45 of nylon 6).
˜50 ° C., Tg of nylon 6,6 = 40 ° C.), and when used for tire cords, the above-mentioned flat spot phenomenon tends to appear prominently. Therefore, it is described in the above publication using polyamide as a sheath component. With the conventional core-sheath type composite fibers described above, it is difficult to avoid the flat spot phenomenon when used as a tire cord.

【0010】[0010]

【発明の内容】上記の点から、本発明者らは、高強度で
且つ高いモジュラスおよび優れた熱寸法安定性を有し、
産業資材用、特にタイヤコード等のゴム補強材として適
するポリエステル繊維を得ることを目的として研究を続
けてきた。その結果、特定の極限粘度を有するエチレン
−2,6−ナフタレ−ト単位から主としてなるポリエチ
レンナフタレートを芯成分とし、これに特定の極限粘度
を有するエチレンテレフタレート単位から主としてなる
ポリエチレンテレフタレートを鞘成分として組み合わせ
て複合繊維を形成し、この複合繊維に特定の処理を施す
と高強度、高モジュラスおよび良好な熱寸法安定性を有
する、産業資材、特にゴム補強材として適した繊維が得
られることを見いだして本発明を完成した。
From the above points, the present inventors have high strength and high modulus and excellent thermal dimensional stability,
Research has been continued for the purpose of obtaining polyester fibers suitable for industrial materials, particularly as a rubber reinforcing material for tire cords and the like. As a result, polyethylene naphthalate mainly composed of ethylene-2,6-naphthalate units having a specific intrinsic viscosity was used as a core component, and polyethylene terephthalate mainly composed of ethylene terephthalate units having a specific intrinsic viscosity was used as a sheath component. It has been found that when combined to form a composite fiber, the composite fiber is subjected to a specific treatment to obtain a fiber having high strength, high modulus and good thermal dimensional stability, which is suitable as an industrial material, particularly as a rubber reinforcing material. And completed the present invention.

【0011】すなわち、本発明は、(a)極限粘度[η]
が0.6以上のエチレン−2,6−ナフタレ−ト単位を
主とするポリエチレンナフタレートを芯成分として用
い、そして極限粘度[η]が0.95以上のエチレンテレ
フタレート単位を主とするポリエチレンテレフタレート
を鞘成分として用いて形成した芯鞘型ポリエステル複合
繊維であって;(b)複合繊維に占める芯部分の割合が
50〜90重量%であり;(c)120℃におけるヤン
グ率が100g/d以上であり;そして(d)150℃
における乾熱収縮率が2%以下である;ことを特徴とす
る芯鞘型ポリエステル複合繊維である。
That is, the present invention provides (a) an intrinsic viscosity [η]
Of polyethylene-2,6-naphthalate having a ratio of 0.6 or more as a core component, and polyethylene terephthalate having a limiting viscosity [η] of 0.95 or more as a main component of ethylene terephthalate Core-sheath type polyester conjugate fiber formed by using as a sheath component; (b) the proportion of the core portion in the conjugate fiber is 50 to 90% by weight; (c) Young's modulus at 120 ° C. is 100 g / d. And above; and (d) 150 ° C
The core-sheath type polyester conjugate fiber has a dry heat shrinkage ratio of 2% or less;

【0012】本発明の芯鞘型複合繊維では、芯成分とし
て、0.6以上の極限粘度[η]を有し且つエチレン−
2,6−ナフタレ−ト単位を主とするポリエチレンナフ
タレート(以後「PEN」という)を用いて複合繊維を
形成することが必要である。
The core-sheath type composite fiber of the present invention has, as a core component, an intrinsic viscosity [η] of 0.6 or more and ethylene-
It is necessary to form the bicomponent fiber using polyethylene naphthalate (hereinafter referred to as "PEN") having 2,6-naphthalate units as a main component.

【0013】本発明において、PENの極限粘度[η]
は、PENをp−クロロフェノールとテトラクロロエタ
ンとの混合溶媒(重量混合比1:1)に溶解し、30℃
で測定した粘度から求めた値をいう。PENの極限粘度
[η]が0.6未満であると、本発明の複合繊維の120
℃におけるヤング率を100g/d以上にすることがこ
とができず、高モジュラスの複合繊維を得ることができ
ない。PENの極限粘度[η]が特に0.7以上であるの
が好ましい。そして、本発明では、紡糸後の複合繊維に
おいてPENの極限粘度[η]が0.55以上であるのが
好ましい。
In the present invention, the intrinsic viscosity of PEN [η]
Dissolves PEN in a mixed solvent of p-chlorophenol and tetrachloroethane (weight mixing ratio 1: 1) at 30 ° C.
The value obtained from the viscosity measured in step 1. Intrinsic viscosity of PEN
When [η] is less than 0.6, 120 of the composite fiber of the present invention is obtained.
The Young's modulus at ° C cannot be 100 g / d or more, and a high modulus composite fiber cannot be obtained. The intrinsic viscosity [η] of PEN is particularly preferably 0.7 or more. In the present invention, it is preferable that the intrinsic viscosity [η] of PEN in the conjugate fiber after spinning is 0.55 or more.

【0014】また、本発明において、「エチレン−2,
6−ナフタレ−ト単位を主とする」とは、PENの95
モル%以上がエチレン−2,6−ナフタレ−ト単位から
構成されていることを意味する。本発明で使用するPE
Nは、通常そのTgが100〜120℃、好ましくは1
10〜120℃であり、熱可塑性樹脂のうちでもTgの
高い重合体の部類に入る。PENにおけるエチレン−
2,6−ナフタレ−ト単位の割合が95モル%未満であ
ると、本発明の複合繊維のTgが低下し、しかも高融点
の複合繊維が得られず、複合繊維の熱寸法安定性、強伸
度、ヤング率等の低下を招く。
Further, in the present invention, "ethylene-2,
"Mainly composed of 6-naphthalate units" means that PEN 95
It means that more than mol% is composed of ethylene-2,6-naphthalate units. PE used in the present invention
N has a Tg of usually 100 to 120 ° C., preferably 1
The temperature is from 10 to 120 ° C., which falls within the category of polymers having a high Tg among the thermoplastic resins. Ethylene in PEN-
When the proportion of 2,6-naphthalate units is less than 95 mol%, the Tg of the composite fiber of the present invention is lowered, and further, a high melting point composite fiber cannot be obtained, and the thermal dimensional stability and strength of the composite fiber are high. This leads to a decrease in elongation and Young's modulus.

