JPH05222412A - Apparatus for producing flat powder - Google Patents

Apparatus for producing flat powder

Info

Publication number
JPH05222412A
JPH05222412A JP5641992A JP5641992A JPH05222412A JP H05222412 A JPH05222412 A JP H05222412A JP 5641992 A JP5641992 A JP 5641992A JP 5641992 A JP5641992 A JP 5641992A JP H05222412 A JPH05222412 A JP H05222412A
Authority
JP
Japan
Prior art keywords
cooling body
rotary cooling
flat powder
molten metal
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5641992A
Other languages
Japanese (ja)
Other versions
JP3133459B2 (en
Inventor
Hitoshi Yamaguchi
均 山口
Katsuyuki Yoshizawa
克之 吉沢
Yoshiyuki Shinohara
吉幸 篠原
Masahiro Oguchi
昌弘 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Piston Ring Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP04056419A priority Critical patent/JP3133459B2/en
Publication of JPH05222412A publication Critical patent/JPH05222412A/en
Application granted granted Critical
Publication of JP3133459B2 publication Critical patent/JP3133459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce the flat powder having small grain sizes at a high yield by forming the film of a ceramic-metal composite essentially composed of ceramics having specific porosity on the surface of a rotary cooling body against which the liquid drops of a molten metal are brought into collision. CONSTITUTION:The rotary cooling body 12 is disposed below a molten metal nozzle 3 for discharging the molten metal 2. Gas is injected from an injection nozzle 5 to form the liquid drops before the molten metal 2 collides against the rotary cooling body 12 and thereafter, the liquid drops are brought into collision against the rotary cooling body 12, by which the flat powder 1 is produced. The film 12a (about 0.05mu to 0.2mm thickness) of the ceramic-metal composite essentially composed of the ceramics having the porosity not exceeding 5% (for example, 75% ceramics and 25% cobalt) is formed by plasma thermal spraying, etc., on the surface of the rotary cooling body 12 of this time. As a result, the fine and independent (non-connected) flat powder 1 is obtd. at the good yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ノズルより流出させた
金属溶湯にガスを噴射して液滴にした後、液滴を回転冷
却体に衝突させて冷却するとともに扁平状に変形し、次
に高速で回転する回転冷却体の遠心力により回転冷却体
から離脱させることにより扁平状金属粉末を得る粉末製
造装置に関するものであり、さらに詳しく述べるなら
ば、粒径の小さい扁平状粉末を効率良く製造するのに適
した扁平粉末製造装置に関する。かかる扁平粉末はその
形状の特異性を利用して耐食性塗料の顔料などとしての
用途が期待されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention sprays a gas onto a molten metal flowing out from a nozzle to form droplets, collides the droplets with a rotary cooling body to cool them, and deforms them into a flat shape. The present invention relates to a powder production apparatus for obtaining a flat metal powder by separating from a rotary cooling body by centrifugal force of a rotary cooling body rotating at a high speed. The present invention relates to a flat powder manufacturing apparatus suitable for manufacturing. The flat powder is expected to be used as a pigment of a corrosion-resistant paint by utilizing its peculiar shape.

【0002】[0002]

