JPS63159518A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS63159518A
JPS63159518A JP30634086A JP30634086A JPS63159518A JP S63159518 A JPS63159518 A JP S63159518A JP 30634086 A JP30634086 A JP 30634086A JP 30634086 A JP30634086 A JP 30634086A JP S63159518 A JPS63159518 A JP S63159518A
Authority
JP
Japan
Prior art keywords
fiber
polyester fiber
elongation
stress
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30634086A
Other languages
Japanese (ja)
Inventor
Isoo Saito
磯雄 斎藤
Kotaro Fujioka
藤岡 幸太郎
Chikara Honda
主税 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30634086A priority Critical patent/JPS63159518A/en
Publication of JPS63159518A publication Critical patent/JPS63159518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide the titled fiber composed of polyethylene terephthalate, having a specific stress-elongation curve measured by the tensile test of the fiber and excellent dimensional stability and fatigue resistance and suitable for rope, tire cord, etc. CONSTITUTION:The objective polyester fiber is composed of a polyethylene terephthalate and has the following properties. The yield stress (Ys) is >=4.5g/d at the yield point (Yp) defined by the crossing point of a part having steep gradient including the rising part at the initial stage of tensile test with a part near the breakage of the fiber and having low gradient in a stress-elongation curve measured by the tensile test of the fiber. The elongation (E2) between the yield point and the breakage is >=50% of the elongation (E1) up to the above yield point, the initial tensile resistance (Mi) is >=100g/d and the terminal modulus (Mt) is <=10g/d.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱的に安定な繊維構造を有するポリエステル繊
維であって、特に産業資材用途に適した、寸法安定性、
及び耐疲労性の廃れたポリエステル繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a polyester fiber having a thermally stable fiber structure, which is particularly suitable for industrial material use, and has dimensional stability,
and regarding polyester fibers with outdated fatigue resistance.

〔従来技術〕[Prior art]

ポリエステル繊維は高強力、高弾性率の特徴を有するた
め、各種産業資材用途に広く有用されている。例えばタ
イヤコード、伝動用ベルト、搬送用ベルト等のゴム補強
資材、シートベルト、漁網、縫糸、カバーシート等に用
いられている。
Polyester fibers have the characteristics of high strength and high elastic modulus, and are therefore widely useful in various industrial material applications. For example, it is used for rubber reinforcing materials such as tire cords, power transmission belts, and conveyor belts, seat belts, fishing nets, sewing threads, cover sheets, etc.

しかしながら、ポリエステル繊維は一般に寸法安定性、
及び耐疲労性が劣るという欠点があるため、今後更に用
途を拡大していくためにはこれら特性の改善が求められ
ている。従来からかかる寸法安定性、及び耐疲労性を改
善したポリエステル繊維、及び方法については、例えば
特開昭51−5g019号公報、特開昭5g−5803
1号公報等によって提案されている。前者は比較的高配
向度の未延伸糸を熱延伸することによって寸法安定性の
優れたポリエステル繊維を製造する方法を述べており、
後者は複屈折9X10−3〜70×10−3の配向度を
有する未延伸糸を熱延伸する方法によって得られた寸法
安定性、及び耐疲労性の優れたポリエステル繊維を提案
している。
However, polyester fibers generally have dimensional stability,
Since it has the drawbacks of poor fatigue resistance and poor fatigue resistance, improvements in these properties are required in order to further expand its use in the future. Conventional polyester fibers and methods with improved dimensional stability and fatigue resistance are disclosed in, for example, JP-A-51-5G019 and JP-A-5G-5803.
This has been proposed in Publication No. 1, etc. The former describes a method for producing polyester fibers with excellent dimensional stability by hot drawing undrawn yarns with a relatively high degree of orientation.
The latter proposes a polyester fiber with excellent dimensional stability and fatigue resistance obtained by hot drawing an undrawn yarn having a birefringence of 9×10 −3 to 70×10 −3 orientation.

また、本発明のポリエステル繊維は引張り試験をした時
、特異なSS曲線を示すことを特徴としているが、該特
徴の一部である低いターミナルモジュラスに間しては特
公昭41−7892号公報、特公昭55 3447号公
報、特開昭57−161119号公報、特開昭57−1
54410号公報、特開昭58−13718号公報等で
も提案されている。
Furthermore, the polyester fiber of the present invention is characterized by exhibiting a unique SS curve when subjected to a tensile test. Japanese Patent Publication No. 55-3447, Japanese Patent Application Publication No. 161119-1987, Japanese Patent Publication No. 57-161-1
This method has also been proposed in Japanese Patent Application Laid-open No. 54410, Japanese Patent Laid-Open No. 13718/1983, and the like.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

前記特開昭51−5g019号公報、及び特開昭5g−
58031号公報は寸法安定性の改善に間して優れた提
案である。そして特開昭5g−58031号公報によれ
ば同時に耐疲労性も改善されるが、これはタイヤ走行時
の比較的微小変形、例えば、明細書中に記載されたモデ
ルテストは0゜6 god程度までの低応力範囲での疲
労テストであり、これを歪量、即ち伸び率にすると数%
以下の微小変形領域での繰返し疲労を対象としたもので
あることがわかる。
The above-mentioned JP-A-51-5g019 and JP-A-51-5g-
Publication No. 58031 is an excellent proposal for improving dimensional stability. According to JP-A-58031, the fatigue resistance is also improved at the same time, but this is due to relatively small deformation during tire running, for example, the model test described in the specification is about 0°6 God. This is a fatigue test in a low stress range up to
It can be seen that the target is cyclic fatigue in the following minute deformation area.