【0015】本発明で使用するPENは、ナフタレン−
2,6−ジカルボン酸またはそのエステル等の誘導体と
エチレングリコールまたはその誘導体とを、必要に応じ
て少量(通常5モル%未満)の第3成分と共に、触媒の
存在下に自体公知の方法によって重縮合させることによ
り製造することができる。
The PEN used in the present invention is naphthalene-
Derivatives such as 2,6-dicarboxylic acid or its ester and ethylene glycol or its derivative, together with a small amount (usually less than 5 mol%) of a third component, if necessary, are added in the presence of a catalyst by a method known per se. It can be produced by condensation.

【0016】第3成分を使用する場合は、PENの重合
完了前に適当な1種または2種以上の第3成分を添加す
ると、該第3成分が共重合されたエチレン−2,6−ナ
フタレ−ト共重合体を得ることができる。使用し得る第
3成分の例としては、ジエチレングリコール、ネオペン
チルグリコール、シクロヘキサンジメタノール、イソフ
タル酸、スルホイソフタル酸およびそれらのナトリウム
塩、ポリアルキレングリコール、ナフタレン−2,7−
ジカルボン酸、ナフタレン−2,7−ジカルボン酸−4
−スルホン酸ナトリウム塩等を挙げることができる。
When a third component is used, one or more appropriate third components are added before the completion of the PEN polymerization, and the ethylene-2,6-naphthalene copolymerized with the third component is added. -Tocopolymer can be obtained. Examples of the third component that can be used are diethylene glycol, neopentyl glycol, cyclohexanedimethanol, isophthalic acid, sulfoisophthalic acid and their sodium salts, polyalkylene glycol, naphthalene-2,7-.
Dicarboxylic acid, naphthalene-2,7-dicarboxylic acid-4
-Sulfonic acid sodium salt and the like can be mentioned.

【0017】第3成分を共重合させる場合は、得られる
エチレン−2,6−ナフタレ−ト共重合体のTgが10
0℃よりも低くならないように、その種類および使用割
合を選択することが必要であり、第3成分の共重合割合
は、通常、5モル%未満にすべきである。第3成分の共
重合割合が5モル%以上である、すなわちエチレン−
2,6−ナフタレ−ト単位の割合が95モル%未満であ
ると、上記したように、複合繊維のTgが低下して高融
点とならず、しかも複合繊維の熱寸法安定性、強伸度、
ヤング率等が低下する。
When the third component is copolymerized, the Tg of the ethylene-2,6-naphthalate copolymer obtained is 10
It is necessary to select the kind and the use ratio so as not to fall below 0 ° C., and the copolymerization ratio of the third component should usually be less than 5 mol%. The copolymerization ratio of the third component is 5 mol% or more, that is, ethylene-
When the proportion of 2,6-naphthalate units is less than 95 mol%, as described above, the Tg of the conjugate fiber is lowered and the melting point is not high, and the thermal dimensional stability and the strength and elongation of the conjugate fiber are low. ,
Young's modulus etc. decreases.

【0018】そして、本発明の複合繊維では、鞘成分と
して極限粘度[η]が0.95以上で且つエチレンテレフ
タレート単位を主とするポリエチレンテレフタレート
(以後「PET」という)を用いて複合繊維を形成する
ことが必要である。また、紡糸後の複合繊維において
は、PETの極限粘度[η]が0.90以上であるのが好
ましい。本発明において、PETの極限粘度[η]は、P
ENの場合と同様に、PETをp−クロロフェノールと
テトラクロロエタンとの混合溶媒(重量混合比1:1)
に溶解し、30℃で測定した粘度から求めた値をいう。
In the composite fiber of the present invention, the composite fiber is formed by using polyethylene terephthalate (hereinafter referred to as "PET") having an intrinsic viscosity [η] of 0.95 or more and mainly ethylene terephthalate units as a sheath component. It is necessary to. In the spun conjugate fiber, the intrinsic viscosity [η] of PET is preferably 0.90 or more. In the present invention, the intrinsic viscosity [η] of PET is P
Similar to the case of EN, PET is a mixed solvent of p-chlorophenol and tetrachloroethane (weight mixing ratio 1: 1).
It is a value obtained from the viscosity of the substance dissolved in the solution and measured at 30 ° C.

【0019】本発明の複合繊維では、PETと複合紡糸
するPENの溶融粘度が通常かなり高く、そのため溶融
紡糸する際の紡糸機のヘッド温度として通常290〜3
10℃、特に300〜310℃という高温を通常採用す
るが、PETの極限粘度[η]が0.95未満であると、
ヘッド部分におけるPETの溶融粘度がPENの溶融粘
度よりもかなり低くなってしまい、両者の溶融粘度の差
が大きくなる。その結果、紡出される複合繊維の断面形
状が均一な同心状にならずに偏芯を生じたり、繊維径が
不均一になって良好な芯鞘型複合繊維を得ることができ
ず、紡糸安定性が悪くなる。しかも、紡糸後の延伸工程
においても毛羽が発生し、得られる延伸糸の物性、特に
機械的特性、耐熱性および熱寸法安定性が劣ったものに
なる。
In the conjugate fiber of the present invention, the melt viscosity of PET and PEN to be composite-spun is usually quite high, and therefore the head temperature of the spinning machine during melt-spinning is usually 290-3.
Although a high temperature of 10 ° C., particularly 300 to 310 ° C. is usually adopted, when the intrinsic viscosity [η] of PET is less than 0.95,
The melt viscosity of PET in the head portion is considerably lower than the melt viscosity of PEN, and the difference in melt viscosity between the two becomes large. As a result, the cross-sectional shape of the spun conjugate fiber does not become uniform and concentric, and eccentricity occurs, or the fiber diameter becomes uneven and a good core-sheath type conjugate fiber cannot be obtained. The sex becomes worse. Moreover, fluff is generated even in the drawing step after spinning, and the obtained drawn yarn has poor physical properties, particularly mechanical properties, heat resistance, and thermal dimensional stability.

【0020】したがって、本発明では、290〜310
℃、特に300〜310℃という高温における溶融紡糸
時のPENの溶融粘度との差を出来るだけ小さくしてバ
ランスをとるために、鞘部分を構成するPETとして極
限粘度[η]が0.95以上のものを使用する必要があ
り、それによって断面形状が良好で繊維径の均一で、且
つ諸物性、特に機械的特性、耐熱性および熱寸法安定性
に優れた複合繊維を得ることができる。このような点か
ら、PETの極限粘度[η]が1.0以上であるのが一層
好ましい。
Therefore, in the present invention, 290 to 310.
In order to minimize the difference with the melt viscosity of PEN at the time of melt spinning at a high temperature of 300 ° C., particularly 300 to 310 ° C., the PET constituting the sheath portion has an intrinsic viscosity [η] of 0.95 or more. It is necessary to use a composite fiber having a good cross-sectional shape, a uniform fiber diameter, and various physical properties, particularly mechanical properties, heat resistance and thermal dimensional stability. From such a point, it is more preferable that the intrinsic viscosity [η] of PET is 1.0 or more.

