JPH0376810A - Polyester finer having high toughness and low shrinkage and its production - Google Patents

Polyester finer having high toughness and low shrinkage and its production

Info

Publication number
JPH0376810A
JPH0376810A JP20960989A JP20960989A JPH0376810A JP H0376810 A JPH0376810 A JP H0376810A JP 20960989 A JP20960989 A JP 20960989A JP 20960989 A JP20960989 A JP 20960989A JP H0376810 A JPH0376810 A JP H0376810A
Authority
JP
Japan
Prior art keywords
yarn
elongation
polyester
fiber
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20960989A
Other languages
Japanese (ja)
Inventor
Toshio Yamauchi
俊男 山内
Shiro Kumakawa
熊川 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP20960989A priority Critical patent/JPH0376810A/en
Publication of JPH0376810A publication Critical patent/JPH0376810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide the subject fiber containing ethylene terephthalate as a main constituent unit, satisfying a specific physical property, having high strength, high elongation, low shrinkage, high IV(intrinsic viscosity), low COOH content and excellent durability and useful in a non-rubber use. CONSTITUTION:The objective fiber having an intrinsic viscosity(IV) of 0.91-1.05, a terminal COOH content of <=18 equivalent/10<6>g, a yarn strength of >=9.2g/d, a yarn elongation at break of 16-21%, an intermediate elongation of yarn of 8-12% (elongation under a load of 4.5g/d) and dry-heat shrinkage of <=6% (150 deg.CX30min) is produced by melting a polyester having an intrinsic viscosity of >=0.95 at 280-300 deg.C, pressurizing the molten polymer with a gear pump to 400-1,200kg/cm<2>G, extruding through a spinneret, passing the spun fiber through a heating cylinder placed immediately below the spinneret and having an atmosphere temperature maintained to a level to give an undrawn fiber having a birefringence of <=300X10<-5> when taken up at a speed of <=700m/min, drawing the undrawn yarn at a draw ratio of >=5 and subjecting the drawn fiber to relaxed heat-treatment at >=180 deg.C and a relaxation ratio of 5-10%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高タフネス低収縮ポリエステル繊維およびそ
の製造法に間する。さらに、詳細には特に産業資材用と
して好適な高強度、高伸度を有し、かつ良好な寸法安定
性を示すポリエステル繊維とその製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high toughness, low shrinkage polyester fibers and methods for producing the same. More specifically, the present invention relates to a polyester fiber that has high strength, high elongation, and exhibits good dimensional stability, and is particularly suitable for industrial materials, and a method for producing the same.

〔従来の技術〕[Conventional technology]

ポリエステル繊維は、強度、弾性率、寸法安定性におい
てバランスよく優れた特性を有することから、タイヤ、
■ベルト、コンベアベルトなどのゴム構造物補強用材料
として好ましく使用されるとともに、魚網、ローブ、シ
ートベルト、帆布をはじめ多くの非ゴムの産業資材用と
しても大量に用いられている。
Polyester fibers have excellent, well-balanced properties in terms of strength, elastic modulus, and dimensional stability, so they are used in tires,
■It is preferably used as a reinforcing material for rubber structures such as belts and conveyor belts, and is also used in large quantities for many non-rubber industrial materials, including fishing nets, robes, seatbelts, and canvas.

ゴム資材用途においては、特にタイヤコード分野を中心
として高モジユラス化、低収縮化への要求が強まってき
たことから、近年、高紡速、高張力紡糸による高モジュ
ラス、低収縮でかつ耐疲労性の優れたポリエステル繊維
やその製造法が提案されてきた。かかるゴム資材用途に
おいては、繊維とゴムとの接着力の向上を図るために製
糸工程で受けた処理条件よりはるかに厳しい処理条件の
デイツプ処理工程を経ることから、デイツプ処理後のコ
ードの物性を所望の高強度、高モジュラス、低収縮化す
ることを第一義とされるため、原糸の物性(強度、伸度
、収縮率)自体は、それほど大きな影響をもたらさない
In rubber material applications, there has been an increasing demand for high modulus and low shrinkage, especially in the tire cord field, so in recent years, high modulus, low shrinkage, and fatigue resistance achieved by high spinning speed and high tension spinning have been developed. Excellent polyester fibers and methods for producing the same have been proposed. In such rubber material applications, in order to improve the adhesion between fibers and rubber, a dip treatment process is performed under much harsher processing conditions than those used in the spinning process, so the physical properties of the cord after dip treatment must be carefully evaluated. Since the primary objective is to achieve the desired high strength, high modulus, and low shrinkage, the physical properties (strength, elongation, shrinkage rate) of the yarn itself do not have a significant effect.

一方、産業資材用途においては、一般にゴム資材におけ
るほどの厳しい熱処理がなされることが少ないことから
、原糸の品質が最終製品の品質に反映される度合が多い
。従って、この分野では、原糸の段階での高強度化が重
要な意味を持つ。
On the other hand, in industrial material applications, the quality of the raw yarn is often reflected in the quality of the final product, as the harsh heat treatment that is applied to rubber materials is generally not performed. Therefore, in this field, increasing the strength at the yarn stage has an important meaning.