本発明が目的とする耐疲労性の改善は前記徹小変形量域
は勿論のこと、一般産業用資財、例えば縫糸、ロープ、
漁網、搬送用ベルト等、及びタイヤコードでも比較的大
変形を受けるバイアスタイヤとして用いられろ場合であ
って、主として数%以下の歪量での繰返し屈曲、及びあ
るいは伸長圧縮疲労に対しても改善することにある。こ
のように本発明が意図する寸法安定性の大幅な改善と比
較的大きな変形領域を含む疲労性を改善する有効な技術
については今まで提案されていない。
The purpose of the present invention is to improve fatigue resistance not only in the above-mentioned extremely small deformation range, but also in general industrial materials such as sewing thread, rope, etc.
Fishing nets, conveyor belts, etc., and tire cords can also be used as bias tires that undergo relatively large deformations, and are mainly used to improve resistance to repeated bending and/or elongation-compression fatigue with a strain of less than a few percent. It's about doing. As described above, an effective technique for significantly improving dimensional stability and improving fatigue properties including a relatively large deformation area as intended by the present invention has not been proposed to date.

そこで本発明は各種産業資材用t&維として用いたの発
現に係わる安定な′a推構造によって特徴づけられたポ
リエステル繊維を提供することにある。
Therefore, the object of the present invention is to provide a polyester fiber characterized by a stable 'a' structure that is useful as T& fibers for various industrial materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は実質的にポリエチレンテレフタレートからなる
ポリエステル繊維であって、fasftの引張り試、験
によって求められる応カー伸び率曲線に於いて、降伏点
応力(Ys)が4.5g/d以上であり、且つ降伏点ま
での沖び串(E1)に対する降伏点以降、切断までの沖
び率(E2)が50%以上であること、及び初期引張り
抵抗度(Mi)が1003/d以上、ターミナルモジュ
ラス(Mt)が10g/d以下であることを特徴とする
ポリエステル繊維である。そして下記繊維構造パラメー
ターを兼備する。
The present invention is a polyester fiber consisting essentially of polyethylene terephthalate, which has a yield point stress (Ys) of 4.5 g/d or more in the stress elongation curve determined by the FASFT tensile test. In addition, the shear ratio (E2) from the yield point to the skewer (E1) until the yield point is 50% or more, the initial tensile resistance (Mi) is 1003/d or more, and the terminal modulus (E1) is 50% or more. It is a polyester fiber characterized in that Mt) is 10 g/d or less. It also has the following fiber structure parameters.

複屈折     △rl≧160X10−3密度   
   ρ ≧1 、395g/cm3結晶配向度   
fc≧0.92 非晶分子配向度 F ≦0.90 DSC融点   Tm≧255 ’(:゛そして更ミこ
本発明ポリエステルT’2 雉’、1強度(T/D)が
i5g/d以上、切断即度(E)が10%以下で、且つ
150’cて測定した乾熱収縮率か3%以下である繊維
特性を有することによって特徴つけられろ。
Birefringence △rl≧160X10-3 density
ρ ≧1, 395g/cm3 crystal orientation
fc≧0.92 Degree of amorphous molecular orientation F≦0.90 DSC melting point Tm≧255' It is characterized by having fiber properties such that the degree of breakage (E) is 10% or less and the dry heat shrinkage rate measured at 150'c is 3% or less.

本発明ポリエステル繊維は実質的にエチレンテレフタレ
ートからなり、10%未満のエステル形成性成分を含有
し・でもよい。エステル形成性成分としては、例えばテ
レフタル酸及びエチレングリコール、エチレンオキサイ
ド成分の曲に、イソフタル酸、フタル酸、ナフタレンジ
カルボン酸、ジフェニルジカルボン酸等の芳香族ジカル
ボン酸、プロピレングリコール、ブチレングリコール等
のジオール成分が共重合された共重合ポリマや後者の成
分、または前者の成分と後者の成分から得られたポリマ
をポリエチレンテレフタレートに溶融混合した混合ポリ
マ等がある。
The polyester fibers of the present invention consist essentially of ethylene terephthalate and may contain less than 10% of ester-forming components. Examples of ester-forming components include terephthalic acid, ethylene glycol, and ethylene oxide components, as well as aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and diphenyldicarboxylic acid, and diol components such as propylene glycol and butylene glycol. There are copolymerized polymers in which the latter component is copolymerized, or mixed polymers in which a polymer obtained from the former component and the latter component is melt-mixed with polyethylene terephthalate.