【0021】また、本発明において、「エチレンテレフ
タレート単位を主とする」とは、PETの90モル%以
上がエチレンテレフタレート単位から構成されているこ
とを意味する。PETにおけるエチレンテレフタレート
単位の割合が90モル%未満であると、本発明の複合繊
維のTgが低下し、しかも高融点の複合繊維が得られ
ず、複合繊維の熱寸法安定性、強伸度、ヤング率等の低
下を招く。本発明で使用するPETは、テレフタル酸ま
たはそのエステル等の誘導体とエチレングリコールまた
はその誘導体とを、必要に応じて少量(通常10モル%
未満)の第3成分と共に、触媒の存在下に自体公知の方
法によって重縮合させることにより製造することができ
る。
In the present invention, "mainly containing ethylene terephthalate units" means that 90 mol% or more of PET is composed of ethylene terephthalate units. When the proportion of ethylene terephthalate units in PET is less than 90 mol%, the Tg of the composite fiber of the present invention is lowered, and a composite fiber having a high melting point cannot be obtained, and thermal dimensional stability, strength and elongation of the composite fiber, This leads to a decrease in Young's modulus and the like. The PET used in the present invention contains a derivative of terephthalic acid or an ester thereof and ethylene glycol or a derivative thereof in a small amount (usually 10 mol%).
It can be produced by polycondensing in the presence of a catalyst with a third component of (less than 1) by a method known per se.

【0022】第3成分を使用する場合は、PETの重合
完了前に適当な1種または2種以上の第3成分を添加す
るのがよく、それによって該第3成分が共重合されたエ
チレンテレフタレート共重合体を得ることができる。使
用し得る第3成分の例としては、ジエチレングリコー
ル、ネオペンチルグリコール、シクロヘキサンジメタノ
ール、イソフタル酸、スルホイソフタル酸およびそれら
のナトリウム塩、ポリアルキレングリコール等を挙げる
ことができる。
When a third component is used, it is preferable to add one or more suitable third components before the completion of the polymerization of PET, whereby ethylene terephthalate is copolymerized with the third component. A copolymer can be obtained. Examples of the third component that can be used include diethylene glycol, neopentyl glycol, cyclohexanedimethanol, isophthalic acid, sulfoisophthalic acid and sodium salts thereof, polyalkylene glycol and the like.

【0023】また、本発明の複合繊維においては、芯成
分であるPENおよび鞘成分であるPETの一方または
両方が、必要に応じて、酸化チタン等の艶消し剤、光沢
改良剤、難燃剤等を含有していてもよい。
Further, in the conjugate fiber of the present invention, one or both of PEN which is the core component and PET which is the sheath component, may be a matting agent such as titanium oxide, a gloss improving agent, a flame retardant, etc., if necessary. May be contained.

【0024】更に、本発明の複合繊維では、PENから
なる芯部分の割合が50〜90重量%、すなわちPET
からなる鞘部分の割合が50〜10重量%であることが
必要である。芯部分(PEN)の割合が50重量%未満
であると、複合繊維における鞘部分(PET)による被
覆割合が大きくなり過ぎて、PEN繊維の特性である熱
寸法安定性および高温下での高ヤング率という特性を複
合繊維に付与することができず、目的とする産業資材と
して適した複合繊維を得ることができなくなる。一方、
芯部分(PEN)の割合が90重量%を超えると、複合
繊維をゴムの補強用に使用した場合に、ゴムとの接着性
が劣ったものになる。熱寸法安定性、高温下での高ヤン
グ率、ゴムとの接着性等の点から、複合繊維における芯
部分(PEN)の割合を特に75〜90重量%とするの
が好ましい。
Further, in the composite fiber of the present invention, the proportion of the core portion made of PEN is 50 to 90% by weight, that is, PET.
It is necessary that the ratio of the sheath portion consisting of 50 to 10% by weight. If the ratio of the core part (PEN) is less than 50% by weight, the covering ratio of the sheath part (PET) in the composite fiber becomes too large, and the thermal dimensional stability and high Young's high temperature which are the characteristics of the PEN fiber are high. The property of rate cannot be imparted to the composite fiber, and it becomes impossible to obtain the target composite fiber suitable as an industrial material. on the other hand,
When the proportion of the core portion (PEN) exceeds 90% by weight, when the composite fiber is used for reinforcing rubber, the adhesiveness with the rubber becomes poor. From the viewpoints of thermal dimensional stability, high Young's modulus at high temperature, adhesiveness to rubber, etc., it is preferable that the proportion of the core portion (PEN) in the composite fiber is particularly 75 to 90% by weight.

【0025】そして、本発明の複合繊維が、120℃に
おけるヤング率が100g/d以上で且つ150℃にお
ける乾熱収縮率が2%以下であるという上記した物性を
有するためには、複合繊維を構成する芯部分のPENお
よび鞘部分のPETの両方が高度に配向し結晶化してい
ることが必要である。芯部分のPENおよび鞘部分のP
ETの両方を高度に配向・結晶化するための方法であれ
ばどのような方法も採用でき、例えば、高速紡糸を行っ
て紡糸により直線延伸配向・結晶化した複合繊維を製造
する高速紡糸法、紡糸した複合繊維を巻取ることなくそ
のまま引続いて延伸処理して配向・結晶化させる紡糸直
接延伸法、紡糸した複合繊維を一旦巻取った後に延伸処
理を施して配向・結晶化する方法等を採用することがで
き、高速防止法および紡糸に引き続いて延伸処理を行う
紡糸直接延伸法による場合は工程の合理化を行うことが
っできる。
In order for the conjugate fiber of the present invention to have the above-mentioned physical properties that the Young's modulus at 120 ° C. is 100 g / d or more and the dry heat shrinkage percentage at 150 ° C. is 2% or less, the conjugate fiber is It is necessary that both the core PEN and the sheath PET that make up be highly oriented and crystallized. PEN for core and P for sheath
Any method can be adopted as long as it is a method for highly orienting and crystallizing both ET, for example, a high-speed spinning method for producing a conjugate fiber in which linear stretching orientation and crystallization is performed by performing high-speed spinning, Direct spinning method in which the spun composite fiber is continuously drawn and oriented / crystallized without being wound, and a method in which the spun composite fiber is once wound and then stretched to be oriented / crystallized, etc. It can be adopted, and the process can be rationalized in the case of the high speed prevention method and the spinning direct drawing method in which the spinning is followed by the drawing treatment.