【従来の技術】上記の装置におけるガス噴射用ノズルと
してはフリーホール型(図2参照)及びコンファインド
型(図3参照)の二つのものが使用されている。図2、
3において、2は金属溶湯、3は溶湯ノズル、5は噴射
ノズル、6は高速ガスによりアトマイズされた液滴、1
0は溶湯溜めである。特開平1−319606号、2−
34706号、2−93007号公報などに示されてい
るように回転冷却体はホーン型となっており、液滴衝突
後の粉末が冷却面から容易に離脱できるように工夫され
ている。また、回転冷却体には、液滴の冷却効率を高め
るために熱伝導率の良好な純銅が用いられてきた。
2. Description of the Related Art Two types of gas injection nozzles, a free hole type (see FIG. 2) and a confined type (see FIG. 3), are used in the above apparatus. 2,
In FIG. 3, 2 is a metal melt, 3 is a melt nozzle, 5 is an injection nozzle, 6 is a droplet atomized by a high-speed gas, 1
0 is a molten metal reservoir. JP-A-1-319606, 2-
As disclosed in Japanese Patent Nos. 34706 and 2-93007, the rotary cooling body is of a horn type, and is devised so that the powder after collision of droplets can be easily separated from the cooling surface. Moreover, pure copper having a good thermal conductivity has been used for the rotary cooling body in order to enhance the cooling efficiency of the droplets.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
純銅製回転冷却体を使用した扁平粉末製造装置では、連
結粉が多くなり、この結果粒径の小さな扁平状粉末の収
率が悪いという問題が起こった。そこで、この原因究明
のため回転冷却体の物性と液滴衝突・離脱状況の関連に
つき検討したところ、純銅製回転冷却体は硬さが低くか
つ金属液滴との濡れ性が良いために、ガスアトマイズに
より作られる極めて微細な金属粉が冷却面で衝突する際
回転冷却体表面のエロージョン損耗が多く、損耗により
生じた凹凸面に金属液滴が捕捉され、その上に別の液滴
が堆積するために、扁平粉末の遠心力による離脱性が悪
化することが分かった。また、上記したエロージョン損
耗による凹凸発生と並行して冷却面の銅と溶融金属液滴
との化学的反応も起こり、反応生成物の層が冷却面に形
成され、この結果清浄な回転冷却体の表面を保てなくな
ることが分かった。これらの原因により純銅製の回転冷
却体による粉末を製造すると連結粉末が多くなり、また
粉末が粗大化する傾向は避けられない。したがって本発
明は上記した装置で製造される扁平粉末に含まれる連結
粉末と粗大粉末の割合を低くして、微細・単独(非連
結)粉末の収率を高めることを目的とする。
However, in the flat powder manufacturing apparatus using the conventional pure copper rotary cooling body, there is a problem that the amount of connecting powder increases and, as a result, the yield of flat powder having a small particle size is poor. Happened. Therefore, in order to investigate the cause, we investigated the relationship between the physical properties of the rotary cooling body and the conditions of collision and separation of droplets.The pure copper rotary cooling body had low hardness and good wettability with metal droplets, and it was gas atomized. When the extremely fine metal powder made by collides with the cooling surface, there is much erosion wear on the surface of the rotating cooling body, and metal droplets are trapped on the uneven surface caused by the wear, and another droplet is deposited on it. It was also found that the detachability of the flat powder due to the centrifugal force deteriorates. Further, in parallel with the occurrence of unevenness due to erosion wear described above, a chemical reaction between the copper and the molten metal droplets on the cooling surface also occurs, and a layer of the reaction product is formed on the cooling surface, resulting in a clean rotary cooling body. I found that I could not keep the surface. Due to these causes, when the powder is produced by the rotary cooling body made of pure copper, there is an unavoidable tendency that the connecting powder increases and the powder becomes coarse. Therefore, it is an object of the present invention to reduce the ratio of the connected powder and the coarse powder contained in the flat powder produced by the above-mentioned apparatus to increase the yield of fine / single (non-connected) powder.

【0004】[0004]

【課題を解決するための手段】上記した問題点を解決す
るために本発明は、金属溶湯を流出させるノズルの下方
に回転冷却体を配置し、かつ前記金属溶湯を回転冷却体
への衝突前に液滴とするガスを噴射するノズルを有する
扁平状粉末の製造装置において、前記回転冷却体の表面
に、気孔率で5%を超えない気孔を有しかつ主としてセ
ラミックスからなるセラミックス−金属複合体の皮膜を
形成したことを特徴とする扁平粉末作製装置を提供する
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, a rotary cooling body is arranged below a nozzle for letting out a molten metal, and before the collision of the molten metal with the rotary cooling body. In a flat powder manufacturing apparatus having a nozzle for injecting gas to form liquid droplets, a ceramic-metal composite mainly composed of ceramics having pores whose porosity does not exceed 5% on the surface of the rotary cooling body. The present invention provides a flat powder manufacturing apparatus, which is characterized in that the film of (1) is formed.