本発明ポリエステル繊維は、繊維の引張り試験によって
求められる応カー伸び率曲線に於いて、降伏点応力(Y
s)が4.5g/d以上であり、且つ降伏点までの伸び
率(E1)に対する降伏点以降、切断までの伸び率(E
2)が50%以上であること、及び初期引張り抵抗度(
M i )が1008/d以上、ターミナルモジュラス
(Mt)が103/d以下である。上記定義を明らかに
するため、第1図に後述の実施例における本発明例−2
のSS曲線を示したのでこれを例にして説明する。一般
にポリエステルm維のSS曲線は引張り初期の立上がり
を含む勾配の高い部分と、切断近傍の比較的勾配の低い
部分とからなる。両者の交点、即ちSS曲線の屈曲点を
降伏点(Yp)とし、この時の応力が降伏応力(Ys)
である。繊維によっては上記屈曲点が不明瞭で降伏点が
求めにくい場合があるが、この場合はSS曲線上で引張
り初期の立上がり部分の接線と切断点近傍の直線部分か
ら引いた直線との交点として求めた。
The polyester fiber of the present invention has a yield point stress (Y
s) is 4.5 g/d or more, and the elongation rate (E
2) is 50% or more, and the initial tensile resistance (
M i ) is 1008/d or more, and the terminal modulus (Mt) is 103/d or less. In order to clarify the above definition, Fig. 1 shows Example-2 of the present invention in the Examples described below.
This will be explained using this as an example. In general, the SS curve of a polyester m-fiber consists of a high slope portion including a rise at the initial stage of tension, and a relatively low slope portion near the cut. The intersection of the two, that is, the bending point of the SS curve, is defined as the yield point (Yp), and the stress at this point is the yield stress (Ys).
It is. Depending on the fiber, the above-mentioned bending point may be unclear and it may be difficult to determine the yield point, but in this case, it is determined as the intersection of the tangent to the rising part at the initial stage of tension on the SS curve and the straight line drawn from the straight part near the cutting point. Ta.

本発明ポリエステル繊維は上記降伏点応力が4゜5 g
/d以上の高応力に出現することが特徴である。
The polyester fiber of the present invention has the above-mentioned yield point stress of 4.5 g.
It is characterized by appearing at high stress of /d or more.

また、引張り開始から降伏点までの伸び率E1は9.6
%以下、通常は4.8〜7.2%である。
In addition, the elongation rate E1 from the start of tension to the yield point is 9.6
% or less, usually 4.8 to 7.2%.

降伏点から切断点まての沖び率E2は前記E1の50%
以上、即ち約2.4%以上であり、通常は3〜12%で
あり、従来のポリエステル繊維と比べ降伏点以降の沖び
$E2か高いのが特徴である。
The offshore ratio E2 from the yield point to the cutting point is 50% of the above E1.
That is, it is about 2.4% or more, usually 3 to 12%, and is characterized by a higher elongation of $E2 after the yield point than conventional polyester fibers.

本発明ポリエステル繊維のSS曲線より求められる初期
引張り抵抗度Miは100g/d以上と高く、一方ター
ミナルモジュラスMtは10g/d以下と低いのが特徴
である。
The polyester fiber of the present invention has a high initial tensile resistance Mi determined from the SS curve of 100 g/d or more, and a low terminal modulus Mt of 10 g/d or less.

初期引張り抵抗度M1は、JIS  L1017の定義
及び潤定法による。ターミナルモジュラスMtは繊維の
引っ張り試験に於いて、88曲線上で切断伸度より2.
4%引いた曲線上の点と切断点まての応力増分を2.4
X10−2で除した値をいう。尚、SS曲線を得るため
の引張り試験の具体的条件は次の通りである。
The initial tensile resistance M1 is based on the definition of JIS L1017 and the water method. The terminal modulus Mt is determined by 2.0% from the cutting elongation on the 88 curve in the fiber tensile test.
The stress increment between the point on the curve subtracted by 4% and the cutting point is 2.4
It refers to the value divided by X10-2. The specific conditions for the tensile test to obtain the SS curve are as follows.

試料をかぜ状にとり、20℃、65%RHの温湿度調節
された部屋に24時間以上放置後、“′テンシロン U
TL−4L”型引張試験機(東洋ボールドウィン■製)
を用い、試長25cm、引張速度30cm/+ninで
測定した。
Take a sample in the form of a cold, leave it in a temperature and humidity controlled room at 20℃ and 65% RH for more than 24 hours, and then
TL-4L” type tensile testing machine (manufactured by Toyo Baldwin)
The measurement was carried out using a sample length of 25 cm and a tensile speed of 30 cm/+nin.

;;ミたこの集注;!後述の強伸度測定の場合も同一で
5ろ。
;;Collection of octopus;! The same applies to the strength and elongation measurement described below.