また、従来、産資分野においては、重合度は、固有粘度
(IV)で0.6〜0.8、高いものでも0.85〜0
.90の範囲であり、末端カルボキシル基は20〜40
当量/106gが一般的である。しかしながら、厳しい
使用環境下での耐久性を向上させる意味から、高IV化
や低C0OH化によるポリマーポテンシャルの向上が望
ましい。
In addition, conventionally, in the property field, the degree of polymerization is 0.6 to 0.8 in terms of intrinsic viscosity (IV), and even higher is 0.85 to 0.
.. 90, and the terminal carboxyl group is 20 to 40.
Equivalent/106g is common. However, in order to improve durability under harsh usage environments, it is desirable to improve polymer potential by increasing IV and decreasing COOH.

これらに対して、従来からゴム資材用途も含めて工業用
繊維についての原糸での高強力化、高タフネス化、低収
縮化への種々の提案がなされている。例えば高強度化、
高タフネス化に関しては、特公昭55−32805号公
報、特公昭56−31365号公報などに提案されてい
るが、9.0〜9.4g/dの高強度化を達成している
ものの伸度が12〜13%と低く、低収縮化が不足し、
IVが0.88〜0.90などと、産業資材用として充
分なレベルに達しているとはいえない。
In response to these problems, various proposals have been made for increasing the strength, toughness, and shrinkage of industrial fibers for industrial fibers, including those for use in rubber materials. For example, increasing strength,
Regarding increasing toughness, proposals have been made in Japanese Patent Publication No. 55-32805 and Japanese Patent Publication No. 56-31365, but although high strength of 9.0 to 9.4 g/d has been achieved, elongation is low at 12-13%, and low shrinkage is insufficient.
The IV is 0.88 to 0.90, which is not a sufficient level for industrial materials.

また、低収縮化に関しては、特開昭52−99317号
公報、特開昭55−158324号公報などに提案され
ているが、これらは低収縮化の目標は達成しているが、
強度が7〜9 g/dと不満足なレベルに停まっている
Regarding low shrinkage, proposals have been made in JP-A-52-99317 and JP-A-55-158324, but although these have achieved the goal of low shrinkage,
The strength remains at an unsatisfactory level of 7 to 9 g/d.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記従来技術の課題を背景になされたもので
、高強度かつ高伸度(高タフネス)であるとともに低収
縮の特徴を有し、産業資材用途、とりわけ非ゴム資材分
野に適したポリエステル繊維を提供することにある。
The present invention was made against the background of the problems of the prior art, and has the characteristics of high strength, high elongation (high toughness), and low shrinkage, and is suitable for industrial material applications, especially in the field of non-rubber materials. Our goal is to provide polyester fibers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、エチレンテレフタレートを主たる構成単位と
するポリエステル繊維であって、下記の(イ)〜(へ)
の特性を同時に有することを特徴とする高タフネス、低
収縮ポリエステル繊維を提供するものである。
The present invention relates to a polyester fiber containing ethylene terephthalate as a main structural unit, and which includes the following (a) to (f).
The purpose of the present invention is to provide a high toughness, low shrinkage polyester fiber characterized by having the following properties at the same time.

(イ)固有粘度(IV)  0.91〜1.05(ロ)
末端カルボキシル基(COOH)   18当量/10
6g以下 (ハ)ヤーン強度 9.2g/d以上 (ニ)ヤーン切断伸度 16〜21% (ホ)ヤーン中間伸度(4,5g/d時の伸度)8〜1
2% (へ)乾熱収縮率(150″C×30分) 6%以下 また、本発明は、エチレンテレフタレートを主たる構成
単位とするポリエステルを溶融紡糸、延伸してポリエス
テル繊維を得るのに際し、下記(i)〜(iv)の工程
を含む高タフネス低収縮ポリエステル繊維の製造法を提
供するものである。
(a) Intrinsic viscosity (IV) 0.91 to 1.05 (b)
Terminal carboxyl group (COOH) 18 equivalents/10
6 g or less (c) Yarn strength 9.2 g/d or more (d) Yarn breaking elongation 16-21% (e) Yarn intermediate elongation (elongation at 4.5 g/d) 8-1
2% (f) Dry heat shrinkage rate (150″C x 30 minutes) 6% or less In addition, the present invention provides the following method when obtaining polyester fiber by melt spinning and drawing polyester having ethylene terephthalate as a main constituent unit. The present invention provides a method for producing a high-toughness, low-shrinkage polyester fiber comprising steps (i) to (iv).

(i)固有粘度0.95以上のポリエステルを溶融温度
280〜300℃で溶融すること。
(i) Melting polyester having an intrinsic viscosity of 0.95 or more at a melting temperature of 280 to 300°C.

(ii )溶融ポリマーをギアポンプにより圧力400
〜1200kg/c11IGに昇圧したのち、紡糸口金
から吐出すること。
(ii) The molten polymer was pumped to a pressure of 400 with a gear pump.
After increasing the pressure to ~1200 kg/c11IG, discharge from the spinneret.

(iii)紡糸口金直下に加熱筒を配設し、該雰囲気温
度を、700m/分以下で引き取った未延伸糸の複屈折
率が300X10−’以下となるように保持すること。
(iii) A heating cylinder is provided directly below the spinneret, and the ambient temperature is maintained so that the birefringence of the undrawn yarn drawn at 700 m/min or less is 300×10 −′ or less.