【0005】ここで、セラミックス複合体はセラミック
スを主体とする必要があり、好ましくは60〜95%、
より好ましくは70〜85重量%のセラミックスを含
む。残部は金属であり、特にコバルト、ニッケル及びこ
れらの合金などの耐熱性金属が好ましい。セラミックス
複合体がセラミックスを95%以上含むと回転冷却体へ
の被覆が困難となり、一方セラミックスが70重量%未
満では硬さが低く表面の損耗が多くまた、反応層がない
清浄な回転冷却体の表面を保つことが困難になる。
Here, the ceramic composite must be mainly composed of ceramics, preferably 60 to 95%,
More preferably, it contains 70 to 85% by weight of ceramics. The balance is metal, and heat-resistant metals such as cobalt, nickel and alloys thereof are particularly preferable. When the ceramic composite contains 95% or more of ceramics, it becomes difficult to cover the rotary cooling body, while when the ceramics content is less than 70% by weight, the hardness is low and the surface is often worn. It becomes difficult to keep the surface.

【0006】セラミックス複合体を表面皮膜として施す
基材は熱伝導性にすぐれた銅または銅合金あるいはアル
ミニウム又はアルミニウム合金が好ましい。セラミック
ス複合体皮膜の厚さは好ましくは0.05μm以上がよ
く、上限は特に制限がないが、0.2mm程度で十分で
ある。厚さが0.5mm以上であると回転冷却体の冷却
効率が低下するので好ましくない。
The base material on which the ceramic composite is applied as a surface coating is preferably copper or copper alloy, aluminum or aluminum alloy, which has excellent thermal conductivity. The thickness of the ceramic composite film is preferably 0.05 μm or more, and the upper limit is not particularly limited, but about 0.2 mm is sufficient. If the thickness is 0.5 mm or more, the cooling efficiency of the rotary cooling body decreases, which is not preferable.

【0007】また、PVDやCVDで被覆した気孔の無
いセラミックス皮膜を施した回転冷却体では、液滴が回
転冷却体に衝突すると、被覆した無気孔セラミックスと
基材との熱膨張率の差により無気孔皮膜が剥離するの
で、清浄な回転冷却体の表面が得られず、この結果液滴
の回転冷却体の表面への付着や連結粉が多くなり粒径の
小さな扁平状粉末の収率が悪くなる。つまり、プラズマ
溶射などの方法により回転冷却体表面を微細気孔が分散
するセラミックスで被覆することにより、液滴衝突後の
回転冷却体の表面粗さを小さくすることができ、同時に
セラミックス複合体と基材との熱膨張の差による悪影響
を緩和することができる。
Further, in a rotary cooling body coated with a ceramic film having no pores, which is coated by PVD or CVD, when droplets collide with the rotary cooling body, a difference in the coefficient of thermal expansion between the coated non-porous ceramics and the substrate results. Since the non-porous film peels off, a clean surface of the rotary cooling body cannot be obtained, and as a result, the amount of droplets adhering to the surface of the rotary cooling body and the amount of connecting powder increase, resulting in a flat powder with a small particle size yield. become worse. That is, by coating the surface of the rotary cooling body with ceramics in which fine pores are dispersed by a method such as plasma spraying, it is possible to reduce the surface roughness of the rotary cooling body after droplet collision, and at the same time, to reduce the ceramic composite and the base material. The adverse effect due to the difference in thermal expansion from the material can be mitigated.