以上のsstm線の特徴を有するポリエステル繊維は、
強度、伸度の数値から予想されるよりSS曲線で囲まれ
る面積が大きいことが第1図の曲線から理解できる。こ
のような曲線を有するポリエステル繊維は比較的大きな
変形を与えられた場合の疲労テストでも優れた耐久性を
示すのである。
Polyester fibers having the above characteristics of SSTM line are
It can be seen from the curves in FIG. 1 that the area surrounded by the SS curve is larger than expected from the numerical values of strength and elongation. Polyester fibers with such curves exhibit excellent durability even in fatigue tests when subjected to relatively large deformations.

またかかるSS曲線を示すポリエステル繊維は寸法安定
性も著しく改善されているのである。即ち、上記SS曲
線を満足したポリエステル繊維は優れた耐疲労性と寸法
安定性を兼備したポリエステル繊維となるが、繊維構造
的には以下のパラメーターによって特徴づけられる。
Polyester fibers exhibiting such an SS curve also have significantly improved dimensional stability. That is, a polyester fiber that satisfies the above SS curve has both excellent fatigue resistance and dimensional stability, but its fiber structure is characterized by the following parameters.

複屈折     Δn≧160X10−3密度    
  ρ ≧1 、3958/cm3結晶配向度   f
c≧0.92 非晶分子配向度 F ≦0.90 DSC融点   Tm≧255℃ 複屈折は160X10−3以上、通常は170×10−
3以上であり、十分配向が進んでいることを示している
。密度は1.395以上で通常のポリエステル繊維に比
較して高く、高結晶化度である。
Birefringence Δn≧160X10-3 density
ρ ≧1, 3958/cm3 crystal orientation f
c≧0.92 Degree of amorphous molecular orientation F≦0.90 DSC melting point Tm≧255°C Birefringence is 160×10−3 or more, usually 170×10−
3 or more, indicating that the orientation has progressed sufficiently. It has a density of 1.395 or more, which is higher than normal polyester fibers, and a high degree of crystallinity.

結晶配向度は通常のポリエステルと同様十分高く、一方
非晶分子配向度は前記公知例として示した高速紡糸、熱
延伸法によるポリエステル繊維の場合と同様低配向の特
徴を有する。また本発明′a維はDSCで測定した融点
が260℃以上であり、1に来のポリエステル繊維に比
べ高く、熱的に安定なことを裏づけでいる。
The degree of crystal orientation is sufficiently high as in ordinary polyester, while the degree of amorphous molecular orientation is characterized by low orientation, as in the case of polyester fibers produced by high-speed spinning and hot drawing as shown in the above-mentioned known examples. Furthermore, the melting point of the 'a fiber of the present invention measured by DSC is 260° C. or higher, which is higher than that of the polyester fiber described in No. 1, which proves that it is thermally stable.

また上記SS曲線及び繊維構造パラメーターによって特
徴づけるられる本発明ポリエステル繊維は強度が5g/
d以上、切断伸度が10%以上で且つ150°Cで測定
した乾熱収縮率が3%以下と低収縮である。
Furthermore, the polyester fiber of the present invention characterized by the above SS curve and fiber structure parameters has a strength of 5 g/
d or more, the cutting elongation is 10% or more, and the dry heat shrinkage rate measured at 150°C is 3% or less, which is low shrinkage.

そして本発明のSS曲線を満足するポリエステル繊維は
上記繊維構造パラメーター、及び繊維特性を満足するこ
とができる。
A polyester fiber that satisfies the SS curve of the present invention can satisfy the above-mentioned fiber structure parameters and fiber properties.

尚、本発明繊維は次の新規方法によって製造することが
できる。
The fiber of the present invention can be produced by the following new method.

本発明ポリエステル繊維を製造するためには実質的にポ
リエチレンテレフタレートからなろポリエステルポリマ
て、極限粘度(Iv)で0.6以上、好ましくは0.7
以上のものをを用いる。該ポリマの溶融紡糸にはエクス
トルーダー型紡糸機を用いることが好ましい。紡糸速度
は7000m/min以上、好ましくは7500 m/
min以上の高速である。紡糸口金直下には1 o c
 tn以上、1m以内にわたってポリマの融点以上、好
ましくは紡糸温度以上の加熱雰囲気を、保温筒、加熱筒
等を設けろことによってつくる。紡出糸条は上記加熱雰
囲気中を通過したのち冷風で急冷固化され、次いで油剤
を付与された後紡糸速度を制御する引取りロールで引取
られる。本発明は7000 m/min以上の高速紡糸
を行なうため、紡糸バックの認過は精密に行ない、メル
トポリマへの異物の混入を防止するため、平均孔径10
71以下、好ましくは7μ以下の細孔を有するステンレ
ス製不織布フィルター等を用いることが好ましい。又前
記口金直下の加熱雰囲気の制御も高速紡糸時の曳糸性を
保持するため重要である。引取られた未延伸糸は一旦巻
取機で巻取る。この時未延伸糸は複屈折か80×10−
3以上、通常は100XIO−3以上と高度に配向して
いる。次いて該未延伸糸は180 ’C以上、好ましく
は230℃以上の温度で熱延伸する。延伸倍率は1.0
5〜1.4培の範囲である。未延伸糸のままではSS曲
線に明瞭な降伏点が認められず、強度は5.g/d未満
、モジュラスも1002/d未満である。また該未延伸
糸を冷延伸したり、180℃未満の温度で熱延伸した場
合にはターミナルモジュラスがIJ/r1以上のSS曲
線となり、密度も1 、395g/cc未満である。そ
して乾熱収縮率は3%を越え、耐疲労性の十分な改善は
達せられない。一方、該未延伸糸を延伸倍率1.05未
満の、実質的な延伸が起こらない状態で熱処理した場合
も、SS曲線玉の降伏点が不明瞭で、また強度が58/
d未満か、初期引張り抵抗度が100 g/d未満であ
り、産業資材用繊維として不適である。かくして得られ
る繊維は前記本発明ポリエステル繊’vMの特徴を有す
る。
In order to produce the polyester fiber of the present invention, a polyester polymer consisting essentially of polyethylene terephthalate has an intrinsic viscosity (Iv) of 0.6 or more, preferably 0.7.
Use the above. It is preferable to use an extruder type spinning machine for melt spinning the polymer. The spinning speed is 7000 m/min or more, preferably 7500 m/min.
The speed is higher than min. 1 oc directly below the spinneret
A heating atmosphere of at least tn and at least 1 m above the melting point of the polymer, preferably above the spinning temperature, is created by providing a heat insulating cylinder, a heating cylinder, etc. After passing through the above heating atmosphere, the spun yarn is quenched and solidified with cold air, and then, after being applied with an oil agent, it is taken off by a take-off roll that controls the spinning speed. Since the present invention performs high-speed spinning at 7000 m/min or more, the spinning back must be precisely checked, and the average pore diameter must be 10 to prevent foreign matter from entering the melt polymer.
It is preferable to use a stainless steel nonwoven fabric filter having pores of 71 μm or less, preferably 7 μm or less. Control of the heating atmosphere immediately below the spinneret is also important in order to maintain stringiness during high-speed spinning. The taken-off undrawn yarn is once wound up by a winding machine. At this time, the undrawn yarn is birefringent or 80×10−
3 or more, usually 100XIO-3 or more, which is highly oriented. The undrawn yarn is then hot drawn at a temperature of 180'C or higher, preferably 230C or higher. Stretching ratio is 1.0
The range is 5 to 1.4 cultures. In the undrawn yarn, no clear yield point was observed in the SS curve, and the strength was 5. g/d, and the modulus is also less than 1002/d. Further, when the undrawn yarn is cold-stretched or hot-stretched at a temperature of less than 180°C, the terminal modulus becomes an SS curve of IJ/r1 or more, and the density is also less than 1.395 g/cc. The dry heat shrinkage rate exceeds 3%, and sufficient improvement in fatigue resistance cannot be achieved. On the other hand, when the undrawn yarn is heat-treated at a draw ratio of less than 1.05 without substantial drawing, the yield point of the SS curve ball is unclear and the strength is 58/
or the initial tensile resistance is less than 100 g/d, making it unsuitable as a fiber for industrial materials. The fiber thus obtained has the characteristics of the polyester fiber 'vM of the present invention.

次に実施1!Jすに基づいて説明するが、本発明に係ろ
′a、ttt構造パラメーター、及び″a繊維特性測定
法に関し前記以外は次の通りである。
Next is implementation 1! The explanation will be based on the following, except for the above-mentioned methods for measuring the fiber properties of the present invention: a, ttt structural parameters, and a.

(イ)複屈折 日本光学工業(株)製POH型幅光顕微鏡を用い、D線
を光源として通常のベリツクコンペンセーター法により
求めた。
(a) Birefringence Birefringence was determined using a POH-type wide light microscope manufactured by Nippon Kogaku Kogyo Co., Ltd. and the usual Bellick compensator method using the D line as a light source.

(ロ)密度 四塩化炭素を1液、n−へブタンを軽液として作製した
密度勾配管を用い、25℃で測定した。
(b) Density Measurement was performed at 25° C. using a density gradient tube prepared with carbon tetrachloride as one liquid and n-hebutane as a light liquid.

(ハ)結晶配向度 理学電機社製X線発生装置(RU−200PL)を用い
、CuKαを線源として測定した。赤道線干渉の(01
0)面の強度分布曲線の半値巾HOから次式を用いて求
めた。
(c) Crystal orientation was measured using an X-ray generator (RU-200PL) manufactured by Rigaku Denki Co., Ltd. using CuKα as a radiation source. Equatorial line interference (01
0) from the half-width HO of the intensity distribution curve of the surface using the following equation.

fc= (180Q−H[1)/180G(ニ)非晶分
子配向度 試料を蛍光剤“MikephorεTN”の0.2!f
fi%水溶液中に55°C5g時間浸漬処理した後、十
分洗浄し、風乾して測定試料とした。日本分光(株ン製
FOM−1偏光光度計を用い、励起波長365nm、蛍
光波長420nm″i7偏光蛍光の相対強度を測定し、
次式巳こより求めた。
fc=(180Q-H[1)/180G(d) Amorphous molecular orientation sample is 0.2 of fluorescent agent "MikephorεTN"! f
After being immersed in a fi% aqueous solution for 5 g at 55°C, it was thoroughly washed and air-dried to prepare a measurement sample. Using a FOM-1 polarization photometer manufactured by JASCO Corporation, the relative intensity of polarized fluorescence was measured at an excitation wavelength of 365 nm and a fluorescence wavelength of 420 nm.
Obtained from Miko Tsukishiki.

F=1−B/A 但し A:繊維軸方向の偏光蛍光の相対強度B:pJ維
軸と直角方向の偏光蛍光の相対強度 (ホ)DSC融点 Perkin−E1mer社製のDSC−IB型て、昇
温速度10にm1nl、試料ff14.0 mg 、感
度4 mcal・S−リル2’7−ルで測定し、融解曲
線の主ピーク温度を融点(T m )とした。
F=1-B/A However, A: Relative intensity of polarized fluorescence in the direction of the fiber axis B: Relative intensity of polarized fluorescence in the direction perpendicular to the pJ fiber axis (e) DSC melting point DSC-IB model manufactured by Perkin-E1mer, Measurement was performed using a heating rate of 10 ml, a sample ff of 14.0 mg, and a sensitivity of 4 mcal/S-Ryl 2'7-L, and the main peak temperature of the melting curve was defined as the melting point (T m ).

(へ)乾熱収縮率 △S 試料をかせ状にとり、20℃、65%RHの温湿度調節
室で24時間以上放置した後、試料の0゜18/dに相
当する荷重を掛けて測定した長さLOの試料を無緊張状
態で150℃のオーブン中で30分間処理する。処理後
のサンプルを風乾し、上記温湿度調節室で24時間以上
放置し、再び上記荷重をかけて測定した長さLOから次
式によ・りて算出し・た。
(f) Dry heat shrinkage rate △S A sample was taken in the form of a skein, and after being left in a temperature and humidity controlled room at 20°C and 65% RH for 24 hours or more, a load equivalent to 0°18/d of the sample was applied and measured. Samples of length LO are processed under tension in an oven at 150° C. for 30 minutes. The treated sample was air-dried, left in the above-mentioned temperature and humidity control room for 24 hours or more, and the above-mentioned load was applied again to calculate the measured length LO using the following formula.

乾熱収縮率(%) = (L−LO) /L。Dry heat shrinkage rate (%) = (L-LO)/L.

×100 〔実施例−1〕 固有粘度(IV)0.85のポリエチレンテレフタレー
トをエクストルーダー型紡糸機で溶融紡糸した。紡糸パ
ックには平均孔径5μを有するステンレス製不織布フィ
ルターを組み込み、メルトポリマーを濾過した。口金は
孔径0.23mmφ、孔数36ホールを用い、ポリマ一
温度295℃とした。
×100 [Example-1] Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.85 was melt-spun using an extruder type spinning machine. A stainless steel nonwoven fabric filter with an average pore size of 5 μm was incorporated into the spinning pack to filter the melt polymer. The die used had a hole diameter of 0.23 mmφ and 36 holes, and the polymer temperature was 295°C.

口金直下には15cmの加熱筒を取り付け、筒内雰囲気
温度を280℃となるように加熱した。
A 15 cm heating cylinder was attached directly below the mouthpiece, and the atmosphere inside the cylinder was heated to 280°C.

雰囲気温度とは口金面より10cm下の位置で、且つ最
外周糸条より1cmfiれた位置で測定した雰囲気温度
である。加熱箇の下には長さ120cmのユニフロー型
チムニ−を取り付け、20℃で30m/minの冷風を
糸条に直角に吹き付け、冷却した。
The ambient temperature is the ambient temperature measured at a position 10 cm below the mouth surface and 1 cm away from the outermost thread. A uniflow type chimney with a length of 120 cm was attached below the heating section, and cold air was blown at 20°C at a rate of 30 m/min perpendicularly to the yarn to cool it.

前記紡糸口金から紡出された糸条は加熱筒雰囲気中を通
過した後、急冷固化され、油剤を付与された後、所定の
速度で回転する引取りロールて糸条速度を制御した後未
延伸糸として巻取られた。
The yarn spun from the spinneret passes through a heating cylinder atmosphere, is rapidly cooled and solidified, is coated with an oil agent, and is then undrawn after controlling the yarn speed using a take-up roll that rotates at a predetermined speed. It was wound as a thread.

次いで上記未延伸糸は1段目を120“C12段目を2
30°Cの温度をかけて2段延伸した。1段延伸倍率は
全延伸倍率の80%ととし、残りを2段目で延伸した。
Next, the undrawn yarn is 120"C in the first stage and 2nd stage in the 2nd stage.
The film was stretched in two stages at a temperature of 30°C. The first stage stretching ratio was 80% of the total stretching ratio, and the remainder was stretched in the second stage.