【0026】紡糸直接延伸法、または紡糸して一旦巻取
った後に延伸する方法による場合には、鞘部分を構成す
るPETに比べて、芯部分を構成するPENは結晶化速
度が約7.5倍も遅く、一段の延伸では充分に配向・結
晶化が行われにくいので、延伸処理を一段で行うよりも
加熱下に(例えば加熱ローラを使用して)、2段以上の
多段で行うのがよく、特に3段またはそれ以上で行うの
が好ましい。上記のような配向・結晶化処理を行うこと
により、120℃におけるヤング率が100g/d以上
で且つ150℃における乾熱収縮率が2%以下である高
ヤング率と高い熱寸法安定性を有する本発明の芯鞘型複
合繊維を得ることができる。
In the case of the spinning direct drawing method or the method of spinning and once winding and then drawing, PEN forming the core portion has a crystallization rate of about 7.5 as compared with PET forming the sheath portion. It is twice as slow and it is difficult to achieve orientation and crystallization sufficiently in one stage of stretching, so it is better to carry out stretching in two or more stages under heating (for example, using a heating roller) than in one stage. Well, it is particularly preferable to carry out in 3 stages or more. By carrying out the above-mentioned orientation / crystallization treatment, the Young's modulus at 120 ° C. is 100 g / d or more, and the dry heat shrinkage rate at 150 ° C. is 2% or less, thus having a high Young's modulus and high thermal dimensional stability. The core-sheath type composite fiber of the present invention can be obtained.

【0027】本発明の複合繊維では、複合繊維全体の横
断面形状および芯部分の横断面形状は特に限定されず、
円形、楕円形、方形、三角形、多角形等の任意の形状で
あり得るが、通常全体および芯部分の横断面形状を円形
とするのが、均一な物性を得る上で好ましい。また、本
発明の複合繊維では延伸処理後(配向・結晶化後)の単
繊維繊度が約3〜10デニール程度にしておくのが、産
業資材用途として望ましい。また、トータル繊度は50
0〜1000デニール程度が好ましい。本発明の複合繊
維は、その用途に応じて、モノフィラメント、短繊維、
フィラメント糸、スラブ、紡績糸、編織布、不織布、
網、タイヤコード等の任意の形態にして使用することが
できる。
In the conjugate fiber of the present invention, the cross-sectional shape of the whole conjugate fiber and the cross-sectional shape of the core are not particularly limited,
It may have any shape such as a circle, an ellipse, a rectangle, a triangle, and a polygon, but it is usually preferable that the entire cross section and the core have a circular cross-sectional shape in order to obtain uniform physical properties. In addition, it is desirable for the use of industrial materials that the single fiber fineness of the composite fiber of the present invention after the stretching treatment (after orientation / crystallization) is about 3 to 10 denier. The total fineness is 50
About 0 to 1000 denier is preferable. The composite fiber of the present invention is a monofilament, a short fiber, or a
Filament yarn, slab, spun yarn, woven fabric, non-woven fabric,
It can be used in any form such as a net and a tire cord.

【0028】限定されるものではないが、本発明の芯鞘
型ポリエステル複合繊維の一般的な製法を以下に記載す
る。2基の押出機の一方に、芯部分を構成する極限粘度
[η]が0.6以上、好ましくは0.7以上のエチレン−
2,6−ナフタレ−ト単位から主としてなるPENを供
給して290〜310℃の温度で溶融すると共に、もう
一方の押出機に鞘部分を構成するエチレンテレフタレー
ト単位から主としてなるPETを供給して280〜30
0℃の温度で溶融する。次いで、各々の溶融重合体流
を、ヘッド温度が300〜310℃であり且つ紡糸口金
直下に10cm〜100cmの長さに亙って300〜3
20℃の加熱雰囲気を形成させるための保温・加熱筒を
設置した複合紡糸装置に導いて紡糸口金からPENが芯
部分になりPETが鞘部分を構成する芯鞘型複合繊維を
紡出させ、保温・加熱筒を通過させた後、冷却風で急冷
固化し、油剤を付与して芯鞘型のポリエステル複合繊維
を製造する。
Although not limited, a general method for producing the core-sheath type polyester conjugate fiber of the present invention will be described below. Intrinsic viscosity of the core part of one of the two extruders
ethylene having an [η] of 0.6 or more, preferably 0.7 or more
280 is supplied by supplying PEN mainly composed of 2,6-naphthalate units and melting at a temperature of 290 to 310 ° C., while supplying PET mainly composed of ethylene terephthalate units constituting the sheath portion to the other extruder. ~ 30
Melts at a temperature of 0 ° C. Then each molten polymer stream was heated to 300-3 ° C. with a head temperature of 300-310 ° C. and a length of 10 cm-100 cm just below the spinneret.
A core-sheath type composite fiber in which PEN is the core part and PET is the sheath part is spun out from the spinneret by introducing it to a composite spinning device equipped with a heat-retaining / heating cylinder for forming a heating atmosphere at 20 ° C After passing through the heating cylinder, it is rapidly cooled and solidified by cooling air, and an oil agent is added to produce a core-sheath type polyester composite fiber.

【0029】上記の複合紡糸は、通常、約1000m/
分以上の紡糸速度で行うのがよく、その際に後の延伸工
程において複合繊維を充分に配向結晶化させる上で、紡
糸口金直下の加熱雰囲気の制御が重要である。紡糸によ
って配向・結晶化した本発明の芯鞘型ポリエステル複合
繊維を直接得ようとする場合は、紡糸速度1500m/
分以上の高速紡糸を行うのがよい。
The above-mentioned composite spinning is usually about 1000 m /
It is preferable to perform the spinning at a spinning speed of not less than a minute, and in that case, it is important to control the heating atmosphere immediately below the spinneret in order to sufficiently orientate and crystallize the composite fiber in the subsequent drawing step. When the core-sheath type polyester composite fiber of the present invention oriented and crystallized by spinning is directly obtained, the spinning speed is 1500 m /
It is better to perform high speed spinning for more than a minute.

【0030】また、紡糸により未延伸糸を製造し、それ
を巻取ることなる直線延伸処理するかまたは一旦巻取っ
た後に延伸処理する場合は、加熱供給ローラの温度を7
0〜130℃、好ましくは100〜120℃とし以降多
段延伸を行うのがよい。多段延伸では、最終段の延伸ロ
ーラの温度を180〜240℃、好ましくは200〜2
20℃として延伸熱処理を行う。最終段の延伸ローラの
温度がこの範囲から外れ、特に180℃よりも低い場合
は、本発明で目的としているヤング率および乾熱収縮率
を有する複合繊維が得られず、しかも複合繊維の耐熱性
が劣ったものになる。
When an unstretched yarn is produced by spinning and subjected to a linear stretching process in which it is wound or a winding process after once winding, the temperature of the heating supply roller is set to 7
The temperature is set to 0 to 130 ° C., preferably 100 to 120 ° C., and multi-stage drawing is preferably performed thereafter. In multi-stage stretching, the temperature of the final stage stretching roller is 180 to 240 ° C., preferably 200 to 2
Stretching heat treatment is performed at 20 ° C. When the temperature of the drawing roller at the final stage is out of this range, particularly lower than 180 ° C., the composite fiber having the Young's modulus and the dry heat shrinkage ratio aimed at by the present invention cannot be obtained, and the heat resistance of the composite fiber is not obtained. Will be inferior.

【0031】このような加熱ローラによる多段延伸によ
って、複合繊維の鞘部分がPETで構成されているにも
拘わらず、芯部分を構成しているPENの特徴が複合繊
維に現れて、120℃でのヤング率が100g/d以上
で且つ150℃での乾熱収縮率が2%以下の芯鞘型ポリ
エステル複合繊維を得ることができる。そして、この複
合繊維は熱安定性に優れ、タイヤコード等の産業資材と
して用いた場合には、フラットスポット現象等の熱変形
を生じない。
By such multi-stage drawing with the heating roller, the characteristic of PEN forming the core portion appears in the composite fiber even though the sheath portion of the composite fiber is made of PET, and at 120 ° C. It is possible to obtain a core-sheath type polyester composite fiber having a Young's modulus of 100 g / d or more and a dry heat shrinkage rate at 150 ° C. of 2% or less. The composite fiber has excellent thermal stability and does not cause thermal deformation such as a flat spot phenomenon when used as an industrial material such as a tire cord.

【0032】上記のようにして得られた本発明の芯鞘型
ポリエステル複合繊維は、産業資材用として適してお
り、特にゴムの補強材、そのうちでもタイヤコード用と
して極めて優れている。一般に、PET繊維はポリアミ
ド繊維に比べてゴムとの接着性が劣るとされているが、
本発明の芯鞘型ポリエステル複合繊維では、紡糸時に使
用する油剤の種類を選択することによって、ゴムとの間
に充分な接着強度を保つことができる。
The core-sheath type polyester conjugate fiber of the present invention obtained as described above is suitable for industrial materials, and is particularly excellent as a rubber reinforcing material, especially for tire cords. Generally, PET fiber is inferior in adhesiveness to rubber as compared with polyamide fiber,
In the core-sheath type polyester conjugate fiber of the present invention, it is possible to maintain sufficient adhesive strength with the rubber by selecting the type of oil agent used during spinning.

【0033】[0033]

【実施例】以下に、実施例等により本発明を具体的に説
明するが、本発明はそれにより限定されない。以下の例
中、紡糸前の各重合体の極限粘度[η]は、上記した方法
により測定すると共に、紡糸後の繊維における各重合体
の極限粘度[η]、得られた繊維の強度、伸度、ヤング
率、乾熱収縮率、ゴムとの接着性および耐熱接着性は下
記の方法により測定した。
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited thereto. In the following examples, the intrinsic viscosity [η] of each polymer before spinning is measured by the method described above, and the intrinsic viscosity [η] of each polymer in the fiber after spinning, the strength of the obtained fiber, and the elongation The degree, Young's modulus, dry heat shrinkage, adhesiveness with rubber and heat resistant adhesiveness were measured by the following methods.

【0034】紡糸後の繊維における各重合体の極限粘度
[η]の測定: (1)芯鞘型複合繊維における各重合体の極限粘度
[η]:芯鞘型複合繊維をp−クロロフェノール/テトラ
クロロエタン混合溶媒(重量比1:1)に溶解し、30
℃の条件下で測定して複合繊維の極限粘度[η]0を得
る。一方、同じ芯鞘型複合繊維をアルカリ減量処理して
鞘部分を溶解除去した後、芯部分(PEN)の極限粘度
を上記と同様にして測定して、その極限粘度を[η]1
する。鞘部分を構成するPETの極限粘度を[η]2とし
たときに、[η]0、[η]1および[η]2の間には下記の数
式1で示される関係が成立する。
Intrinsic viscosity of each polymer in the fiber after spinning
Measurement of [η]: (1) Intrinsic viscosity of each polymer in core-sheath type composite fiber
[η]: The core-sheath type composite fiber was dissolved in a p-chlorophenol / tetrachloroethane mixed solvent (weight ratio 1: 1) to give 30
The intrinsic viscosity [η] 0 of the conjugate fiber is obtained by measurement under the condition of ° C. On the other hand, after the same core-sheath type composite fiber is subjected to alkali weight reduction treatment to dissolve and remove the sheath part, the intrinsic viscosity of the core part (PEN) is measured in the same manner as above, and the intrinsic viscosity is defined as [η] 1 . .. The intrinsic viscosity of PET constituting the sheath portion is taken as [η] 2, [η] 0, the relationship is established as shown in Equation 1 below between [eta] 1 and [eta] 2.

【0035】[0035]

【数1】[η]0=([η]1+[η]2)/2 したがって、上記の数式1から、複合繊維の鞘部分を構
成するPETの極限粘度[η]2を下記の数式2より求め
る。
[Equation 1] [η] 0 = ([η] 1 + [η] 2 ) / 2 Therefore, from Equation 1 above, the intrinsic viscosity [η] 2 of PET that constitutes the sheath portion of the composite fiber is expressed by the following equation Calculated from 2.

【0036】[0036]

【数2】[η]2=2[η]0−[η]1 [Equation 2] [η] 2 = 2 [η] 0 − [η] 1

【0037】(2)単独繊維(比較例1と比較例3の繊
維)における重合体の極限粘度[η]:上記と同様にし
て、比較例1または比較例3で得られた単独繊維をp−
クロロフェノール/テトラクロロエタン混合溶媒(重量
比1:1)に溶解し、30℃の条件下で測定して極限粘
度[η]を求めた。
(2) Intrinsic viscosity [η] of polymer in single fiber (fibers of Comparative Example 1 and Comparative Example 3): In the same manner as described above, the single fiber obtained in Comparative Example 1 or Comparative Example 3 was p. −
It was dissolved in a chlorophenol / tetrachloroethane mixed solvent (weight ratio of 1: 1) and measured at 30 ° C. to obtain the intrinsic viscosity [η].

【0038】繊維の強度、伸度およびヤング率の測定:
繊維の強度、伸度およびヤング率を、JIS L101
7の定義および測定法にしたがって測定した。繊維の乾熱収縮率の測定: JIS L1013にしたが
って、熱処理温度を150℃、熱処理時間を30分間と
して測定した。
Measurement of fiber strength, elongation and Young's modulus:
The strength, elongation and Young's modulus of the fiber are measured according to JIS L101.
It was measured according to the definition and measuring method of 7. Measurement of dry heat shrinkage of fiber: According to JIS L1013, the heat treatment temperature was 150 ° C., and the heat treatment time was 30 minutes.

【0039】ゴムとの接着性の測定:JIS L101
7−3.3.1Aにしたがって測定した。耐熱接着性の測定: JIS L1017−3.3.1Aに
したがい、加硫時の熱処理を170℃で60分間として
測定した。
Measurement of adhesiveness with rubber: JIS L101
It was measured according to 7-3.3.1A. Measurement of heat-resistant adhesion: According to JIS L1017-3.3.1A, the heat treatment during vulcanization was performed at 170 ° C. for 60 minutes.

【0040】《実施例1〜3》極限粘度[η]=0.85
のPENを30Φ溶融押出機で300℃で溶融し、また
極限粘度[η]=1.2のPETを30Φ溶融押出機で2
95℃で溶融した後、各重合体の溶融流を下記の表1に
示した割合で複合紡糸パックに導き、ノズル孔径が0.
4mm、孔数が96ホールの口金を取り付けた芯鞘型複
合紡糸口金よりヘッド温度310℃、320℃の加熱雰
囲気温度を有する口金直下の保温・加熱筒の長さ20c
mの条件で、芯部分がPENおよび鞘部分がPETにな
るようにして芯鞘型複合繊維を紡出し、保温・加熱筒通
過後に温度25℃の冷却風で急冷固化し、油剤を付与し
てから紡糸速度1000m/分で巻取った。
Examples 1 to 3 Intrinsic viscosity [η] = 0.85
No.2 PEN was melted at 300 ° C with a 30Φ melt extruder, and PET with an intrinsic viscosity [η] = 1.2 was melted with a 30Φ melt extruder at 2
After melting at 95 ° C., the melt flow of each polymer was introduced into the composite spinning pack at the ratio shown in Table 1 below, and the nozzle hole diameter was 0.
A core / sheath composite spinning spinneret with a 4 mm, 96-hole spinneret having a heating atmosphere temperature of 310 ° C. and 320 ° C. under the spinneret and a heating cylinder length of 20 c.
Under the condition of m, the core-sheath type composite fiber was spun out so that the core portion was PEN and the sheath portion was PET, and after being kept warm and passed through the heating cylinder, it was rapidly cooled and solidified with cooling air at a temperature of 25 ° C. Was wound at a spinning speed of 1000 m / min.

【0041】上記で得た紡糸原糸を、加熱供給ローラ温
度を110℃、第1延伸ローラ温度170℃および第2
延伸ローラ温度210℃の加熱条件でローラ2段延伸を
行い全延伸倍率が4.4倍の延伸糸を得た。その際に、
加熱供給ローラと第1延伸ローラ間の延伸倍率は4.0
倍であり、第1延伸ローラと第2延伸ローラ間の延伸倍
率は1.1倍であった。
The spinning raw yarn obtained above was heated at a heating roller temperature of 110 ° C., a first stretching roller temperature of 170 ° C., and a second stretching roller temperature of 170 ° C.
Two-stage drawing was carried out under heating conditions of a drawing roller temperature of 210 ° C. to obtain a drawn yarn having a total draw ratio of 4.4 times. At that time,
The draw ratio between the heating supply roller and the first drawing roller is 4.0.
The stretching ratio between the first stretching roller and the second stretching roller was 1.1.

【0042】上記の紡糸および延伸処理においては、延
伸後の糸の繊度が500デニール/96フィラメントに
なるように、紡糸時の重合体の紡出量を調節した。上記
で得られた延伸糸を2本合糸して、1000デニール/
192フィラメントとして、その物性を上記した方法に
より測定した。その結果を下記の表1に示す。
In the above spinning and drawing processes, the spinning amount of the polymer during spinning was adjusted so that the fineness of the drawn yarn was 500 denier / 96 filaments. The drawn yarn obtained above is combined into two yarns, and 1000 denier /
The physical properties of the 192 filament were measured by the methods described above. The results are shown in Table 1 below.

【0043】《比較例 1》極限粘度[η]=0.85の
PENを30Φ溶融押出機で300℃で溶融した後、単
独紡糸パックに導き、ノズル孔径が0.4mm、孔数が
96ホールの口金を取り付けた単独紡糸口金よりヘッド
温度310℃、320℃の加熱雰囲気温度を有する口金
直下の保温・加熱筒の長さ20cmの条件で、PEN単
独繊維を紡出し、保温・加熱筒通過後に温度25℃の冷
却風で急冷固化し、油剤を付与してから紡糸速度100
0m/分で巻取った。
Comparative Example 1 PEN having an intrinsic viscosity [η] = 0.85 was melted at 300 ° C. with a 30Φ melt extruder, and then introduced into a single spinning pack to have a nozzle hole diameter of 0.4 mm and a hole number of 96 holes. The spin spinning spinneret with the spinneret attached to the spinneret spins the PEN single fiber under the conditions of heat insulation and heating cylinder length of 20 cm under the spinneret having a heating atmosphere temperature of 310 ° C and 320 ° C. After being rapidly cooled and solidified with cooling air at a temperature of 25 ° C., an oil agent is applied, and then the spinning speed is 100.
It was wound at 0 m / min.

【0044】上記で得た紡糸原糸を、加熱供給ローラ温
度を130℃、第1延伸ローラ温度170℃および第2
延伸ローラ温度210℃の加熱条件でローラ2段延伸を
行い全延伸倍率が4.0倍の延伸糸を得た。その際に、
加熱供給ローラと第1延伸ローラ間の延伸倍率は3.6
倍であり、第1延伸ローラと第2延伸ローラ間の延伸倍
率は1.11倍であった。
The spinning yarn obtained above was heated to a temperature of 130 ° C. for a supply roller, a first drawing roller temperature of 170 ° C. and a second drawing roller temperature.
A two-stage roller drawing was carried out under a heating condition of a drawing roller temperature of 210 ° C. to obtain a drawn yarn having a total draw ratio of 4.0 times. At that time,
The stretching ratio between the heating supply roller and the first stretching roller is 3.6.
The stretching ratio between the first stretching roller and the second stretching roller was 1.11 times.