【0008】被覆するセラミックス複合体の気孔率が5
%をこえると、気孔が粗大化するために回転冷却体の表
面粗さが大きくなる。すると、気孔内に露出された基材
の金属と溶湯が反応するために、清浄な回転冷却体の表
面が得られなくなり、ひいいては液滴の回転冷却体表面
への付着や連結粉が多くなるので、粒径の小さな扁平状
粉末の収率が悪くなる。したがって、セラミックス複合
体の気孔率は5%以下でなければならない。
The porosity of the ceramic composite to be coated is 5
If it exceeds%, the surface roughness of the rotary cooling body becomes large because the pores become coarse. Then, since the metal of the base material exposed in the pores reacts with the molten metal, a clean surface of the rotary cooling body cannot be obtained. Therefore, the yield of the flat powder having a small particle diameter is deteriorated. Therefore, the porosity of the ceramic composite should be 5% or less.

【0009】セラミックスとしては、炭化物、窒化物、
ほう化物、けい化物、酸化物などを使用する。例えば、
炭化物としては、Cr32 ,TiC,NbC,V4
3 ,WCなどを使用すれば良い。これらのセラミックス
を金属とともに溶射して1mm程度の溶射層を形成した
後に、溶射層を研摩加工により、所定厚さでかつ表面粗
さが数ミクロンになるように仕上げを行うことにより、
本発明の特徴とするセラミックス複合体皮膜を得ること
ができる。
Ceramics include carbides, nitrides,
Borides, silicides, oxides, etc. are used. For example,
As the carbide, Cr 3 C 2 , TiC, NbC, V 4 C
3 , WC, etc. may be used. After spraying these ceramics with a metal to form a sprayed layer of about 1 mm, the sprayed layer is polished to a predetermined thickness and a surface roughness of several microns.
It is possible to obtain a ceramic composite film which is a feature of the present invention.

【0010】以下、本発明の実施例を説明する。An embodiment of the present invention will be described below.

【実施例】図1に示す扁平状粉末製造装置において回転
冷却体の本体12(底辺直径400mm,高さ200m
m及び頂角90°)として純銅を使用し、その表面に表
1に示すセラミックス及びセラミックス複合材料(セラ
ミックス75%、コバルト25%)をPVD,プラズマ
溶射又は減圧プラズマ溶射で被覆した後、照射層を厚み
0.1mmとなるように研摩してセラミックス−金属複
合体皮膜12aとした。プラズマ溶射又は減圧プラズマ
溶射は共にAr+H2 をプラズマガスとし、後者は10
00Paの減圧条件で溶射を行った。
EXAMPLES In the flat powder manufacturing apparatus shown in FIG. 1, the body 12 of the rotary cooling body (base diameter 400 mm, height 200 m)
m and apex angle 90 °), pure copper is used, and the surface thereof is coated with the ceramics and ceramics composite material (ceramics 75%, cobalt 25%) shown in Table 1 by PVD, plasma spraying or reduced pressure plasma spraying, and then an irradiation layer Was polished to a thickness of 0.1 mm to obtain a ceramic-metal composite film 12a. In both plasma spraying and low pressure plasma spraying, Ar + H 2 is used as the plasma gas, and the latter is 10
Thermal spraying was performed under a reduced pressure condition of 00 Pa.

【0011】金属溶湯2としては、Fe80137 (a
t%)の合金を使用し、これをノズル3より流出させ
て、100kg/cm2 のガス圧で窒素ガスを噴射ノズ
ル5より噴出させてアトマイズし液滴6を形成した。こ
の液滴6を回転数5000rpmの回転冷却体12に衝
突させた。表1にサイクロンで回収した扁平状粉末1の
収率と回転冷却体の皮膜12aへの付着の有無ならびに
皮膜剥離の有無を示す。
As the metal melt 2, Fe 80 P 13 C 7 (a
(t%) alloy was used, which was flown out from the nozzle 3 and nitrogen gas was ejected from the injection nozzle 5 at a gas pressure of 100 kg / cm 2 to atomize and form droplets 6. The droplet 6 was made to collide with the rotary cooling body 12 having a rotation speed of 5000 rpm. Table 1 shows the yield of the flat powder 1 collected by the cyclone, the presence / absence of adhesion to the film 12a of the rotary cooling body, and the presence / absence of film exfoliation.

【0012】 表 1 被覆物質 気孔率 扁平粉末 液滴 皮膜 備考 (%) 収率(%) 付着 剥離 なし − 30 あり − 従来例 NbC 0 28 あり あり PVD、比較例 TiC 0 28 あり あり PVD、比較例 TiN 0 27 あり あり PVD、比較例 Cr32 12.7 40 局部的 なし P溶射皮膜、比較例 WC 13.2 38 局部的 なし P溶射皮膜、比較例 NbC 10.1 40 局部的 なし P溶射皮膜、比較例 TiN 9.3 42 局部的 なし P溶射皮膜、比較例 Cr23 9.8 41 局部的 なし P溶射皮膜、比較例 Al23 10.5 39 局部的 なし P溶射皮膜、比較例 TiB2 8.9 42 局部的 なし P溶射皮膜、比較例 MoSi2 11.6 38 局部的 なし P溶射皮膜、比較例 Cr32 4.3 55 ない なし RP溶射皮膜、実施例 WC 4.5 50 なし なし RP溶射皮膜、実施例 NbC 4.5 52 なし なし RP溶射皮膜、実施例 TiN 4.7 50 なし なし RP溶射皮膜、実施例 Cr23 4.4 53 なし なし RP溶射皮膜、実施例 Al23 4.8 50 なし なし RP溶射皮膜、実施例 TiB2 4.6 54 なし なし RP溶射皮膜、実施例 MoSi2 4.9 51 なし なし RP溶射皮膜、実施例 備考 「扁平粉末収率」は回収された全粉末、すなわち
全扁平粉末中の粒径が25〜90μmの範囲にある微細
粉末の割合である。液滴付着は回転冷却体への液滴の付
着を意味する。P溶射はプラズマ溶射、RP溶射は減圧
プラズマ溶射の略称である。
Table 1 Coating materials Porosity Flat powder Droplet Film Remarks (%) Yield (%) Adhesion peeling No − 30 Yes − Conventional example NbC 0 28 Yes Yes PVD, Comparative example TiC 0 28 Yes Yes PVD, Comparative example TiN 0 27 Yes Yes PVD, Comparative example Cr 3 C 2 12.7 40 Local none P Spray coating, comparison Example WC 13.2 38 Local none P sprayed coating, comparative example NbC 10.1 40 Local none P sprayed coating, comparative example TiN 9.3 42 Local none P sprayed coating, comparative example Cr 2 O 3 9.8 41 Local None P Thermal Spray Coating, Comparative Example Al 2 O 3 10.5 39 Local None P Thermal Spray Coating, Comparative Example TiB 2 8.9 42 Local None P Thermal Spray Coating, Comparative Example MoSi 2 11.6 38 Local None P sprayed coating, comparative example Cr 3 C 2 4.3 55 No None RP sprayed coating, Example WC 4.5 50 50 None None RP sprayed coating, Example NbC 4.5 52 52 None None RP thermal spray coating, Example TiN 4.7 50 None None RP thermal spray coating, Example Cr 2 O 3 4.4 53 53 None None RP thermal spray coating, Example Al 2 O 3 4.8 50 None None RP thermal spray coating, Example TiB 2 4.6 54 None None RP thermal spray coating, Example MoSi 2 4.9 51 None None RP thermal spray coating, Example Remarks “Flat powder yield” is the total powder recovered, ie the total flat powder. It is the ratio of fine powder having a particle size in the range of 25 to 90 μm. Droplet deposition means the deposition of droplets on the rotating cooling body. P spraying is an abbreviation for plasma spraying, and RP spraying is an abbreviation for low pressure plasma spraying.

【0013】以上の結果から分かるように、セラミック
複合皮膜の気孔率がゼロ(PVD皮膜の場合)である
と、液滴が皮膜に付着しまた皮膜の剥離が起こる。さら
に微細な扁平粉末の収率が非常に低く、セラミック複合
皮膜を施さない回転冷却体を使用する従来例よりも低く
なる。また、セラミック複合皮膜の気孔率が10%強あ
るいはそれ以上であると、液滴が回転冷却体に局部的に
付着し、これに伴い扁平微細粉末の収率が低くなる。こ
れに対して本発明実施例は微細扁平粉末の収率が高い。
As can be seen from the above results, when the porosity of the ceramic composite coating is zero (in the case of PVD coating), droplets adhere to the coating and peeling occurs. Further, the yield of fine flat powder is very low, which is lower than that of the conventional example using the rotary cooling body without the ceramic composite coating. Further, when the porosity of the ceramic composite coating is more than 10% or more, the liquid droplets locally adhere to the rotary cooling body, and the yield of the flat fine powder decreases accordingly. On the other hand, in the examples of the present invention, the yield of fine flat powder is high.

【0014】[0014]

【発明の効果】以上のように、溶湯の液滴を衝突させる
回転冷却体を微細な気孔が分散する気孔率5%以下のセ
ラミックスを主体とする皮膜で被覆すると、液滴の回転
冷却体への付着や粉末同志の結合が防止でき、結果とし
て、扁平状粉末の粒径を小さくする効果がある。
As described above, when the rotary cooling body for colliding the droplets of the molten metal is coated with a film mainly composed of ceramics having a porosity of 5% or less in which fine pores are dispersed, the rotary cooling body for the droplets is Can be prevented from adhering to each other and the powders can be bonded together, and as a result, the particle size of the flat powder can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 扁平状粉末の製造装置を示す概念図である。FIG. 1 is a conceptual diagram showing an apparatus for producing flat powder.

【図2】 コンファインド型ノズルを使用する扁平状粉
末の製造装置を示す概念図である。
FIG. 2 is a conceptual diagram showing a flat powder manufacturing apparatus using a confined nozzle.

【図3】 コンファインド型ノズルを使用する扁平状粉
末の製造装置を示す概念図である。
FIG. 3 is a conceptual diagram showing an apparatus for producing flat powder using a confined type nozzle.

【符号の説明】[Explanation of symbols]

1 扁平状粉末 2 金属溶湯 3 溶湯ノズル 5 噴射ノズル 6 液滴 10 溶湯溜め 12 回転冷却体 12a 皮膜 DESCRIPTION OF SYMBOLS 1 Flat powder 2 Metal melt 3 Molten metal nozzle 5 Injection nozzle 6 Droplet 10 Molten metal reservoir 12 Rotating cooling body 12a Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小口 昌弘 東京都中央区八重洲一丁目9番9号 帝国 ピストンリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Oguchi 1-9-9 Yaesu, Chuo-ku, Tokyo Teikoku Piston Ring Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属溶湯を流出させるノズルの下方に回
転冷却体を配置し、かつ前記金属溶湯を回転冷却体への
衝突前に液滴とするガスを噴射するノズルを有する扁平
状粉末の製造装置において、前記回転冷却体の表面に、
気孔率で5%を超えない気孔を有しかつ主としてセラミ
ックスからなるセラミックス−金属複合体の皮膜を形成
したことを特徴とする扁平粉末作製装置。
1. A method for producing a flat powder, comprising a rotary cooling body arranged below a nozzle for discharging a molten metal, and having a nozzle for injecting a gas that forms droplets of the molten metal before colliding with the rotary cooling body. In the device, on the surface of the rotary cooling body,
An apparatus for producing a flat powder, characterized in that a film of a ceramic-metal composite having a porosity not exceeding 5% and formed mainly of ceramics is formed.
JP04056419A 1992-02-06 1992-02-06 Flat powder production equipment Expired - Fee Related JP3133459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04056419A JP3133459B2 (en) 1992-02-06 1992-02-06 Flat powder production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04056419A JP3133459B2 (en) 1992-02-06 1992-02-06 Flat powder production equipment

Publications (2)

Publication Number Publication Date
JPH05222412A true JPH05222412A (en) 1993-08-31
JP3133459B2 JP3133459B2 (en) 2001-02-05

Family

ID=13026590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04056419A Expired - Fee Related JP3133459B2 (en) 1992-02-06 1992-02-06 Flat powder production equipment

Country Status (1)

Country Link
JP (1) JP3133459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062573A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
WO2010087018A1 (en) * 2009-02-02 2010-08-05 独立行政法人物質・材料研究機構 Rotating disk for use in centrifugal atomization method, and centrifugal atomization method using the same
CN111230132A (en) * 2020-04-26 2020-06-05 西安赛隆金属材料有限责任公司 Preparation method of metal powder
CN115159161A (en) * 2022-06-30 2022-10-11 深圳市中金岭南科技有限公司 Sealing device for high-temperature metal powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062573A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
WO2010087018A1 (en) * 2009-02-02 2010-08-05 独立行政法人物質・材料研究機構 Rotating disk for use in centrifugal atomization method, and centrifugal atomization method using the same
CN111230132A (en) * 2020-04-26 2020-06-05 西安赛隆金属材料有限责任公司 Preparation method of metal powder
CN111230132B (en) * 2020-04-26 2020-08-25 西安赛隆金属材料有限责任公司 Preparation method of metal powder
CN115159161A (en) * 2022-06-30 2022-10-11 深圳市中金岭南科技有限公司 Sealing device for high-temperature metal powder
CN115159161B (en) * 2022-06-30 2024-04-19 深圳市中金岭南科技有限公司 Sealing device for high-temperature metal powder

Also Published As

Publication number Publication date
JP3133459B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
EP1705266B1 (en) Applying bond coat to engine components using cold spray
JP4359442B2 (en) Thermal spray powder and method for forming thermal spray coating using the same
US20040126499A1 (en) Process and device for cold gas spraying
US20060121187A1 (en) Vacuum cold spray process
EP0834585B1 (en) A method for producing a chromium carbide-nickel chromium atomized powder
US20040037954A1 (en) Process and device for cold gas spraying
JP2008106363A5 (en)
WO2013042635A1 (en) Laminate and laminate manufacturing method
RU2003130773A (en) METHOD FOR COATING AND COLLECTOR OF ROCKET ENGINE WITH SUCH COATING
JP2004518816A (en) Method for increasing the surface of a substrate and catalyst product produced thereby
WO2018042684A1 (en) Silver powder production method and silver powder production apparatus
JP4628578B2 (en) Low temperature sprayed coating coated member and method for producing the same
CN110014146A (en) A kind of nickel-molybdenum iron chromium-diamond alloy composite powder and its preparation method and application
EP0748393B1 (en) Thermal spray nozzle for producing rough thermal spray coatings, method for producing rough thermal spray coatings
JP2010129934A (en) Glass circuit board and method of manufacturing the same
US6254997B1 (en) Article with metallic surface layer for heat transfer augmentation and method for making
JP2007291523A (en) Coating formed by thermal spraying, and its forming method
JP3133459B2 (en) Flat powder production equipment
JP5228149B2 (en) Nozzle for film formation, film formation method, and film formation member
JPH07195168A (en) Production of rotation symmetry semiprocessed products wherein property changes over cross section and its rotation symmetry base stock
CN112226723B (en) Preparation method of aluminum-containing alloy coating in atmospheric atmosphere
JPH10503806A (en) Method for atomizing dispersible liquid material
JP3130220B2 (en) Conductor roll for electroplating line and method of manufacturing the same
JPH0733567A (en) Carbon material having melt-spray coated non-oxide ceramic film and its production
JP2824085B2 (en) Method and apparatus for producing flake powder of aluminum or its alloy, and flake metal powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees