JPH02277811A - Hollow polyester fiber having high tenacity and modulus - Google Patents

Hollow polyester fiber having high tenacity and modulus

Info

Publication number
JPH02277811A
JPH02277811A JP9370089A JP9370089A JPH02277811A JP H02277811 A JPH02277811 A JP H02277811A JP 9370089 A JP9370089 A JP 9370089A JP 9370089 A JP9370089 A JP 9370089A JP H02277811 A JPH02277811 A JP H02277811A
Authority
JP
Japan
Prior art keywords
fiber
modulus
spinning
strength
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9370089A
Other languages
Japanese (ja)
Other versions
JP2682127B2 (en
Inventor
Katsuya Tani
谷 勝也
Kazuyuki Yabuki
和之 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1093700A priority Critical patent/JP2682127B2/en
Publication of JPH02277811A publication Critical patent/JPH02277811A/en
Application granted granted Critical
Publication of JP2682127B2 publication Critical patent/JP2682127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject hollow fiber spun in such a manner as to get a specific hollowness, having high strength and modulus and suitable to a tire-reinforcing material, a conveyor belt reinforcing material, a reinforcing material for a thermoplastic composite, etc. CONSTITUTION:The objective fiber having a hollowness of 2-45% on the cross- section, a breakage strength of >=14 g/d and an initial tensile modulus of >=210g/d can be produced by melt-spinning an ethylene terephthalate polyester having an intrinsic viscosity of 0.5-2.0 in such a manner as to form a hollow fiber.

Description

【発明の詳細な説明】 (産業上の利用分腎) 本発明は従来に見ない高強度と高弾性率特性を有するエ
チレンテレフタレート系ポリエステル繊維に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applications) The present invention relates to an ethylene terephthalate polyester fiber having unprecedented high strength and high elastic modulus properties.

更に詳しくは、タイヤ補強材、コンベアベルト補強材あ
るいは熱可塑性コンポジットの補強材等の用途に有用な
ポリエステル繊維に関するものである。
More specifically, the present invention relates to polyester fibers useful for applications such as tire reinforcing materials, conveyor belt reinforcing materials, and thermoplastic composite reinforcing materials.

(従来の技術) 従来、高強度・高弾性率ポリエステル繊維を得る方法と
しては、例えば特開昭63−12715号公報、特開昭
63−99322号公報、特開昭63−1967ti号
公報、特開昭63−1.96712号公報、特開昭63
−196713号公報等が提案されている。特開昭63
−12715号公報は極限粘度IVが1.2以上のポリ
マーをトリフルオロ酢酸/塩化メチレン混合溶媒に溶解
して紡糸原液となし、これを紡出し未延伸糸にした後、
熱延伸することで高強度・高弾性率ポリエステル繊維を
得ることが示されている。特開昭63−99322号公
報では紡出した未延伸物を膨潤処理し、次いで全延伸倍
率が6倍以上となるように延伸することで高強度・高弾
性率ポリエステル繊維とすることが開示されている。特
開昭63−196711号公報は権限粘度IVが1.2
以上のポリマーを特定の条件で紡糸し、未延伸物を膨潤
処理した後、多段熱延伸することにより高強度・高弾性
率ポリエステル繊維とすることが示されている。
(Prior Art) Conventionally, methods for obtaining high strength and high elastic modulus polyester fibers have been disclosed, for example, in JP-A-63-12715, JP-A-63-99322, JP-A-63-1967ti, and JP-A-63-1967ti. Publication No. 1986-1.96712, Japanese Patent Publication No. 63-1983
-196713 etc. have been proposed. Unexamined Japanese Patent Publication 1986
Publication No. 12715 discloses that a polymer having an intrinsic viscosity IV of 1.2 or more is dissolved in a trifluoroacetic acid/methylene chloride mixed solvent to prepare a spinning stock solution, which is then spun into an undrawn yarn.
It has been shown that high strength and high modulus polyester fibers can be obtained by hot drawing. JP-A No. 63-99322 discloses that a spun undrawn material is subjected to a swelling treatment and then stretched to a total draw ratio of 6 times or more to obtain a high-strength, high-modulus polyester fiber. ing. In JP-A No. 63-196711, the authority viscosity IV is 1.2.
It has been shown that high-strength, high-modulus polyester fibers can be obtained by spinning the above polymers under specific conditions, subjecting the undrawn product to swelling treatment, and then subjecting it to multistage hot drawing.

また、特開昭63−196712号公報には極限粘度I
Vが1.2以上のポリマーを特殊な条件で紡糸・延伸す
ることにより折りたたみ分子鎖が減少し、結晶とをつな
ぐタイ分子が著しく増大した繊維構造を発現せしめ高強
度・高弾性率ポリエステル繊維とすることが開示されて
いる。特開昭63−196713号公報は極限粘度[1
が0.5以上1.2未満のポリマーを溶融紡糸で複屈折
率が0.002〜0.060の未延伸糸を得て、これを
膨潤処理した後、多段熱延伸する高強度・高弾性率ポリ
エステル繊維の製造方法を述べている。
Moreover, in JP-A-63-196712, the intrinsic viscosity I
By spinning and drawing a polymer with a V of 1.2 or more under special conditions, the number of folded molecular chains is reduced and the number of tie molecules connecting crystals is significantly increased, resulting in a fiber structure with high strength and high modulus of elasticity. It is disclosed that JP-A No. 63-196713 discloses that the intrinsic viscosity [1
is 0.5 or more and less than 1.2 to obtain an undrawn yarn with a birefringence of 0.002 to 0.060 by melt-spinning, which is then subjected to swelling treatment and then multistage hot stretching to produce high strength and high elasticity. This paper describes a method for producing polyester fibers.