紡糸速度、全延伸倍率、延伸温度等を変化させて製糸し
たが、延伸糸の襟度が約250デニールとなるよう紡糸
速度、延伸倍率に対応させて吐出量を変化させた。
The spinning speed, total draw ratio, drawing temperature, etc. were varied to form the yarn, and the discharge amount was varied in accordance with the spinning speed and the draw ratio so that the collar of the drawn yarn was approximately 250 denier.

製糸条件、得られた延伸糸特性、及び繊維構造パラメー
ターを第1表に示した。
The spinning conditions, the obtained drawn yarn properties, and the fiber structure parameters are shown in Table 1.

次に、得られたそれぞれの延伸糸を4本合糸して約10
00デニールとし、上撚り及び下撚りをそれぞれ反対方
向に707/10cmづつかけて1000/2の生コー
ドとした。この生コードをリツラー社製ディッピング機
によって常法によって接着剤付与及び熱処理をしてディ
ップコードとした。
Next, four of each of the obtained drawn yarns were combined to form a yarn of approximately 10
00 denier, and the upper twist and the lower twist were applied in opposite directions for 707/10 cm each to obtain a 1000/2 raw cord. This raw cord was applied with an adhesive and heat treated in a conventional manner using a dipping machine manufactured by Ritzler Corp. to obtain a dipped cord.

熱処理は250°Cて140秒、5%のストレッチを9
)けながら行なった。次に該ディップコードをゴムに埋
め込み155°Cて20分間加硫処理した復原コードの
耐疲労性をJIS  L1017 3゜2.2.2  
ディスク疲労強さくグツドリッチ法)によって評価した
。伸張率12.5%、圧縮率8%、回転速度240 O
rpmで48°時間処理した後の強力保持率を求めて第
1表に示した。
Heat treatment at 250°C for 140 seconds, 5% stretch at 9
). Next, the dip cord was embedded in rubber and vulcanized at 155°C for 20 minutes, and the fatigue resistance of the restored cord was determined according to JIS L1017 3°2.2.2.
Disc fatigue strength was evaluated using the Gutdrich method. Expansion rate 12.5%, compression rate 8%, rotation speed 240 O
The tenacity retention rate after treatment at rpm for 48° was determined and shown in Table 1.

本発明ポリエステル繊維は特異なSS曲線、及び繊維構
造パラメーターによって特徴づけられ、その結果低収縮
率、即ち寸法安定性がよく、又コードにした時耐疲労性
が優れていることがわかる。
It can be seen that the polyester fiber of the present invention is characterized by a unique SS curve and fiber structure parameters, and as a result, it has a low shrinkage rate, that is, good dimensional stability, and has excellent fatigue resistance when made into a cord.

〔発明の効果〕〔Effect of the invention〕

本発明ポリエステル繊維は優れた寸法安定性と比較的大
きな変形歪を受ける繰り返し疲労に対する耐久性が良好
なため、乗用車やライトトラック用バイアスタイヤに用
タイヤコード、ロープ、漁網、縫い糸、各種カバーシー
ト、ベルト類に有用であり、特に上記製品の耐久性が向
上する。
The polyester fiber of the present invention has excellent dimensional stability and good durability against repeated fatigue that is subjected to relatively large deformation strain, so it can be used for bias tires for passenger cars and light trucks, tire cords, ropes, fishing nets, sewing threads, various cover sheets, etc. It is useful for belts, and particularly improves the durability of the above products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のl実施態様である本発明例−2のSS
曲線を示す。
FIG. 1 shows the SS of the present invention example-2, which is an embodiment of the present invention.
Show a curve.

Claims (3)

【特許請求の範囲】[Claims] (1)実質的にポリエチレンテレフタレートからなるポ
リエステル繊維であって、繊維の引張り試験によって求
められる応力−伸び率曲線に於いて、降伏点応力(Ys
)が4.5g/d以上であり、且つ降伏点までの伸び率
(E1)に対する降伏点以降、切断までの伸び率(E2
)が50%以上であること、及び初期引張り抵抗度(M
i)が100g/d以上、ターミナルモジュラス(Mt
)が10g/d以下であることを特徴とするポリエステ
ル繊維。
(1) A polyester fiber consisting essentially of polyethylene terephthalate, in the stress-elongation curve determined by a fiber tensile test, the yield stress (Ys
) is 4.5 g/d or more, and the elongation rate from the yield point to breakage (E2) is 4.5 g/d or more, and the elongation rate (E2
) is 50% or more, and the initial tensile resistance (M
i) is 100 g/d or more, the terminal modulus (Mt
) is 10 g/d or less.
(2)ポリエステル繊維が下記繊維構造パラメーターを
同時に満足することを特徴とする特許請求範囲第1項記
載のポリエステル繊維。 複屈折△n≧160×10^−^3 密度ρ≧1.395g/cm^3 結晶配向度fc≧0.92 非晶分子配向度F≦0.90 DSC融点Tm≧255℃
(2) The polyester fiber according to claim 1, wherein the polyester fiber satisfies the following fiber structure parameters at the same time. Birefringence △n≧160×10^-^3 Density ρ≧1.395g/cm^3 Crystal orientation fc≧0.92 Amorphous molecular orientation F≦0.90 DSC melting point Tm≧255°C
(3)ポリエステル繊維の強度(T/D)が5g/d以
上、切断伸度(E)が10%以上で、且つ150℃で測
定した乾熱収縮率が3%以下であることを特徴とする特
許請求範囲第1項記載のポリエステル繊維。
(3) The strength (T/D) of the polyester fiber is 5 g/d or more, the elongation at break (E) is 10% or more, and the dry heat shrinkage rate measured at 150°C is 3% or less. The polyester fiber according to claim 1.
JP30634086A 1986-12-24 1986-12-24 Polyester fiber Pending JPS63159518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30634086A JPS63159518A (en) 1986-12-24 1986-12-24 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30634086A JPS63159518A (en) 1986-12-24 1986-12-24 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS63159518A true JPS63159518A (en) 1988-07-02

Family

ID=17955921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30634086A Pending JPS63159518A (en) 1986-12-24 1986-12-24 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS63159518A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001338A1 (en) * 1991-07-08 1993-01-21 Teijin Limited Cloth material for sport gears billowing in the wind
JPH0665812A (en) * 1991-12-13 1994-03-08 Kolon Co Ltd Polyester filament yarn, polyester tire cord and preparation thereof
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
JP2009242954A (en) * 2008-03-28 2009-10-22 Toray Ind Inc Polyester fiber for seat belt
KR20170087235A (en) * 2016-01-20 2017-07-28 주식회사 효성 Process for preparing polyethyleneterephthalate dipped cord for bias tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154410A (en) * 1981-03-13 1982-09-24 Toray Ind Inc Polyethylene terephthalate fiber and its production
JPS57161119A (en) * 1981-03-20 1982-10-04 Teijin Ltd Polyester fiber
JPS5898419A (en) * 1981-12-02 1983-06-11 Touyoubou Pet Koode Kk Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154410A (en) * 1981-03-13 1982-09-24 Toray Ind Inc Polyethylene terephthalate fiber and its production
JPS57161119A (en) * 1981-03-20 1982-10-04 Teijin Ltd Polyester fiber
JPS5898419A (en) * 1981-12-02 1983-06-11 Touyoubou Pet Koode Kk Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
US5558935A (en) * 1990-04-06 1996-09-24 Asahi Kasei Kogyo Kabushiki Kaisha Polyester fiber and method of manufacturing the same
WO1993001338A1 (en) * 1991-07-08 1993-01-21 Teijin Limited Cloth material for sport gears billowing in the wind
US5273813A (en) * 1991-07-08 1993-12-28 Teijin Limited Fabric material useful for wind-filling sporting goods
JPH0665812A (en) * 1991-12-13 1994-03-08 Kolon Co Ltd Polyester filament yarn, polyester tire cord and preparation thereof
USRE36698E (en) * 1991-12-13 2000-05-16 Kolon Industries, Inc. High strength polyester filamentary yarn
JP2009242954A (en) * 2008-03-28 2009-10-22 Toray Ind Inc Polyester fiber for seat belt
KR20170087235A (en) * 2016-01-20 2017-07-28 주식회사 효성 Process for preparing polyethyleneterephthalate dipped cord for bias tire

Similar Documents

Publication Publication Date Title
US4987030A (en) High-tenacity conjugated fiber and process for preparation thereof
JP2907912B2 (en) Dimensionally stable polyester yarn for high dimensional stability treated cord
EP0546859B1 (en) Polyester filamentary yarn, polyester tire cord and production thereof
JPH0127164B2 (en)
JPS5947726B2 (en) Polyester fiber manufacturing method
JPH0210243B2 (en)
JPH06184815A (en) Polyethylene naphthalate fiber excellent in thermal stability and its production
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPH0246689B2 (en)
JPS6088120A (en) Polyester yarn
JPS63159518A (en) Polyester fiber
JPS5953736A (en) Polyester tire cord and production thereof
JPH0345128B2 (en)
JP2002161433A (en) Polyester fiber and method for producing the same
JP2882697B2 (en) Polyester fiber and method for producing the same
JPS63165547A (en) Polyester tire cord having high modulus of elasticity and its production
JP3672810B2 (en) High density screen monofilament
JPH03152215A (en) High-strength and highly durable conjugate fiber
JP2564872B2 (en) Polyester fiber for seat belt
JPS6335844A (en) Tire cord composed of polyvinyl alcohol fiber improved in flexural hardness
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
KR100233305B1 (en) Polyester filament of tire cord
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus
JPS59168119A (en) Preparation of polyester yarn having improved thermal dimensional stability and high strength
JPH0350002B2 (en)