(IV)該未延伸糸を5倍以上に延伸したのち、180
°C以上の温度で5〜10%のリラックス熱処理するこ
と。
(IV) After stretching the undrawn yarn five times or more,
5-10% relaxing heat treatment at temperatures above °C.

本発明における各種物性値は、次のようにして求められ
る値である。
Various physical property values in the present invention are values determined as follows.

固有粘度(IV)は、オストワルド粘度計を用いて35
°Cのオルソクロロフェノール溶液にして測定して得ら
れる値である。
Intrinsic viscosity (IV) is 35 using an Ostwald viscometer.
This is a value obtained by measuring an orthochlorophenol solution at °C.

末端カルボキシル基(COOH)は、ニー・コニックス
の方法(Makromol、chem。
The terminal carboxyl group (COOH) was determined by the Ni-Conix method (Makromol, chem.

26巻、226ページ、195B)によって得られる値
である。
26, p. 226, 195B).

再伸曲線、強度、切断伸度、中間伸度、乾熱収縮率は、
JIS  L1013記載の方法に準じて得られる曲線
または数値である。
The re-stretch curve, strength, cutting elongation, intermediate elongation, and dry heat shrinkage are as follows:
These are curves or numerical values obtained according to the method described in JIS L1013.

複屈折率は、偏光顕微鏡を用いブロムナフタレンを浸漬
液とし、ベレックコンペンセータを用いたりタープ−ジ
ョン法により測定して得られる。
The birefringence can be obtained by measuring the birefringence using a polarizing microscope using bromonaphthalene as an immersion liquid, using a Berek compensator, or by the tarp john method.

本発明においていうポリエステルとは、テレフタル酸成
分とエチレングリコール成分とからなるポリエチレンテ
レフタレートを主たる対象とするが、テレフタル酸成分
の一部、通常、10モル%以下を他のジカルボン酸成分
で置き換えたポリエステルであっても、および/または
エチレングリコール成分の一部、通常、10モル%以下
を他のジオール成分で置き換えたポリエステルであって
もよい。また、かかるポリエステルには、必要に応じて
例えば改質剤、安定剤などを任意に使用してもよい。
The polyester used in the present invention mainly refers to polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component, but a polyester in which a portion of the terephthalic acid component, usually 10 mol% or less, is replaced with another dicarboxylic acid component. and/or a polyester in which a portion of the ethylene glycol component, typically 10 mol % or less, is replaced by other diol components. In addition, for example, a modifier, a stabilizer, etc. may be optionally used in the polyester, if necessary.

かかるポリエステルよりなる本発明の繊維の重合度は、
産業資材用として充分な強度を保持するために固有粘度
(IV)で表して0.91〜1.05、特には0.92
〜1.00の範囲が好ましい。
The degree of polymerization of the fiber of the present invention made of such polyester is
In order to maintain sufficient strength for industrial materials, the intrinsic viscosity (IV) is 0.91 to 1.05, particularly 0.92.
A range of 1.00 to 1.00 is preferable.

また、末端カルボキシル基を18当量/106g以下に
するのが好ましく、15当量/106g以下にすること
が特に好ましい。
Further, the terminal carboxyl group is preferably at most 18 equivalents/106 g, particularly preferably at most 15 equivalents/106 g.

すなわち、産業資材用繊維としては、従来、固有粘度(
IV)が0.62〜0.90、末端カルボキシル基が1
9〜40当量/106gのものが用いられていたが、上
記のごとく、従来系対比で高IV、低C0OHとし、繊
維の高強度でかつ低収縮化を遠戚するとともに化学的安
定性、耐久性の向上を図る点が本発明の一つの特徴であ
る。
In other words, fibers for industrial materials have traditionally had an intrinsic viscosity (
IV) is 0.62 to 0.90, and the terminal carboxyl group is 1
9 to 40 equivalent/106 g was used, but as mentioned above, it has a higher IV and lower COOH than the conventional system, and has high strength and low shrinkage of the fiber, as well as chemical stability and durability. One of the features of the present invention is that it aims to improve performance.

さらに、本発明のポリエステル繊維は、前記の固有粘度
、カルボキシル基に加えて、産業資材用繊維として好適
な再伸曲線と収縮特性を有することを特徴とするもので
ある。
Further, the polyester fiber of the present invention is characterized by having, in addition to the above-mentioned intrinsic viscosity and carboxyl group, a re-stretch curve and shrinkage characteristics suitable as a fiber for industrial materials.

すなわち、ヤーン強度が9.2g/d以上、特に好まし
くは9.3g/d以上、ヤーン切断伸度が16〜21%
、特に好ましくは17〜21%、ヤーン中間伸度(4,
5g/d時の伸度)が8〜12%、特に好ましくは9〜
12%であり、さらに乾熱収縮率(150℃×30分)
、が6%以下である。
That is, the yarn strength is 9.2 g/d or more, particularly preferably 9.3 g/d or more, and the yarn breaking elongation is 16 to 21%.
, particularly preferably 17-21%, yarn intermediate elongation (4,
elongation at 5 g/d) of 8 to 12%, particularly preferably 9 to 12%.
12%, and dry heat shrinkage rate (150℃ x 30 minutes)
, is 6% or less.

第1図に再伸曲線を示すが、本発明のポリエステル繊維
は第1図中の曲線A、Bに代表されるものであり、再伸
曲線の切断点が斜線の範囲内にあるとともに、中間伸度
1.すなわち4.5g/d応力時の伸度が図中の実線の
部分を通過するものである。
The re-stretching curve is shown in FIG. 1, and the polyester fiber of the present invention is represented by curves A and B in FIG. Elongation 1. That is, the elongation at a stress of 4.5 g/d passes through the solid line in the figure.

本発明のポリエステル繊維は、ヤーン強度9.2g/d
以上、ヤーン切断伸度16〜21%と極めて高強度かつ
高伸度であって、現在市販されている高強力糸のレベル
(ヤーン強度8.8〜9.2g/d、ヤーン切断伸度1
2〜15%、第1図中の曲線Fにより示す)と比較して
極めて高タフネスの特徴を有する。ここで、ヤーン強度
が9.2g/dより低いと産業資材用繊維として不充分
である。また、ヤーン切断伸度が16%未満、ヤーン中
間伸度が8%未満では、タフネスが不足するとともに低
収縮の特徴を達威し得ない。一方、ヤーン切断伸度が2
1%を超えたり、ヤーン中間伸度が12%を超えると(
第1図の曲線G、Hにより示すもの)、目標とする強度
レベルの維持が困難であったり、断糸毛羽などの延伸操
業性面の問題を生ずる。
The polyester fiber of the present invention has a yarn strength of 9.2 g/d.
As mentioned above, the yarn has an extremely high strength and high elongation with a breaking elongation of 16 to 21%, which is at the level of currently commercially available high tenacity yarns (yarn strength of 8.8 to 9.2 g/d, yarn breaking elongation of 1
2 to 15%, as shown by curve F in FIG. 1). Here, if the yarn strength is lower than 9.2 g/d, it is insufficient as a fiber for industrial materials. Furthermore, if the yarn breaking elongation is less than 16% and the yarn intermediate elongation is less than 8%, the toughness is insufficient and the low shrinkage characteristic cannot be achieved. On the other hand, the yarn cutting elongation is 2
If it exceeds 1% or if the yarn intermediate elongation exceeds 12% (
(as shown by curves G and H in FIG. 1), it is difficult to maintain the target strength level, and problems in drawing operability such as yarn breakage and fuzz occur.

さらに、本発明のポリエステル繊維は、乾熱収縮率が6
%以下であり、産業資材用繊維として特に無撚や比較的
低撚数で使用され、かつシビアな熱処理を受けない分野
で良好な寸法安定性を示す。
Furthermore, the polyester fiber of the present invention has a dry heat shrinkage rate of 6.
% or less, and exhibits good dimensional stability especially in fields where fibers for industrial materials are used untwisted or with a relatively low number of twists and are not subjected to severe heat treatment.

乾熱収縮率が6%を超えると、熱に対する寸法安定性が
悪くなり用途によっては使用できない場合がある。
When the dry heat shrinkage rate exceeds 6%, the dimensional stability against heat deteriorates and the product may not be usable depending on the application.

本発明のポリエステル繊維は、高IV、低C0OHで、
ポリマーとして極めて高いポテンシャルを有するととも
に、高強度かつ高伸度で従来の高強力タイプのもの(第
1図の曲線E、Fにより示す)に比較して高伸度、低収
縮の特徴を示し、また従来の低収縮タイプのもの(第1
図の曲線G、旧に比較して強度が高い特徴を示し、産業
資材用繊維として好ましい物性を有する。
The polyester fiber of the present invention has high IV and low COOH,
It has extremely high potential as a polymer, and exhibits high strength and high elongation, and exhibits characteristics of high elongation and low shrinkage compared to conventional high-strength types (shown by curves E and F in Figure 1). In addition, the conventional low shrinkage type (first
Curve G in the figure shows higher strength than the old fiber, and has physical properties preferable as a fiber for industrial materials.

本発明のポリエステル繊維は、以下の方法によって得ら
れる。すなわち、固有粘度(IV)が0.95以上、好
ましくは、0.98〜1.20のポリエステルを280
〜300 ℃1特に好ましくは285〜295°Cで溶
融する。溶融温度が280°Cより低いと、高IVポリ
マーの安定した紡糸が不可能となり、一方300°Cよ
り高いと重合度低下や末端カルボキシル基の増加が大き
く所望の高IV、低C0OHが達成できない。
The polyester fiber of the present invention can be obtained by the following method. That is, polyester having an intrinsic viscosity (IV) of 0.95 or more, preferably 0.98 to 1.20, is
It melts at ~300°C, particularly preferably at 285-295°C. If the melting temperature is lower than 280°C, stable spinning of high IV polymer is impossible, while if it is higher than 300°C, the degree of polymerization will decrease and the number of terminal carboxyl groups will increase significantly, making it impossible to achieve the desired high IV and low COOH. .

一方、低Coo)I化の手段は公知の種々の方法を採用
することが可能である。例えば、(1)特公昭44−2
7911号公報の記載のごとく、溶融状態のポリエステ
ルにフェニルグリシジルエーテルを反応させる方法、 (2)特公昭45−41235号公報記載のごとく溶融
状態のポリエステルに線状ポリエステルカーボネートを
反応させる方法、 (3)特公昭47−12891号公報記載のごとくポリ
エステルにエチレンオキサイドを反応させる方法、 (4)特公昭4B−35953号公報記載のごとくポリ
エステルにシュウ酸のグリコールエステルまたはシュウ
酸ポリエステルを反応させる方法、(5)特公昭48−
41713号公報記載のごとくポリエステルに環状カー
ボネートを反応させる方法、 (6)特公昭49−5233号公報記載のごとくポリエ
ステルにジアリールオキザレート類および/またはジア
リールマロネート類とジアリールカーボネート類を反応
させる方法、 (7)米国特許第3193522号明細書記載のごとく
ポリエステルにカルボシイミドを反応させる方法、 (8)特開昭55−145734号公報記載のごとくビ
ス環状イミノエーテルを反応させる方法、などの所望の
固有粘度や末端カルボキシル基量に応じて随時採用する
ことが可能であり、特に重合度の低下がなく末端カルボ
キシル基を18当量/10bg以下にする方法が好まし
い。
On the other hand, various known methods can be used to reduce Coo)I. For example, (1) Tokuko Sho 44-2
7911, a method of reacting a molten polyester with phenyl glycidyl ether; (2) A method of reacting a molten polyester with a linear polyester carbonate, as described in Japanese Patent Publication No. 45-41235; (3) ) A method of reacting polyester with ethylene oxide as described in Japanese Patent Publication No. 47-12891, (4) A method of reacting polyester with glycol ester of oxalic acid or oxalic acid polyester as described in Japanese Patent Publication No. 4B-35953, ( 5) Special Public Service 1977-
(6) A method of reacting a polyester with a diaryl oxalate and/or a diaryl malonate and a diaryl carbonate as described in Japanese Patent Publication No. 49-5233. , (7) A method of reacting a polyester with a carbosiimide as described in U.S. Pat. It is possible to adopt it as needed depending on the viscosity and the amount of terminal carboxyl groups, and a method in which the terminal carboxyl groups are reduced to 18 equivalents/10 bg or less without reducing the degree of polymerization is particularly preferred.

次に、該溶融ポリマーをギアポンプにより圧力400〜
1,200kj/aMGに昇圧したのち、紡糸口金から
吐出する。昇圧手段はへギアポンプと紡糸口金の間に任
意の抵抗体、例えば金網フィルター、濾材、細狭部など
を設ける。この吐出前の昇圧により、高IVポリマーの
紡糸性向上と未延伸糸の低配向化が遠戚される。すなわ
ち、吐出圧が400kg/dG未満であると、高IVポ
リマーによる吐出不良が発生し、また得られる未延伸糸
の配向度が高くなり高倍率延伸による高強度化が困難に
なる。一方、吐出圧が1. 200kg/cIIlGを
超えると重合度低下が大きくなったり、口金面での吐出
不良が発生する。
Next, the molten polymer was pumped with a gear pump at a pressure of 400~
After increasing the pressure to 1,200 kj/aMG, it is discharged from a spinneret. The pressure increasing means includes an arbitrary resistor, such as a wire mesh filter, a filter medium, a narrow part, etc., between the hegear pump and the spinneret. This pressure increase before discharge improves the spinnability of the high IV polymer and reduces the orientation of the undrawn yarn. That is, if the discharge pressure is less than 400 kg/dG, discharge failure will occur due to the high IV polymer, and the degree of orientation of the obtained undrawn yarn will become high, making it difficult to increase the strength by drawing at a high magnification. On the other hand, the discharge pressure is 1. If it exceeds 200 kg/cIIlG, the degree of polymerization will decrease significantly or a discharge failure will occur on the nozzle surface.

さらに、紡糸口金下には、未延伸糸の配向度が複屈折率
にして300X10−’以下、特に好ましくは200X
10−5以下となるように加熱筒を配設する。複屈折率
が300X10−’を超えると、高倍率延伸による高強
度化、低収縮特性の両方を満足することができないので
好ましくない。
Furthermore, under the spinneret, the degree of orientation of the undrawn yarn is 300X10-' or less in terms of birefringence, particularly preferably 200X
The heating cylinder is arranged so that the temperature is 10-5 or less. If the birefringence exceeds 300 x 10-', it is not preferable because it is not possible to satisfy both high strength due to high-magnification stretching and low shrinkage characteristics.

未延伸糸の複屈折率を前記の範囲に抑えるには、引取速
度は700m/分以下、好ましくは600m/分以下と
する。前記加熱筒は、長さ20〜100cmで、雰囲気
温度は、300〜450°Cが好ましい。
In order to keep the birefringence of the undrawn yarn within the above range, the take-up speed is 700 m/min or less, preferably 600 m/min or less. The length of the heating cylinder is preferably 20 to 100 cm, and the ambient temperature is preferably 300 to 450°C.

しかるのち、該未延伸糸を5倍以上に延伸し、180°
C以上の温度で5〜10%のリラックス熱処理をするこ
とにより、本発明のポリエステル繊維が得られる。この
延伸は、紡糸に続いて連続して行っても、紡糸後−旦捲
き取ってから延伸してもよい。
Thereafter, the undrawn yarn is stretched 5 times or more and 180°
The polyester fiber of the present invention can be obtained by subjecting it to a relaxing heat treatment of 5 to 10% at a temperature of C or higher. This stretching may be performed continuously following spinning, or may be performed after spinning and then winding.

延伸にあたっての加熱手段としては、300℃以上、好
ましくは350〜600″Cの加熱蒸気を吹きつけるこ
とにより一気に1段延伸を行うことが高伸度化の点で好
ましいが、2段以上に分けて行ってもよい。
As a heating means for stretching, it is preferable to perform one stage of stretching at once by spraying heated steam at 300°C or higher, preferably 350 to 600"C, from the viewpoint of increasing the degree of elongation. You can go.

リラックス熱処理は、加熱ローラ、熱板などを用いるの
が効果的であり、この際の表面温度としては180°C
以上、好ましくは190〜250°Cであり、180°
C未満では低収縮化が不充分である。また、リラックス
率が5%未満では、高伸度化、低収縮化が不充分であり
、一方10%を超えると糸ゆれの増大や強度低下をまね
く。
For relaxing heat treatment, it is effective to use a heated roller, hot plate, etc., and the surface temperature at this time is 180°C.
above, preferably 190 to 250°C, and 180°
If it is less than C, the reduction in shrinkage is insufficient. Further, if the relaxation rate is less than 5%, it is insufficient to achieve high elongation and low shrinkage, while if it exceeds 10%, yarn waviness increases and strength decreases.

〔作用〕[Effect]

本発明によれば、高IV化、低C0OH化することによ
り物理的性質や化学的安定性でのポテンシャルを高める
一方で、低配向の未延伸糸を高倍率延伸し、かつ高リラ
ックス熱処理することにより高度に配向し、かつ、結晶
化度の高い構造を有する高タフネス、低収縮ポリエステ
ル繊維が得られる。このポリエステル繊維は、高IV、
高強度、高伸度などの優れた強度的性質を有するととも
に、良好な寸法安定性、化学的安定性を保つことから産
業資材用繊維として極めて好適である。
According to the present invention, while increasing the potential of physical properties and chemical stability by increasing the IV and lowering the COOH, a low-oriented undrawn yarn can be stretched at a high ratio and subjected to a high-relaxation heat treatment. As a result, high toughness, low shrinkage polyester fibers having a structure that is highly oriented and has a high degree of crystallinity can be obtained. This polyester fiber has high IV,
It has excellent strength properties such as high strength and high elongation, and also maintains good dimensional stability and chemical stability, making it extremely suitable as a fiber for industrial materials.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜2 固有粘度が1.10のポリエチレンテレフタレートチッ
プをエクストルーダーで溶融温度290°Cで溶融した
。この際、カルボキシル末端基の封鎖剤として0−フェ
ニル−フェニル−グリシジルエーテルを0.4重量%添
加した。この溶融ポリマーをギヤポンプに供給し、紡糸
パックを経て孔径0.40011、孔数250個を有す
る紡糸口金より吐出した。紡糸パックには、金網フィル
ターおよびサンドを挿入し、ポリマーの昇圧を行い、紡
糸パック直前の圧力は520kg/c111であった。
Examples 1 to 2 Polyethylene terephthalate chips having an intrinsic viscosity of 1.10 were melted using an extruder at a melting temperature of 290°C. At this time, 0.4% by weight of 0-phenyl-phenyl-glycidyl ether was added as a carboxyl terminal group blocking agent. This molten polymer was supplied to a gear pump, passed through a spinning pack, and was discharged from a spinneret having a hole diameter of 0.40011 and a number of holes of 250. A wire mesh filter and sand were inserted into the spinning pack to increase the pressure of the polymer, and the pressure immediately before the spinning pack was 520 kg/c111.

吐出ポリマーは、長さ50cm、雰囲気温度360°C
の加熱筒に通し、さらに25℃の冷却風を6.0Nrt
f/分吹きつけながら冷却固化させ、その後、通常のオ
イリング装置で油剤を付与して引取ロールに引き取った
。得られた未延伸糸は、巻き取らずに、直ちに延伸ロー
ルとの間で3. 0kg/、dG、450°Cの加熱蒸
気を噴射させて延伸したのち、リラックスロールとの間
で7.0〜9.5%のリラックス熱処理した。この際、
延伸ロール、およびリラックスロールの表面温度は20
0〜210°Cであった。
The length of the discharged polymer is 50 cm, and the ambient temperature is 360°C.
25℃ cooling air at 6.0Nrt.
The sample was cooled and solidified while being sprayed for f/min, and then an oil agent was applied using a conventional oiling device and the sample was taken to a take-up roll. The obtained undrawn yarn is immediately passed between 3. drawing rolls without being wound up. After stretching by injecting heated steam at 0 kg/dG and 450°C, the film was subjected to a relaxing heat treatment of 7.0 to 9.5% with a relaxing roll. On this occasion,
The surface temperature of the stretching roll and relaxation roll is 20
The temperature ranged from 0 to 210°C.

得られた延伸糸の物性を第1表に示すが、高強度、高伸
度、低収縮の優れた性能を有し、また延伸性も良好であ
った。
The physical properties of the obtained drawn yarn are shown in Table 1, and it had excellent properties such as high strength, high elongation, and low shrinkage, and also had good drawability.

また、実施例1で得られた延伸糸の再伸曲線を第1図の
A、実施例2で得られた延伸糸の再伸曲線を第1図のB
としてそれぞれ示す。
In addition, the re-stretching curve of the drawn yarn obtained in Example 1 is A in FIG. 1, and the re-stretching curve of the drawn yarn obtained in Example 2 is B in FIG.
are shown respectively.

比較例1〜2 実施例2と同一のポリマーを、溶融温度、紡糸バック圧
力、加熱筒条件を第1表のように変更した以外は、実施
例2と同様にして紡糸し、延伸熱処理して延伸糸を得た
Comparative Examples 1 to 2 The same polymer as in Example 2 was spun and stretched in the same manner as in Example 2, except that the melting temperature, spinning back pressure, and heating cylinder conditions were changed as shown in Table 1. A drawn yarn was obtained.

得られた延伸糸は、第1表に示すとおり、強度伸度がい
ずれも低めであり、延伸性も不良であった。
As shown in Table 1, the obtained drawn yarns had both low strength and elongation, and poor drawability.

比較例3 実施例2と同一のポリマーを実施例2と同一の紡糸条件
、延伸倍率で紡糸、延伸し、延伸のリラックス熱処理条
件を第1表のように変更して延伸糸を得た。
Comparative Example 3 The same polymer as in Example 2 was spun and stretched under the same spinning conditions and draw ratio as in Example 2, and the relaxing heat treatment conditions for stretching were changed as shown in Table 1 to obtain a drawn yarn.

得られた延伸糸の物性を第1表に示すが、低伸度で収縮
率も高かった。得られた延伸糸の再伸曲線を第1図のE
により示す。
The physical properties of the obtained drawn yarn are shown in Table 1, and it was found that the elongation was low and the shrinkage rate was high. The re-stretching curve of the obtained drawn yarn is shown as E in Figure 1.
It is shown by

比較例4 従来の高強力タイプの繊維を、第1表に示す条件下に紡
糸、延伸して得た(チップのIVが1.00で末端封鎖
剤を用いていない)。
Comparative Example 4 A conventional high-strength type fiber was obtained by spinning and drawing under the conditions shown in Table 1 (the IV of the chip was 1.00 and no end-capping agent was used).

得られた延伸糸の再伸曲線を、 第1図のFによ り示す。The re-stretching curve of the obtained drawn yarn is According to F in Figure 1 Show.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、本発明のポリエステル繊維は、高タフネ
ス(高強度、高伸度)で、かつ低収縮であり、高rv、
低C0OHで優れた耐久性が期待され、産業資材分野と
りわけ非ゴム用途で極めて有用である。
As described above, the polyester fiber of the present invention has high toughness (high strength, high elongation), low shrinkage, high rv,
It is expected to have low COOH and excellent durability, making it extremely useful in the industrial material field, especially in non-rubber applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ポリエステル繊維の再伸曲線を示す図である
。第1図において、Aは実施例1で得られた延伸糸の再
伸曲線を、Bは実施例2で得られた延伸糸の再伸曲線を
、EおよびFは従来の高強力タイプのポリエステル繊維
の再伸曲線を、GおよびHは従来の低収縮タイプのポリ
エステル繊維の再伸曲線を示す。
FIG. 1 is a diagram showing the re-stretching curve of polyester fiber. In FIG. 1, A is the redraw curve of the drawn yarn obtained in Example 1, B is the redraw curve of the drawn yarn obtained in Example 2, and E and F are the redraw curves of the drawn yarn obtained in Example 2. G and H show the re-stretching curves of the fibers, and G and H indicate the re-stretching curves of conventional low-shrinkage type polyester fibers.

Claims (2)

【特許請求の範囲】[Claims] (1)エチレンテレフタレートを主たる構成単位とする
ポリエステル繊維であって下記(イ)〜(ヘ)の特性を
同時に有することを特徴とする高タフネス低収縮ポリエ
ステル繊維。 (イ)固有粘度(IV)0.91〜1.05 (ロ)末端カルボキシル基(COOH)18当量/10
^6g以下 (ハ)ヤーン強度9.2g/d以上 (ニ)ヤーン切断伸度16%〜21% (ホ)ヤーン中間伸度(4.5g/d時の伸度)8〜1
2% (ヘ)乾熱収縮率(150℃×30分)6%以下
(1) A high-toughness, low-shrinkage polyester fiber containing ethylene terephthalate as a main structural unit and characterized by having the following properties (a) to (f) at the same time. (a) Intrinsic viscosity (IV) 0.91 to 1.05 (b) Terminal carboxyl group (COOH) 18 equivalents/10
^6g or less (c) Yarn strength 9.2g/d or more (d) Yarn breaking elongation 16% to 21% (e) Yarn intermediate elongation (elongation at 4.5g/d) 8 to 1
2% (f) Dry heat shrinkage rate (150℃ x 30 minutes) 6% or less
(2)エチレンテレフタレートを主たる構成単位とする
ポリエステルを溶融紡糸、延伸してポリエステル繊維を
得るのに際し、下記(i)〜(iv)の工程を含む高タ
フネス低収縮ポリエステル繊維の製造法。 (i)固有粘度0.95以上のポリエステルを溶融温度
280〜300℃で溶融すること。 (ii)溶融ポリマーをギアポンプにより圧力400〜
1,200kg/cm^2Gに昇圧したのち、紡糸口金
から吐出すること。 (iii)紡糸口金直下に加熱筒を配設し、該雰囲気温
度を、700m/分以下で引き取った未延伸糸の複屈折
率が300×10^−^5以下となるように保持するこ
と。 (iv)該未延伸糸を5倍以上に延伸したのち、180
℃以上の温度で5〜10%のリラックス熱処理すること
(2) A method for producing high-toughness, low-shrinkage polyester fibers, which includes the following steps (i) to (iv), in which polyester fibers are obtained by melt-spinning and drawing polyester containing ethylene terephthalate as a main structural unit. (i) Melting polyester having an intrinsic viscosity of 0.95 or more at a melting temperature of 280 to 300°C. (ii) The molten polymer is pumped with a gear pump at a pressure of 400~
After increasing the pressure to 1,200 kg/cm^2G, discharge from the spinneret. (iii) A heating cylinder is disposed directly below the spinneret, and the ambient temperature is maintained so that the birefringence of the undrawn yarn drawn at 700 m/min or less is 300×10^-^5 or less. (iv) After stretching the undrawn yarn by 5 times or more,
5-10% relaxing heat treatment at a temperature of ℃ or higher.
JP20960989A 1989-08-15 1989-08-15 Polyester finer having high toughness and low shrinkage and its production Pending JPH0376810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20960989A JPH0376810A (en) 1989-08-15 1989-08-15 Polyester finer having high toughness and low shrinkage and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20960989A JPH0376810A (en) 1989-08-15 1989-08-15 Polyester finer having high toughness and low shrinkage and its production

Publications (1)

Publication Number Publication Date
JPH0376810A true JPH0376810A (en) 1991-04-02

Family

ID=16575640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20960989A Pending JPH0376810A (en) 1989-08-15 1989-08-15 Polyester finer having high toughness and low shrinkage and its production

Country Status (1)

Country Link
JP (1) JPH0376810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291392A (en) * 2005-04-11 2006-10-26 Teijin Techno Products Ltd Polyester fiber for marine material
CN103154337A (en) * 2010-09-30 2013-06-12 可隆工业株式会社 Polyester fiber and method for producing same
EP2617881A2 (en) * 2010-09-17 2013-07-24 Kolon Industries, Inc. Polyester yarn and a production method therefor
EP2666892A2 (en) * 2011-01-18 2013-11-27 Kolon Industries, Inc. Polyester fiber and polyester fabric comprising same
KR101405817B1 (en) * 2007-12-28 2014-06-12 주식회사 효성 A technical polyester fiber with high tenacity and low shrinkage and its manufacturing process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291392A (en) * 2005-04-11 2006-10-26 Teijin Techno Products Ltd Polyester fiber for marine material
KR101405817B1 (en) * 2007-12-28 2014-06-12 주식회사 효성 A technical polyester fiber with high tenacity and low shrinkage and its manufacturing process
EP2617881A2 (en) * 2010-09-17 2013-07-24 Kolon Industries, Inc. Polyester yarn and a production method therefor
JP2013543542A (en) * 2010-09-17 2013-12-05 コーロン インダストリーズ インク Polyester yarn and method for producing the same
EP2617881A4 (en) * 2010-09-17 2014-06-11 Kolon Inc Polyester yarn and a production method therefor
CN103154337A (en) * 2010-09-30 2013-06-12 可隆工业株式会社 Polyester fiber and method for producing same
EP2623649A2 (en) * 2010-09-30 2013-08-07 Kolon Industries, Inc. Polyester fiber and method for producing same
EP2623649A4 (en) * 2010-09-30 2014-06-11 Kolon Inc Polyester fiber and method for producing same
EP2666892A2 (en) * 2011-01-18 2013-11-27 Kolon Industries, Inc. Polyester fiber and polyester fabric comprising same
EP2666892A4 (en) * 2011-01-18 2014-06-11 Kolon Inc Polyester fiber and polyester fabric comprising same

Similar Documents

Publication Publication Date Title
CA1314673C (en) High-tenacity conjugated fiber and process for preparation thereof
JP2549804B2 (en) Polyester filament yarn, polyester tire cord, and methods for producing the same
JP2002339159A (en) Polyester multifilament yarn
KR100571214B1 (en) Polyester multifilamentary yarn for tire cords, dipped cord and production thereof
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JP3738794B2 (en) Stretched polyamide fiber and method for producing the same
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JP3141862B2 (en) Tire cords and tires
JPH0376810A (en) Polyester finer having high toughness and low shrinkage and its production
KR100602286B1 (en) Polyester fiber and preparation thereof
JPS5953736A (en) Polyester tire cord and production thereof
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
KR100474798B1 (en) A process for producing polyester multifilament yarns having excellent adhesion to rubbers or polyvinyl chloride
JP2913794B2 (en) Polyethylene-2,6-naphthalate monofilament for screen gauze
US5085818A (en) Process for dimensionally stable polyester yarn
JP3353412B2 (en) High strength polybutylene terephthalate fiber
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
JP2682127B2 (en) High strength, high modulus polyester hollow fiber
JP3725064B2 (en) Polyester monofilament for screens
JP3242058B2 (en) Polyethylene naphthalate monofilament and method for producing the same
JPH0617317A (en) Production of polyester fiber
JPH0578915A (en) Production of polyester fiber having high strength and low shrinkage
JPS6247967B2 (en)