(発明が解決しようとする課題) 一般に、産業資材用繊維、例えばゴムを補強するタイヤ
コード用繊維に要求される性能は高強度であることが好
ましい、しかし、現行のタイヤコード用ポリエチレンテ
レフタレート繊維の切断強度は9 (g/d)程度、初
期引張弾性率は130〜150(g/d)であり、13
0 (g/d)未満の初期引張弾性率のポリエチレンテ
レフタレート繊維はゴムの補強効果が、小さいために、
一般には使用されない。
(Problems to be Solved by the Invention) In general, it is preferable that high strength is required for fibers for industrial materials, such as fibers for tire cords that reinforce rubber, but the current polyethylene terephthalate fibers for tire cords The cutting strength is about 9 (g/d), the initial tensile modulus is 130 to 150 (g/d), and 13
Polyethylene terephthalate fibers with an initial tensile modulus of less than 0 (g/d) have a small reinforcing effect on rubber, so
Not commonly used.

かかる現状において前記したようにエチレンテレフタレ
ート系ポリエステル繊維の高性能化に関する技術が多数
提案されている。しかしながら、前記提案の方法は次に
述べるような問題点を有している。
Under these circumstances, as described above, many techniques have been proposed for improving the performance of ethylene terephthalate polyester fibers. However, the proposed method has the following problems.

先ず、特開昭63−12715号公報に記載された方法
はポリマーの溶解及び溶媒の回収が必要であり、さらに
は紡糸速度等から考えて生産性が低い。
First, the method described in JP-A-63-12715 requires dissolution of the polymer and recovery of the solvent, and furthermore, the productivity is low considering the spinning speed and other factors.

また、特開昭63−99322号公報に記載された方法
は未延伸糸の極限粘度IVが1.45と高い場合には高
強度・高弾性率のポリエステル繊維を得るが極限粘度I
Vが0.95程度のとき、従来の産業資材用ポリエチレ
ンテレフタレート繊維と比較して良好な値とはいえ、膨
潤処理/高倍率延伸の効果が充分に出ているとはいえな
い。
In addition, the method described in JP-A-63-99322 yields polyester fibers with high strength and high elastic modulus when the intrinsic viscosity IV of the undrawn yarn is as high as 1.45, but
When V is about 0.95, although this is a good value compared to conventional polyethylene terephthalate fibers for industrial materials, it cannot be said that the effects of swelling treatment/high-magnification stretching are sufficiently produced.

特開昭63−196711号公報及び特開昭63−19
6712号公報に記載された方法はいずれも原理的には
、極限粘度1vが1.2以上のポリマーを利用すること
によりタイ分子の数を増加せしめることで高強度・高弾
性率化をはかっている。しかしながら、ポリマーの極限
粘度IVが高くなるにつれて溶融粘度も上昇するため、
より高温の紡糸条件、より高耐圧性の紡糸装置が必要に
なる。また複屈折率が0.002〜0.06と比較的低
配向の未延伸糸を得るためには限定された紡糸条件が必
要であるため通常の極限粘度(IV≦1.0)のポリマ
ーの紡糸に比べて生産性が低下する。
JP-A-63-196711 and JP-A-63-19
In principle, all the methods described in Publication No. 6712 aim to achieve high strength and high elastic modulus by increasing the number of tie molecules by using a polymer with an intrinsic viscosity 1v of 1.2 or more. There is. However, as the intrinsic viscosity IV of the polymer increases, the melt viscosity also increases;
Higher temperature spinning conditions and spinning equipment with higher pressure resistance are required. Furthermore, in order to obtain undrawn yarn with a relatively low birefringence of 0.002 to 0.06, limited spinning conditions are required. Productivity is lower compared to spinning.

特開昭63−196713号公報に記載された方法は、
通常の極限粘度(IV≦1.0)のポリマーを溶融紡糸
し、複「屈折率が0.002〜0.06と比較的低配向
の未延伸糸を得て、これを膨潤処理した後、特定の条件
で延伸することにより高強度・高弾性率化をはかってい
る。しかし、切断強度、初期引張弾性率は従来の産業資
材用ポリエチレンテレフタレート繊維と比較して良好な
値とはいえ、出願人が推測している切断強度及び初期引
張弾性率のそれぞれの限界値である30 (g/d) 
、500 (g/d)から判断して膨潤処理/高倍率延
伸の効果を充分に引き出しているとはいえない0本発明
は、かかる従来技術において達し得ない問題についての
解決と、前記従来技術では達成することができなかった
エチレンテレフタレート系ポリエステル繊維の高強度化
と高弾性率化を達成し、従来のエチレンテレフタレート
系ポリエステル繊維とは明らかに区別される新規な構造
に起因して発現する高強力、高弾性率エチレンテレフタ
レート系ポリエステル繊維を提供せんとするものである
The method described in JP-A-63-196713 is as follows:
A polymer with a normal intrinsic viscosity (IV≦1.0) is melt-spun to obtain a relatively low-oriented undrawn yarn with a double refractive index of 0.002 to 0.06, which is then subjected to swelling treatment. High strength and high elastic modulus are achieved by stretching under specific conditions.However, although the cutting strength and initial tensile modulus are better than conventional polyethylene terephthalate fibers for industrial materials, the application 30 (g/d), which is the limit value of cutting strength and initial tensile modulus estimated by humans.
, 500 (g/d), it cannot be said that the effects of swelling treatment/high-magnification stretching are fully brought out.The present invention aims to solve the problems that cannot be achieved with the conventional techniques, and solve the problems that cannot be achieved with the conventional techniques. We have achieved high strength and high modulus of ethylene terephthalate polyester fiber, which could not be achieved with conventional ethylene terephthalate polyester fibers. The purpose is to provide a strong, high modulus ethylene terephthalate polyester fiber.

(課題を解決するための手段) 上記課題を解決するための手段、即ち本発明は、極限粘
度IVが0.5〜2.0のエチレンテレフタレート系ポ
リエステルよりなり、横断面の中空率が2〜45%の中
空繊維であり、繊維の切断強度が14g/d以上であり
、且つ初期引張弾性率が210g/d以上であることを
特徴とする高強度、高弾性率ポリエステル中空繊維であ
る。
(Means for Solving the Problems) Means for solving the above problems, that is, the present invention is made of ethylene terephthalate polyester having an intrinsic viscosity IV of 0.5 to 2.0, and has a hollowness ratio of 2 to 2. It is a high-strength, high-modulus polyester hollow fiber characterized by having 45% hollow fiber, a fiber cutting strength of 14 g/d or more, and an initial tensile modulus of 210 g/d or more.

本発明では、エチレンテレフタレート系ポリエステルの
ポリマーを、溶融紡糸した後、可能な限り高倍率で延伸
し、本発明の繊維を構成する高分子鎖ができる限りその
繊維軸方向に配列させる必要がある。かかる延伸を施す
手段としてポリエステル系未延伸糸を膨潤剤で処理する
と高倍率延伸が可能となり、得られる延伸糸の繊維物性
も向上する。しかしながら、膨潤処理したことによる延
伸倍率の上昇に見合うだけの切断強度が発現していると
はいえない、ところが切断強度の向上を阻害している原
因でか、繊維横断面の中央部に存在する欠陥部分である
ことが本願発明者らの研究により判明した。かかる欠陥
部分を取り除く事について鋭意研究を重ねた結果、驚(
べきことには、溶融紡糸段階で中空繊維となすことによ
り切断強度の大幅な向上が達成されることが判明した。
In the present invention, the ethylene terephthalate polyester polymer is melt-spun and then stretched at as high a ratio as possible, so that the polymer chains constituting the fibers of the present invention are aligned as much as possible in the fiber axis direction. As a means for such stretching, treating undrawn polyester yarn with a swelling agent enables high-magnification stretching and improves the fiber properties of the resulting drawn yarn. However, it cannot be said that the cutting strength that is commensurate with the increase in the draw ratio due to the swelling treatment has been developed. It was discovered through research by the inventors of this application that this is a defective portion. As a result of intensive research into removing such defective parts, we were surprised (
Significantly, it has been found that a significant improvement in cut strength is achieved by forming hollow fibers during the melt spinning step.

本発明繊維を構成するポリエステルは、その反復単位の
85モル%以上がエチレンテレフタレート単位よりなる
ものであって、特にテレツータル酸またはその機能的誘
導体とエチレングリコールとから製造されるポリエチレ
ンテレフタレートを主たる対象とする。しかしながら、
ポリエチレンテレフタレートを構成する酸成分であるテ
レフタル酸またはその機能的誘導体の一部を15モル%
未満の例えばイソフタル酸、アジピン酸、セバシン酸、
アゼライン酸、ナフタール酸、p−オキシ安息香酸、2
.5−ジメチルテレフタル酸のような2官能性酸、また
はそれ等の機能的誘導体のうち少なくとも一種で置き換
えるか、もしくは、グリコール成分であるエチレングリ
コールの一部を15モル%未満の例えばジエチレングリ
コール、1.4−ブタンジオール等の2価アルコールの
うち少な(とも一種で置き換えた共重合体であってもよ
い、また、これ等のポリエステル酸化防止剤、難燃剤、
接着性向上剤、艷消剤、着色剤等を含有させてもさしつ
かえない。
The polyester constituting the fiber of the present invention is one in which 85 mol% or more of its repeating units are composed of ethylene terephthalate units, and in particular polyethylene terephthalate produced from teretutaric acid or its functional derivative and ethylene glycol is the main target. do. however,
15 mol% of part of terephthalic acid or its functional derivative, which is an acid component constituting polyethylene terephthalate.
For example, isophthalic acid, adipic acid, sebacic acid,
Azelaic acid, naphthalic acid, p-oxybenzoic acid, 2
.. Replacement with at least one difunctional acid such as 5-dimethylterephthalic acid, or a functional derivative thereof, or a portion of the glycol component ethylene glycol with less than 15 mol % of eg diethylene glycol, 1. It may also be a copolymer in which a small amount of dihydric alcohol such as 4-butanediol is replaced with one type, and polyester antioxidants, flame retardants,
It is also possible to contain adhesion improvers, erasing agents, coloring agents, etc.

本発明に使用されるエチレンテレフタレート系ポリエス
テルの極限粘度rvの上限を特に限定するものではない
が溶融粘度と、それに関係した紡糸設備や製糸条件を勘
案するとIVは2.0未満であることが望ましい。
Although the upper limit of the intrinsic viscosity rv of the ethylene terephthalate polyester used in the present invention is not particularly limited, it is desirable that IV is less than 2.0, taking into account the melt viscosity and related spinning equipment and spinning conditions. .

なお、使用するエチレンテレフタレート系ポリエステル
の極限粘度IVが0.5未満になると本発明の目的とす
る高強度・高弾性率ポリエステル繊維の製造が困難とな
る。
It should be noted that if the intrinsic viscosity IV of the ethylene terephthalate polyester used is less than 0.5, it will be difficult to produce the high-strength, high-modulus polyester fiber that is the object of the present invention.

本発明法は通常、産業資材用繊維の製造に使用される極
限粘度IVのポリマーを用いて中空繊維を紡出し、さら
に従来の高強度・高弾性率ポリエステル繊維の製造に適
用される手法を効果的に深川することにより新規な製造
法を達成したものである。即ち繊維横断面の中心に中空
部を有する未延伸糸を膨潤処理した後、多段熱延伸する
ことで14(g/d)以上の高強度210 (g/d)
以上の高弾性率が同時に得られることを見い出だし、本
発明に至ったものである。以下、本発明の新規なエチレ
ンテレフタレート系ポリエステル繊維の製造法及び繊維
の特徴について更に詳しく述べる。
The method of the present invention spins hollow fibers using a polymer with an intrinsic viscosity of IV, which is normally used in the production of fibers for industrial materials, and further improves the effectiveness of conventional methods applied to the production of high-strength, high-modulus polyester fibers. A new manufacturing method was achieved by Fukagawa. That is, after swelling an undrawn yarn having a hollow part at the center of the cross section of the fiber, multi-stage hot stretching results in a high strength of 210 (g/d) or more of 14 (g/d).
It has been discovered that the above-mentioned high elastic modulus can be obtained at the same time, leading to the present invention. Hereinafter, the method for producing the novel ethylene terephthalate polyester fiber of the present invention and the characteristics of the fiber will be described in more detail.

真空乾燥処理した極限粘度!Vが2.0未満の原料ポリ
エステルをポリマーの融点以上好ましくはポリマーの融
点より少な(とも20℃以上高い温度で溶融押出しする
Intrinsic viscosity treated with vacuum drying! A raw material polyester having a V of less than 2.0 is melt-extruded at a temperature higher than the melting point of the polymer, preferably lower than the melting point of the polymer (both higher than the melting point of the polymer by 20° C. or higher).

溶融押出し方法としては特に制限はないがエクストルー
ダー型押出機、ピストン型押出機、2軸混練型押出機等
が用いられる。溶融押出機より溶融したポリマーを延伸
後の繊維で2(%)以上45(%)未満の中空率を得る
ことが可能な形状の紡糸孔を複数個配列した口金を通し
て吐出する。紡糸孔の形状は特に限定するものではない
が1箇所に欠内部を有するC字型で円環状のものが好ま
しい0w4維の中空率は紡糸孔デイメンジョンのみなら
ず使用するポリマーの極限粘度IVや紡糸温度さらには
吐出直後の糸条に吹き当てられる冷却気流の温度、流速
等に影響されるからこれらを考慮して紡糸条件を設定す
ることが肝要である。
The melt extrusion method is not particularly limited, but an extruder type extruder, a piston type extruder, a twin screw kneading type extruder, etc. are used. A melted polymer is discharged from a melt extruder through a spinneret having a plurality of spinning holes arranged in a shape that allows the fiber after stretching to have a hollowness ratio of 2 (%) or more and less than 45 (%). The shape of the spinning hole is not particularly limited, but it is preferably C-shaped and annular with a cutout at one point. It is important to set the spinning conditions by considering these factors, such as the spinning temperature and the temperature and flow rate of the cooling air stream that is blown onto the yarn immediately after discharge.

延伸後の繊維の中空率が2(%)未満になる様な未延伸
糸を膨潤処理し、次いで多段熱延伸しても繊維横断面内
の構造の不均一性は解消されず高物性化は困難となる。
Even if the undrawn yarn is subjected to swelling treatment so that the hollowness ratio of the fiber after drawing is less than 2 (%), and then subjected to multi-stage hot drawing, the non-uniformity of the structure within the cross-section of the fiber cannot be resolved and the physical properties cannot be improved. It becomes difficult.

また延伸後の繊維の中空率が45(%)以上になる様な
未延伸糸は吐出直後の冷却、固化の過程で繊維横断面内
に異方性を生じたり、また中空部の形成が困難になる等
の問題があり、結果的には高物性化の障害となる。
In addition, undrawn fibers with a hollowness ratio of 45% or more after drawing may cause anisotropy in the fiber cross section during the cooling and solidification process immediately after being discharged, and it is difficult to form hollow parts. There are problems such as oxidation, which ultimately becomes an obstacle to achieving high physical properties.

従って、中空率は2(%)以上45(%)未満、好まし
くは5(%)以上40 (%)未満することが必要であ
る。
Therefore, the hollowness ratio needs to be 2 (%) or more and less than 45 (%), preferably 5 (%) or more and less than 40 (%).

このようにして溶融吐出されたポリエステル未延伸糸を
冷却、固化させ、適量の油剤を付与した後、糸速度を制
御する引取りローラーによって引取られる。
The undrawn polyester yarn melted and discharged in this way is cooled and solidified, and after being coated with an appropriate amount of oil, it is taken off by a take-off roller that controls the yarn speed.

引取り速度は特に限定されるものではないが紡糸孔デイ
メンジョンやポリマーの吐出条件を考慮した上で未延伸
糸の自然延伸倍率NEが200(%)〜250(%)と
なるように設定することが好ましい。
The take-up speed is not particularly limited, but it is set so that the natural stretching ratio NE of the undrawn yarn is 200 (%) to 250 (%) after considering the spinning hole dimension and polymer discharge conditions. It is preferable to do so.

自然延伸倍率が200(%)未満では引き続き行なう膨
潤処理よる延伸性の向上効果が小さくなり、結果的に高
物性化が困難となる。自然延伸倍率250(%)以上に
なると紡糸状態が非常に不安定となり糸条の長手方向の
班の抑制が困難となる。
If the natural stretch ratio is less than 200 (%), the effect of improving the stretchability by the subsequent swelling treatment will be small, and as a result, it will be difficult to improve the physical properties. When the natural draw ratio exceeds 250 (%), the spinning state becomes extremely unstable and it becomes difficult to suppress the formation of irregularities in the longitudinal direction of the yarn.

引取られた糸条は一旦巻き取った後、又は、紡糸に連続
して該ポリエステルを膨潤するfg液に浸せき処理する
。膨潤溶液としては繊維自体を溶解することなく、繊維
を膨潤させることにより、高倍率延伸を可能にするもの
であればいかなるものでもよいが、特にアセトン/水系
(水含有率O〜50ν01χ)が最も好ましい。
After the yarn is once wound up, or following spinning, it is immersed in an fg liquid that swells the polyester. Any swelling solution may be used as long as it swells the fiber without dissolving the fiber itself and enables high-magnification stretching, but an acetone/water system (water content O~50ν01χ) is particularly suitable. preferable.

膨潤処理は0゛C以上、好ましくは10°C以上の一定
温度で糸条の外観が白く変化し、結晶化が完了するよう
に処理時間を設定する。処理速度の制御方法は処理温度
と膨潤溶液中の膨潤剤濃度の変更により可能である。
The swelling treatment time is set so that the appearance of the yarn turns white and crystallization is completed at a constant temperature of 0°C or higher, preferably 10°C or higher. The processing speed can be controlled by changing the processing temperature and the swelling agent concentration in the swelling solution.

このようにして膨潤処理されたポリエステル未延伸糸を
90°C以下の温度で、且つ、延伸ヒーター内での変形
・細化が支配的である最大の倍率で延伸する。延伸ヒー
ター温度が90°Cを越えると延伸前に熱結晶化が進行
し延伸性を阻害するので好ましくない。
The thus-swelled undrawn polyester yarn is drawn at a temperature of 90° C. or lower and at the maximum magnification at which deformation and thinning are predominant in the drawing heater. If the stretching heater temperature exceeds 90°C, thermal crystallization proceeds before stretching, which impairs stretchability, which is not preferable.

低温延伸に引き続き、150〜250°Cの温度の範囲
で高温延伸を行なう。高温延伸には多段延伸が好ましく
、まず150〜200°Cの温度範囲で最大延伸倍率の
95%以上で延伸する。ここで最大延伸倍率とは100
0 m以上のサンプルが連続して安定的に製糸し得るこ
とができる最大の延伸倍率をいう。
Following the low-temperature stretching, high-temperature stretching is performed within a temperature range of 150 to 250°C. Multi-stage stretching is preferred for high-temperature stretching, and first, stretching is carried out at a temperature range of 150 to 200°C and at least 95% of the maximum stretching ratio. Here, the maximum stretching ratio is 100
It refers to the maximum stretching ratio at which a sample of 0 m or more can be continuously and stably reeled.

次いで、200〜250’Cの温度の範囲で可能な限り
高倍率の延伸を行なうことが好ましい。
Next, it is preferable to carry out stretching at a temperature as high as possible in the temperature range of 200 to 250'C.

(作用) 本発明のポリエステル繊維の特徴を図面によって説明す
る。第1図は本発明のポリエステル繊維の横断面を示す
図であり、第2図は比較例のポリエステル繊維の横断面
を示す図である。
(Function) The characteristics of the polyester fiber of the present invention will be explained with reference to the drawings. FIG. 1 is a diagram showing a cross section of a polyester fiber of the present invention, and FIG. 2 is a diagram showing a cross section of a polyester fiber of a comparative example.

第2図に示す如く比較例の繊維横断には中央部が黒化し
て見え、繊維横断面内の内外層間で大きな密度差の存在
していることを示している。繊維横断面の中央部が黒化
していることから断面中央部の密度が外層に比べて著し
く低くなっており、断面中央部は比較的粗なボイド状、
構造単位を含んでおり、この部分の繊維物性はかなり低
いことが推察される。
As shown in FIG. 2, the central part of the fiber cross section of the comparative example appears blackened, indicating that there is a large density difference between the inner and outer layers within the fiber cross section. Because the central part of the cross section of the fiber is blackened, the density of the central part of the cross section is significantly lower than that of the outer layer, and the central part of the cross section has a relatively rough void shape.
It is presumed that the fiber properties of this part are quite low since it contains structural units.

一方第1図は本発明のポリエステル繊維の横断面を示す
ものであり、比較例のポリエステル繊維の横断面写真に
見られるような繊維横断面内に黒化部は存在しない。つ
まり、繊維横断面の中央の黒化部は膨潤処理時の膨潤剤
の繊維内部への浸透作用に伴って生じる現象と考えられ
るから繊維の中央部を予め中空化しておくことで黒化部
の発生が抑制されたものと判断される。このことが高強
度・高弾性率化という性能向上効果をもたらすものであ
ると推測される。
On the other hand, FIG. 1 shows a cross section of the polyester fiber of the present invention, and there is no blackened portion in the cross section of the fiber as seen in the photograph of the cross section of the polyester fiber of the comparative example. In other words, the blackened area at the center of the cross section of the fiber is thought to be a phenomenon that occurs as a result of the swelling agent penetrating into the fiber during the swelling process. It is judged that the outbreak has been suppressed. This is presumed to bring about performance improvement effects such as high strength and high elastic modulus.

(実施例) 以下に実施例を示すが本発明はこれらの実施例に限定さ
れるものではない。尚、本発明の評価に用いた物性値の
測定法は以下のとおりである。
(Examples) Examples are shown below, but the present invention is not limited to these examples. The method of measuring physical property values used for evaluation of the present invention is as follows.

〈極限粘度IVの測定法〉 本発明において、エチレンテレフタレート系ポリエステ
ルの極限粘度[Vは、P−クロルフェノール/テトラク
ロルエタン−3/1混合溶媒を用い、30°Cで測定し
た極限粘度〔η〕を次式によりフェノール/テトラクロ
ルエタン=60/40の極限粘度IVに換算したもので
ある。
<Measurement method of intrinsic viscosity IV> In the present invention, the intrinsic viscosity [V] of the ethylene terephthalate polyester is the intrinsic viscosity [η] measured at 30°C using a P-chlorophenol/tetrachloroethane-3/1 mixed solvent. ] was converted into the intrinsic viscosity IV of phenol/tetrachloroethane=60/40 using the following formula.

IV=0.8325X (η) +0.005く繊維の
繊度の測定法〉 標準状態(温度20±2°C1相対温度65±2%の状
B)の試験室で、サーチ■製のオートバイブロ式繊度測
定器DENIERCOMPUT[!RDC−11B型を
使用して、単繊維の繊度(デニール、d)を測定した。
IV=0.8325 Fineness measuring device DENIERCOMPUT [! The fineness (denier, d) of single fibers was measured using RDC-11B model.

但し、繊維の測定試料長は、501n11とした。However, the fiber measurement sample length was 501n11.

く繊維の強度の測定法) 繊維の引張強さ(強度)は、JIS−L−1013(1
981)の7.5.1に準じ、標準状態の試験室で、東
洋ボールドウィン■製の定速伸長形万能引張試験機TE
NSILON UT)l−DIを使用して単繊維の引張
強さを測定した。
(Measurement method of fiber strength) The tensile strength (strength) of fibers is determined according to JIS-L-1013 (1
In accordance with 7.5.1 of 981), in a test room under standard conditions, a constant speed extension type universal tensile tester TE manufactured by Toyo Baldwin ■ was used.
Tensile strength of single fibers was measured using NSILON UT) l-DI.

但し、測定条件は、5kgf引張型ロードセルを用い、
つかみ間隔10CII引張速度110Cl/分(1分間
当たりつかみ間隔の100%の伸長速度)、記録紙の送
り速度100CII/分で試料を引張り、試料が切断し
た時の荷重(gf)を測定し次の式により引張強さ(g
f/d)を算出し強度(g/f)とした。
However, the measurement conditions were as follows: using a 5 kgf tensile load cell,
The sample was pulled at a gripping interval of 10 CII and a tensile speed of 110 Cl/min (an extension rate of 100% of the gripping interval per minute) and a recording paper feed rate of 100 CII/min, and the load (gf) when the sample was cut was measured. The tensile strength (g
f/d) was calculated and set as strength (g/f).

ぐ繊維の初期引張弾性率の測定法〉 繊維の初期引張弾性率(初期引張弾性率)は、JrS−
[、−1013(1981)の7.5.1に準じた上記
の繊維の強度の測定法と同じ方法で試験をおこない記録
紙上に荷重−伸長曲線を描きこの図より、JIS−L−
1013(1981)の7.10に記載の初期引張抵抗
度算出式により、初期引張弾性率(gf/d )を算出
し、初期引張弾性率(g/f)とした。
Measuring method of initial tensile modulus of fiber> The initial tensile modulus of fiber (initial tensile modulus) is
[, -1013 (1981), 7.5.1, the test was carried out using the same method as the above method for measuring fiber strength, and a load-elongation curve was drawn on the recording paper. From this figure, JIS-L-
1013 (1981), 7.10, the initial tensile modulus (gf/d) was calculated and set as the initial tensile modulus (g/f).

く繊維の断面観察法〉 試料を樹脂に包埋しミクロトームにより数十ミクロンの
厚みにカットした後、光学顕微鏡を用い200〜600
倍の倍率下に観察するか、あるいは、黒色のタフセル綿
を充填した貫通孔中に試料を差し込み、カミソリ刃でカ
ットしたものを光学顕微鏡を用い200〜600倍の倍
率下に観察する。
Cross-sectional observation method of fibers> After embedding the sample in resin and cutting it to a thickness of several tens of microns using a microtome,
Observe under a magnification of 2x, or insert a sample into a through hole filled with black Toughcell cotton, cut with a razor blade, and observe under a magnification of 200 to 600x using an optical microscope.

実施例1 極限粘度IVが1.0のポリエチレンテレツクレート原
料ポリマーをエクストルーダー型小型紡糸機を用いて2
95℃単孔吐出IF0.75g/winの条件で、第3
図に示すC字型紡糸細孔(a/b = 0.22、a 
=0.40閣、b =1.80mm、 c =0.18
mn+)を有する紡糸口金から吐出し、20”C、0,
3m/1linのクエンチ気流で冷却、固化させた後、
約1(%)の油剤を付与し、速度200+s/m1ri
で糸条を巻き取った。得られた糸条の自然延伸倍率23
5(%)であった。
Example 1 A polyethylene telescrate raw material polymer with an intrinsic viscosity IV of 1.0 was produced using an extruder type small spinning machine.
Under the conditions of 95°C single hole discharge IF 0.75g/win, the third
C-shaped spinning pore (a/b = 0.22, a
=0.40mm, b =1.80mm, c =0.18
mn+), 20"C, 0,
After cooling and solidifying with a quench air flow of 3m/1lin,
Approximately 1 (%) oil agent is applied and the speed is 200+s/m1ri.
I wound up the yarn. Natural stretching ratio of the obtained yarn: 23
It was 5 (%).

咳未延伸糸を50’Cのアセトン(水1.Qvolχ含
有)中で3分間浸せき処理し、引き続き処理系を80“
Cの温度で3.75倍の延伸を行なった(延伸速度1、
On/a+in)後、185°Cで最大延伸倍率の95
%で2段延伸を、次いで245°Cで3段延伸を行なっ
た。
The undrawn yarn was immersed in acetone (containing 1.Qvol x of water) at 50'C for 3 minutes, and then the treatment system was soaked at 80'C.
Stretching was performed 3.75 times at a temperature of C (stretching speed 1,
On/a+in), the maximum stretching ratio of 95 at 185°C
%, and then three stages of stretching at 245°C.