【0045】上記の紡糸および延伸処理においても、実
施例1〜3と同様に、延伸後の糸の繊度が500デニー
ル/96フィラメントになるように、紡糸時の重合体の
紡出量を調節し、得られた延伸糸を2本合糸して、10
00デニール/192フィラメントとして、その物性を
上記した方法により測定した。その結果を下記の表1に
示す。
Also in the above spinning and drawing treatments, as in Examples 1 to 3, the spinning amount of the polymer during spinning is adjusted so that the fineness of the drawn yarn is 500 denier / 96 filaments. , The obtained two drawn yarns are combined and 10
As a 00 denier / 192 filament, its physical properties were measured by the methods described above. The results are shown in Table 1 below.

【0046】《比較例 2》PENとPETの複合紡糸
パックへの供給割合を下記の表1に示したように30:
70にした外は、実施例1〜3と全く同様にして紡糸お
よび延伸処理を行い、得られた延伸糸を2本合糸して、
1000デニール/192フィラメントとして、その物
性を上記した方法により測定した。その結果を下記の表
1に示す。
Comparative Example 2 The ratio of PEN and PET supplied to the composite spinning pack was 30% as shown in Table 1 below.
Except for the number 70, spinning and drawing were performed in the same manner as in Examples 1 to 3, two drawn yarns obtained were combined, and
As a 1000 denier / 192 filament, its physical properties were measured by the methods described above. The results are shown in Table 1 below.

【0047】《比較例 3》極限粘度[η]=1.2のP
ETを30Φ溶融押出機で295℃で溶融した後、単独
紡糸パックに導き、ノズル孔径が0.4mm、孔数が9
6ホールの口金を取り付けた単独紡糸口金よりヘッド温
度305℃、310℃の加熱雰囲気温度を有する口金直
下の保温・加熱筒の長さ20cmの条件で、PEN単独
繊維を紡出し、保温・加熱筒通過後に温度25℃の冷却
風で急冷固化し、油剤を付与してから紡糸速度1000
m/分で巻取った。
Comparative Example 3 P of Intrinsic Viscosity [η] = 1.2
After ET was melted at 295 ° C. with a 30Φ melt extruder, it was introduced into a single spinning pack and the nozzle hole diameter was 0.4 mm and the hole number was 9
From a single spinneret with a 6-hole spinneret, PEN single fiber is spun out under the conditions of heat insulation and heating cylinder length of 20 cm under the spinneret having a heating atmosphere temperature of 305 ° C and 310 ° C. After passing, it is rapidly cooled and solidified with cooling air at a temperature of 25 ° C., an oil agent is applied, and then a spinning speed of 1000.
It was wound up at m / min.

【0048】上記で得た紡糸原糸を、加熱供給ローラ温
度を90℃、第1延伸ローラ温度150℃および第2延
伸ローラ温度200℃の加熱条件でローラ2段延伸を行
い全延伸倍率が5.2倍の延伸糸を得た。その際に、加
熱供給ローラと第1延伸ローラ間の延伸倍率は4.7倍
であり、第1延伸ローラと第2延伸ローラ間の延伸倍率
は1.15倍であった。
The spun raw yarn obtained above is subjected to two-stage roller stretching under the heating conditions of a heating supply roller temperature of 90 ° C., a first stretching roller temperature of 150 ° C. and a second stretching roller temperature of 200 ° C., and a total stretching ratio of 5 is obtained. A drawn yarn of 2 times was obtained. At that time, the stretching ratio between the heating supply roller and the first stretching roller was 4.7 times, and the stretching ratio between the first stretching roller and the second stretching roller was 1.15 times.

【0049】上記の紡糸および延伸処理においても、実
施例1〜3と同様に、延伸後の糸の繊度が500デニー
ル/96フィラメントになるように、紡糸時の重合体の
紡出量を調節し、得られた延伸糸を2本合糸して、10
00デニール/192フィラメントとして、その物性を
上記した方法により測定した。その結果を下記の表1に
示す。
Also in the above spinning and drawing treatments, as in Examples 1 to 3, the spinning amount of the polymer during spinning is adjusted so that the fineness of the drawn yarn is 500 denier / 96 filaments. , The obtained two drawn yarns are combined and 10
As a 00 denier / 192 filament, its physical properties were measured by the methods described above. The results are shown in Table 1 below.

【0050】[0050]

【表1】 [Table 1]

【0051】繊維(糸)がゴム補強材として有効に使用
できるためには、一般に、ゴムとの接着性が18kg以
上が必要であり、この接着強度は加熱後も加熱前の90
%以上の値で保持されていることが必要である。この点
から、上記表1の結果を検討すると、加熱前はゴムとの
接着性が実施例1〜3および比較例1〜3のすべてにお
いて18kg以上で合格しているものの、耐熱試験後
(加熱後)には、比較例1のPEN単独繊維ではその耐
熱接着性(接着強度)が13.6kg(耐熱試験前の7
2.7%)にまで低下しており、PEN単独繊維では加
熱によって繊維とゴムとの接着性が大きく低下している
こと、それに対して実施例1〜3の本発明の複合繊維で
は、加熱後も加熱前の接着強度の90%以上が維持され
ていて、ゴムとの接着性が18kgの合格ラインを超え
ていることがわかる。
In order for fibers (threads) to be effectively used as a rubber reinforcing material, it is generally necessary that the adhesiveness with rubber is 18 kg or more. This adhesive strength is 90 after heating and before heating.
Must be held at a value of% or higher. From this point, when the results in Table 1 above are examined, the adhesiveness with rubber passed 18 kg or more in all of Examples 1 to 3 and Comparative Examples 1 to 3 before heating, but after the heat resistance test (heating. (After), the PEN single fiber of Comparative Example 1 had a heat-resistant adhesive property (adhesive strength) of 13.6 kg (7 before the heat resistance test).
2.7%), that is, the PEN single fiber has a large decrease in the adhesiveness between the fiber and the rubber by heating, whereas the composite fibers of the present invention of Examples 1 to 3 have Even after that, 90% or more of the adhesive strength before heating was maintained, and it can be seen that the adhesiveness with rubber exceeds the 18 kg pass line.

【0052】また、表1の結果から、芯部分(PEN)
の割合が50〜90%の範囲にある実施例1〜3の本発
明の複合繊維(延伸糸)は、強度が大きく、延伸糸の伸
度および乾熱収縮率が小さく且つヤング率が大きくて、
寸法安定性、特に熱寸法安定性および熱回復性が優れて
おり、タイヤコード等の産業資材として適していること
がわかる。これに対して、芯部分(PEN)の割合が5
0%未満であって鞘部分(PET)の割合が50%を超
える比較例2の複合繊維および比較例3のPET単独繊
維では、延伸糸の伸度および乾熱収縮率が大きく、しか
もヤング率が小さく、特に120℃での加熱時のヤング
率が室温でのヤング率の3分の1以下に低下してしま
い、加熱時に繊維の大きな伸びを生じて、寸法安定性、
特に熱寸法安定性および熱回復性が劣り、タイヤコード
等の産業資材として適さないことがわかる。
From the results shown in Table 1, the core portion (PEN)
The composite fiber (drawn yarn) of the present invention of Examples 1 to 3 having a ratio of 50 to 90% has high strength, low elongation and dry heat shrinkage and high Young's modulus. ,
It can be seen that it has excellent dimensional stability, particularly thermal dimensional stability and heat recovery, and is suitable as an industrial material such as a tire cord. On the other hand, the ratio of the core part (PEN) is 5
In the composite fiber of Comparative Example 2 and the PET single fiber of Comparative Example 3 in which the proportion of the sheath portion (PET) exceeds 50% and is less than 0%, the elongation and dry heat shrinkage of the drawn yarn are large, and the Young's modulus is Is small, especially when the Young's modulus at the time of heating at 120 ° C. is reduced to one third or less of the Young's modulus at room temperature, large elongation of the fiber occurs at the time of heating, and the dimensional stability,
In particular, it is found that the thermal dimensional stability and the heat recovery property are poor, and it is not suitable as an industrial material such as a tire cord.

【0053】[0053]

【発明の効果】本発明の芯鞘型ポリエステル複合繊維
は、高強度、高モジュラスおよび良好な熱寸法安定性と
いう優れた機械特性を有し、しかもゴムとの接着性に優
れている。そのため、本発明の芯鞘型ポリエステル複合
繊維は、ゴム補強材、更に他の産業資材として極めて優
れており、特に本発明の芯鞘型ポリエステル複合繊維を
タイヤコードに使用した場合には、ゴムの熱変形回復性
を大幅に向上させて、タイヤにおけるフラットスポット
現象の発生を防止することができる。
The core-sheath type polyester conjugate fiber of the present invention has excellent mechanical properties such as high strength, high modulus and good thermal dimensional stability, and is excellent in adhesion to rubber. Therefore, the core-sheath type polyester conjugate fiber of the present invention is extremely excellent as a rubber reinforcing material and other industrial materials, and particularly when the core-sheath type polyester conjugate fiber of the present invention is used for a tire cord, It is possible to significantly improve the thermal deformation recovery property and prevent the occurrence of the flat spot phenomenon in the tire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)極限粘度[η]が0.6以上のエチ
レン−2,6−ナフタレ−ト単位を主とするポリエチレ
ンナフタレートを芯成分として用い、そして極限粘度
[η]が0.95以上のエチレンテレフタレート単位を主
とするポリエチレンテレフタレートを鞘成分として用い
て形成した芯鞘型ポリエステル複合繊維であって;(b)
複合繊維に占める芯部分の割合が50〜90重量%であ
り;(c)120℃におけるヤング率が100g/d以上
であり;そして(d)150℃における乾熱収縮率が2
%以下である;ことを特徴とする芯鞘型ポリエステル複
合繊維。
(A) Polyethylene naphthalate having ethylene-2,6-naphthalate units having an intrinsic viscosity [η] of 0.6 or more as a core component, and an intrinsic viscosity of
A core-sheath type polyester conjugate fiber formed by using polyethylene terephthalate mainly composed of ethylene terephthalate units having [η] of 0.95 or more as a sheath component; (b)
The proportion of the core portion in the composite fiber is 50 to 90% by weight; (c) Young's modulus at 120 ° C is 100 g / d or more; and (d) Dry heat shrinkage at 150 ° C is 2
% Or less; A core-sheath type polyester composite fiber characterized by being:
JP4056614A 1992-02-10 1992-02-10 Core-sheath type polyester composite fiber Expired - Fee Related JP2989365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056614A JP2989365B2 (en) 1992-02-10 1992-02-10 Core-sheath type polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056614A JP2989365B2 (en) 1992-02-10 1992-02-10 Core-sheath type polyester composite fiber

Publications (2)

Publication Number Publication Date
JPH05222615A true JPH05222615A (en) 1993-08-31
JP2989365B2 JP2989365B2 (en) 1999-12-13

Family

ID=13032142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056614A Expired - Fee Related JP2989365B2 (en) 1992-02-10 1992-02-10 Core-sheath type polyester composite fiber

Country Status (1)

Country Link
JP (1) JP2989365B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488245B1 (en) * 1997-09-09 2005-08-10 주식회사 코오롱 Thermoplastic Synthetic Fiber Nonwoven Fabric and its Manufacturing Method
JP2011001664A (en) * 2009-06-22 2011-01-06 Teijin Fibers Ltd Bi-component spun filament-blended machine-sewing thread

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488245B1 (en) * 1997-09-09 2005-08-10 주식회사 코오롱 Thermoplastic Synthetic Fiber Nonwoven Fabric and its Manufacturing Method
JP2011001664A (en) * 2009-06-22 2011-01-06 Teijin Fibers Ltd Bi-component spun filament-blended machine-sewing thread

Also Published As

Publication number Publication date
JP2989365B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
EP0311386B1 (en) High-tenacity conjugated fiber and process for preparation thereof
US6254987B1 (en) Monofil bicomponent fibres of the sheath/core type
JP2989365B2 (en) Core-sheath type polyester composite fiber
JPS5953736A (en) Polyester tire cord and production thereof
JP2882697B2 (en) Polyester fiber and method for producing the same
JPH06184814A (en) Improved method for high stress spinning of polyester industrial yarn
JP2659724B2 (en) Manufacturing method of high strength composite fiber
JP4049940B2 (en) Heat-sealable composite fiber and method for producing the same
JP2007154343A (en) Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same
JPH06108311A (en) Core-sheath type conjugate fiber and its production
JPH03152215A (en) High-strength and highly durable conjugate fiber
US20050074607A1 (en) Dimensionally stable yarns
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus
JP2776003B2 (en) Method for producing polyester fiber
JP2817269B2 (en) Core-sheath composite fiber
JPH04327214A (en) Conjugate fiber
JP2585820B2 (en) Polyester fiber for fishing net
JPS6134218A (en) Manufacture of yarn for machine sewing polyester thread
JP2003213526A (en) Conjugate polyester fiber for stretchable woven or knit fabric
JPS6122047B2 (en)
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JP2971211B2 (en) High strength composite fiber
JPH10251919A (en) Polyester fiber and its production
JP4660969B2 (en) Thermoplastic synthetic fiber and method for producing the same
JP2004027415A (en) Low-shrinkage polyester fiber and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101008

LAPS Cancellation because of no payment of annual fees