得られた延伸糸の中空率は12.5 (%)、繊維物性
は2.8デニール、切断強度14.1 (g/d)、初
期引張弾性率220(’g/d)、繊維の極限粘度0.
88であった。
The hollowness ratio of the obtained drawn yarn was 12.5 (%), the fiber physical properties were 2.8 denier, the cutting strength was 14.1 (g/d), the initial tensile modulus was 220 ('g/d), and the fiber limit was Viscosity 0.
It was 88.

実施例2 1箇所に欠同部を有するC字型環状紡糸細孔のデイメン
ジョンa/bを0.14に変えた口金を使用し、実施例
1と同一紡糸、巻取り条件で自然延伸倍率が238(%
)の中空未延伸糸を得て、該未延伸糸を実施例】と同一
条件でアセトンに浸漬させて膨潤処理し、引き続いて多
段熱延伸を行なった。得られた延伸糸の中空率は23.
3 (%)で、その繊維繊度は2.9デニール、切断強
度15.1. (g/’d)、初期引張弾性率238(
g/d) 、繊維の極限粘度は0.88であった。
Example 2 Natural stretching was carried out under the same spinning and winding conditions as in Example 1 using a spinneret with a dimension a/b of 0.14 for a C-shaped annular spinning pore with a missing part at one location. The magnification is 238 (%
) was obtained, and the undrawn yarn was immersed in acetone for swelling treatment under the same conditions as in Example], followed by multistage hot stretching. The hollowness ratio of the obtained drawn yarn was 23.
3 (%), its fiber fineness is 2.9 denier, and its cutting strength is 15.1. (g/'d), initial tensile modulus 238 (
g/d), and the intrinsic viscosity of the fiber was 0.88.

比較例1 .1箇所に欠内部を有するC字型環状紡糸細孔のデイメ
ンジョンa/b、 cをそれぞれ0.08.0.40m
mに変えた口金を使用し、実施例1と同−紡糸及び巻取
り条件で自然延伸倍率が210(%)の未延伸糸を得た
。該未延伸糸を実施例1と同一条件でアセトンに浸漬さ
せて膨潤処理し、次いで多段熱延伸を行なった。得られ
た延伸糸はC型断面を有する異形糸で東北しており、そ
の繊維繊度は2.9デニール、切断強度10.1 (g
/d)、初期引張弾性率150(g/d)、繊維の極限
粘度は0.88であった。
Comparative example 1. Dimensions a/b and c of a C-shaped circular spinning pore with a cutout at one location are 0.08 and 0.40 m, respectively.
An undrawn yarn with a natural draw ratio of 210 (%) was obtained under the same spinning and winding conditions as in Example 1 using a spinneret changed to M. The undrawn yarn was immersed in acetone to undergo swelling treatment under the same conditions as in Example 1, and then subjected to multistage hot stretching. The obtained drawn yarn is a deformed yarn with a C-shaped cross section and has a fiber fineness of 2.9 denier and a cutting strength of 10.1 (g
/d), the initial tensile modulus was 150 (g/d), and the intrinsic viscosity of the fiber was 0.88.

比較例2 通常の円形断面で直径が0.3mの紡糸細孔を有する口
金を用いて極限粘度Ivが1,0のポリマーを溶融吐出
し、250m/minの速度で自然延伸倍率237(%
)の未延伸糸を巻取った。該糸条を実施−1と同一の条
件で膨潤処理し、次いで多段熱延伸を行なった。得られ
た延伸糸の繊維繊度は2.8デニール、切断強度13.
4(g/d)、初期引張弾性率197(g/d) 、繊
維の掻限粘度は0゜87であつた。
Comparative Example 2 A polymer with an intrinsic viscosity Iv of 1.0 was melted and discharged using a spinneret with a normal circular cross section and a spinning pore with a diameter of 0.3 m, and a natural stretching ratio of 237 (%) was applied at a speed of 250 m/min.
) was wound up. The yarn was subjected to swelling treatment under the same conditions as in Example 1, and then subjected to multi-stage hot stretching. The resulting drawn yarn had a fiber fineness of 2.8 denier and a cutting strength of 13.
4 (g/d), the initial tensile modulus was 197 (g/d), and the limiting viscosity of the fiber was 0°87.

実施例3 極限粘度IV1.Oのポリエチレンテレフタレート原料
ポリマーをエクストルーダー型小型紡糸機を用いて、1
箇所に欠円部を有する第3図に示すC字型環状紡糸孔の
デイメンジョンaハ、Cを変更した以外は実施例1と同
一紡糸巻取条件で、各種中空率の異なる未延伸糸を得て
、それぞれの未延伸糸を実施例1と同一条件でアセトン
に浸漬させて膨潤処理し、引き続いて多段熱延伸を行な
った。
Example 3 Intrinsic viscosity IV1. Using a small extruder type spinning machine, the polyethylene terephthalate raw material polymer of
Undrawn yarns with various hollow ratios were prepared under the same spinning and winding conditions as in Example 1, except that dimensions a and C of the C-shaped annular spinning hole shown in FIG. 3 with missing circular portions were changed. Each undrawn yarn was immersed in acetone to undergo swelling treatment under the same conditions as in Example 1, and subsequently subjected to multi-stage hot drawing.

得られた各種中空率を有する延伸糸の物性を下記第1表
の実験Nα1〜5に示す、尚、実験階5は中空率48%
の延伸糸を得るべく行なったものの紡糸延伸が困難で満
足な糸が得られなかった。
The physical properties of the obtained drawn yarns having various hollow ratios are shown in Experiments Nα1 to Nα5 in Table 1 below. Experimental floor 5 had a hollow ratio of 48%.
However, it was difficult to spin and draw the yarn, and a satisfactory yarn could not be obtained.

第1表 (発明の効果) 本発明の繊維は、切断強度が14 (g/d)以上、初
期引張弾性率が210(g/d)以上と、従来には見ら
れなかった高物性を有するポリエステル繊維であり産業
資材用として極めて有用である。
Table 1 (Effects of the Invention) The fibers of the present invention have high physical properties never seen before, such as a breaking strength of 14 (g/d) or more and an initial tensile modulus of 210 (g/d) or more. It is a polyester fiber and is extremely useful as an industrial material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明繊維の横断面を示す図であり、第2図
は比較例2で得られた延伸系の横断面を示す図である。 第3図は中空繊維を得るための1箇所に欠円部を有する
C字型環状紡糸口金孔の横断面図の1例を示したもので
ある。 a:紡糸孔幅 b:欠円状重合体紡糸孔外円の直径 C:欠内部重合体紡糸間隙 特許出願人  東洋紡績株式会社 第 I!!1 早 2図 早3 図
FIG. 1 is a diagram showing a cross section of the fiber of the present invention, and FIG. 2 is a diagram showing a cross section of a drawn system obtained in Comparative Example 2. FIG. 3 shows an example of a cross-sectional view of a C-shaped annular spinneret hole having a cutout at one location for obtaining hollow fibers. a: Width of the spinning hole b: Diameter of the outer circle of the spinning hole of the hollow circular polymer C: Spinning gap of the hollow internal polymer Patent applicant Toyobo Co., Ltd. No. I! ! 1 early 2 figures early 3 figures

Claims (1)

【特許請求の範囲】[Claims] (1)極限粘度IVが0.5〜2.0のエチレンテレフタ
レート系ポリエステルよりなり、横断面の中空率が2〜
45%の中空繊維であり、繊維の切断強度が14g/d
以上であり、且つ初期引張弾性率が210g/d以上で
あることを特徴とする高強度、高弾性率ポリエステル中
空繊維。 但し、中空率は下式により求めた値である。 中空率=(繊維横断面の中空部面積/中空部を含む繊維
横断面の全面積)×100
(1) Made of ethylene terephthalate polyester with an intrinsic viscosity IV of 0.5 to 2.0, and a hollow ratio of 2 to 2 in the cross section.
45% hollow fiber, fiber cutting strength 14g/d
A high-strength, high-modulus polyester hollow fiber having the above properties and having an initial tensile modulus of 210 g/d or more. However, the hollowness ratio is a value determined by the following formula. Hollowness ratio = (hollow area of fiber cross section/total area of fiber cross section including hollow portion) x 100
JP1093700A 1989-04-12 1989-04-12 High strength, high modulus polyester hollow fiber Expired - Fee Related JP2682127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093700A JP2682127B2 (en) 1989-04-12 1989-04-12 High strength, high modulus polyester hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093700A JP2682127B2 (en) 1989-04-12 1989-04-12 High strength, high modulus polyester hollow fiber

Publications (2)

Publication Number Publication Date
JPH02277811A true JPH02277811A (en) 1990-11-14
JP2682127B2 JP2682127B2 (en) 1997-11-26

Family

ID=14089680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093700A Expired - Fee Related JP2682127B2 (en) 1989-04-12 1989-04-12 High strength, high modulus polyester hollow fiber

Country Status (1)

Country Link
JP (1) JP2682127B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221382A (en) * 1991-05-10 1993-06-22 The Goodyear Tire & Rubber Company Pneumatic tire including gas absorbing cords
JPH1029405A (en) * 1996-07-16 1998-02-03 Bridgestone Corp Pneumatic tire
JPH1037032A (en) * 1996-07-18 1998-02-10 Bridgestone Corp Pneumatic tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106592047B (en) * 2016-12-19 2018-12-04 绵阳美能材料科技有限公司 Drawing mechanism for hollow fiber film thread

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196711A (en) * 1987-02-04 1988-08-15 Toyobo Co Ltd High-strength and high-elastic modulus polyester fiber and production thereof
JPS6414242A (en) * 1987-07-07 1989-01-18 Teijin Ltd Polyester fiber for reinforcing rubber hose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196711A (en) * 1987-02-04 1988-08-15 Toyobo Co Ltd High-strength and high-elastic modulus polyester fiber and production thereof
JPS6414242A (en) * 1987-07-07 1989-01-18 Teijin Ltd Polyester fiber for reinforcing rubber hose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221382A (en) * 1991-05-10 1993-06-22 The Goodyear Tire & Rubber Company Pneumatic tire including gas absorbing cords
JPH1029405A (en) * 1996-07-16 1998-02-03 Bridgestone Corp Pneumatic tire
JPH1037032A (en) * 1996-07-18 1998-02-10 Bridgestone Corp Pneumatic tire

Also Published As

Publication number Publication date
JP2682127B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
EP0311386B1 (en) High-tenacity conjugated fiber and process for preparation thereof
US5194210A (en) Process for making polyketone fibers
JPH0128127B2 (en)
CN1727539B (en) Polyester multi-filament yarn for tire cord
KR100422029B1 (en) Poly(trimethylene terephthalate) modified cross-section yarn
US4560743A (en) Poly(P-phenyleneterephthalamide) fibers
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
JP3141862B2 (en) Tire cords and tires
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus
JPH0733610B2 (en) Manufacturing method of polyester tire cord
US20050161854A1 (en) Dimensionally stable yarns
JP2882697B2 (en) Polyester fiber and method for producing the same
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
JPH0376810A (en) Polyester finer having high toughness and low shrinkage and its production
JPS63159518A (en) Polyester fiber
JPH03152215A (en) High-strength and highly durable conjugate fiber
JP2000144527A (en) Spinning of polyester yarn
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JPS60246811A (en) Industrial polyester fiber
JPH1193015A (en) Monofilament and its production
JPH05163627A (en) Production of polyester tire cord
JPH0532492B2 (en)
JPS58186607A (en) Preparation of polyester filamentary yarn having high tenacity

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees