JP5228149B2 - Nozzle for film formation, film formation method, and film formation member - Google Patents

Nozzle for film formation, film formation method, and film formation member Download PDF

Info

Publication number
JP5228149B2
JP5228149B2 JP2007297336A JP2007297336A JP5228149B2 JP 5228149 B2 JP5228149 B2 JP 5228149B2 JP 2007297336 A JP2007297336 A JP 2007297336A JP 2007297336 A JP2007297336 A JP 2007297336A JP 5228149 B2 JP5228149 B2 JP 5228149B2
Authority
JP
Japan
Prior art keywords
film
nozzle
forming
substrate
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007297336A
Other languages
Japanese (ja)
Other versions
JP2009120913A (en
Inventor
昌宏 福本
基宏 山田
紘樹 寺田
憲徳 佐藤
英二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2007297336A priority Critical patent/JP5228149B2/en
Publication of JP2009120913A publication Critical patent/JP2009120913A/en
Application granted granted Critical
Publication of JP5228149B2 publication Critical patent/JP5228149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ノズルによって加速されたガス流と共に固相、溶融または半溶融状態の材料粉末粒子を基材表面に衝突させ、堆積させることにより皮膜を形成する粒子堆積成膜法に使用するノズル形状および皮膜の製造方法ならびに皮膜を形成した部材に関するものである。   The present invention relates to a nozzle shape used in a particle deposition film forming method in which a solid powder, molten or semi-molten material powder particles are collided with a substrate surface together with a gas flow accelerated by a nozzle and deposited to form a film. Further, the present invention relates to a method for producing a film and a member on which a film is formed.

成膜材料として粉末を用いる粒子堆積成膜法は、ガスや蒸気を成膜材料として用いるCVD(Chemical Vapor Deposition)法やPVD(Physical Vapor Deposition)法などの気相合成法と比較して、成膜速度が高く且つ気相合成法よりも厚い皮膜が安価に形成できることから、構造部材の表面改質などに広く用いられている。 The particle deposition film forming method using powder as a film forming material is compared with a gas phase synthesis method such as a CVD (Chemical Vapor Deposition) method or a PVD (Physical Vapor Deposition) method using gas or vapor as a film forming material. Since a film having a high film speed and a thicker film than the vapor phase synthesis method can be formed at a low cost, it is widely used for surface modification of structural members.

粒子堆積成膜法としては、粉末、ワイヤー、棒などの材料をプラズマや燃焼炎などの熱源を用いて溶融または半溶融状態にして基材表面に吹き付ける溶射法が広く用いられている。また、近年では材料の溶融に伴う酸化などの相変態や熱的劣化を抑制するため、粉末材料を固相のまま高速ガス流と共に基材表面に衝突させて堆積させるウォームスプレー法、コールドスプレー法(特許文献2)およびエアロゾルデポジション法(特許文献1)などが開発された。 As a particle deposition film forming method, a thermal spraying method in which a material such as a powder, a wire, or a rod is melted or semi-molten using a heat source such as plasma or a combustion flame and sprayed onto a substrate surface is widely used. Also, in recent years, in order to suppress phase transformation such as oxidation and thermal degradation caused by melting of the material, the powder material can be deposited in a solid phase by colliding with the surface of the substrate together with a high-speed gas flow. (Patent Document 2) and the aerosol deposition method (Patent Document 1) have been developed.

しかし、固相状態の粉末材料を基材衝突時に偏平化して堆積させるためには粒子速度の上昇が不可欠であることから、粒子を搬送するガス速度を増大するためにガス圧力の上昇などが必要となる。しかし、これに伴って高速ガス流が衝突する基材表面近傍に弧状衝撃波面(Bow Shock)が形成されるため、粒径の小さな粒子が基材に到達する前に撥ね返されることによって、粒子堆積効率が低下するなどの問題点があった。また、HVOF(High Velocity Oxygen Fuel Spraying)やHVAF(High Velocity Aero Fuel Spraying)と呼ばれる高速溶射法においては、可燃性ガスを爆発的に燃焼させてノズルから噴出するため、同様に弧状衝撃波面が形成される問題があった。 However, increasing the particle velocity is indispensable for flattening and depositing solid-state powder material at the time of collision with the substrate, so it is necessary to increase the gas pressure to increase the gas velocity for conveying particles. It becomes. However, since an arc-shaped shock wave front (Bow Shock) is formed in the vicinity of the substrate surface where the high-speed gas flow collides with this, the particles having a small particle size are repelled before reaching the substrate. There were problems such as a decrease in deposition efficiency. In high-speed thermal spraying called HVOF (High Velocity Oxygen Fuel Spraying) or HVAF (High Velocity Aero Fuel Spraying), a flammable gas is explosively burned and ejected from the nozzle. There was a problem.

ここで、上記の弧状衝撃波面とは、高速のガス流が基材に衝突した際に基材表面近傍に形成される高圧領域のことであって、基材表面に衝突したガス流が表面で撥ね返された反流や基材表面に沿う流れとなって複雑に相互干渉する結果生じるものである。こうした高圧領域が形成されると、比較的小さな粒子は慣性力が弱いため高圧領域を通過することができずに撥ね返されたり軌道が大きくそれることによって堆積歩留りが低下するという問題があった。
特開2003−073855号公報 特開2005−095886号公報
Here, the arc-shaped shock wave front is a high-pressure region formed near the substrate surface when a high-speed gas flow collides with the substrate, and the gas flow colliding with the substrate surface is the surface. This occurs as a result of repelled countercurrent and a flow along the surface of the base material and complex interference with each other. When such a high-pressure region is formed, the relatively small particles have a weak inertial force, so that they cannot pass through the high-pressure region and are repelled or have a large trajectory, resulting in a decrease in deposition yield. .
JP 2003-073855 A JP 2005-095886 A

従来、弧状衝撃波面による影響を軽減する対策としては、例えばコールドスプレー法やエアロゾルデポジション法などのように粉末粒子を固相状態のまま基材に衝突させる成膜法においては、ガス種としてヘリウムを用いることが効果的とされてきた。ヘリウムは極めて軽いガスであることから、弧状衝撃波面が形成されにくく有利であるが、反面高価であって産業的に有効な手段ではなかった。一方、HVOFやHVAFと呼ばれる高速溶射法においては、可燃性ガスを爆発的に燃焼させて粉末を溶融または半溶融状態として基材表面に吹付けるため、ヘリウムのような軽いガスを用いることが原理的にできず弧状衝撃波面に対する有効な対策ができなかった。また、一般に粒子堆積成膜法においては、粉末粒子を高い歩留りで基材に堆積することが難しく、コスト低減の障害となっていた。 Conventionally, as a countermeasure for reducing the influence of the arc-shaped shock wave front, for example, in a film forming method in which powder particles collide with a substrate in a solid state, such as a cold spray method or an aerosol deposition method, helium is used as a gas species. It has been considered effective to use. Since helium is an extremely light gas, it is advantageous in that an arc-shaped shock wave front is hardly formed, but on the other hand, it is expensive and not an industrially effective means. On the other hand, in the high-speed spraying method called HVOF or HVAF, a flammable gas is explosively burned to spray the powder on the substrate surface in a molten or semi-molten state. Therefore, effective countermeasures for the arc-shaped shock wave front could not be made. In general, in the particle deposition film forming method, it is difficult to deposit powder particles on a substrate with a high yield, which has been an obstacle to cost reduction.

本発明の目的は、使用するガスの種類に拘わらず弧状衝撃波面による影響を低減し、各種粒子堆積成膜法に対して適用可能な新規なノズルおよびそれを用いた皮膜の製造方法ならびに成膜部材を提供することによって、上記の問題の解決方法を提供するものである。 An object of the present invention is to reduce the influence of an arc-shaped shock wave front regardless of the type of gas used, a novel nozzle applicable to various particle deposition film forming methods, a film manufacturing method using the same, and film formation By providing a member, a solution to the above problem is provided.

前記課題を解決するためになされた第1の発明は、高速ガスの流れに粉末粒子を混合して基材に噴射することによって皮膜を形成するための成膜用ノズルに関して、ノズル先端部近傍にガス流の一部を放出するための開口部を設けたことを特徴とするものであり、この開口部からガス流の一部を放出させることにより、ガス流の速度を低下させることなく、基材表面に衝突するガス流量を減少させ、その結果として基材表面に形成される弧状衝撃波面の圧力を低下させることを可能にしたものである。本発明者らは、ノズル先端部近傍において粉末粒子はガス流によって十分加速されているため慣性力によってそのまま直進し、ガス流の一部のみが開口部から放出されることを見出して本発明を完成したものである。本発明によって弧状衝撃波面の影響を大幅に低減することが可能になったが、ノズル形状に関してこのような先行技術は無く、本発明者らが見出した新規な構造である。なお、成膜用ノズルの全体構造としては、一般にラバルノズルと呼ばれている超音速が得られる構造をはじめとして各種構造のノズルを用いることができる。こうした各種既存ノズルの構造は、基本的に流体の導入部である先細円錐状または角錐状の部分があって先端部は細く絞られてのど部を形成し、のど部を通過する時に流体が急激に加速されるが、のど部から先の構造についてはストレート、末広がり、末広がり部に続いてストレートなど各種の形状がある。のど部から先はガス流の流れを整えながら粉末粒子を均一に加速するため、数10〜300mm程度の長さが用いられている。従って、ノズル先端部近傍では、粉末粒子が十分加速されているため、ガス流の一部だけを放出するための開口部を設けることができる。第1の発明におけるノズル端面近傍とは、先端部端面から100mm以内、さらに好ましくは50mm以内であって、のど部から先の形状、寸法に応じて適宜決定すれば良い。 A first invention made to solve the above-mentioned problems relates to a film forming nozzle for forming a film by mixing powder particles in a flow of a high-speed gas and injecting the mixture onto a substrate, in the vicinity of the nozzle tip. An opening for discharging a part of the gas flow is provided, and by releasing a part of the gas flow from the opening, the base of the gas flow is not reduced. As a result, it is possible to reduce the flow rate of the gas impinging on the surface of the material and to reduce the pressure of the arc-shaped shock wave front formed on the surface of the base material. The present inventors have found that the powder particles are sufficiently accelerated by the gas flow in the vicinity of the nozzle tip, and thus advance straight as it is due to the inertial force, and only a part of the gas flow is discharged from the opening. It has been completed. Although the present invention has made it possible to significantly reduce the influence of the arc-shaped shock wavefront, there is no such prior art regarding the nozzle shape, which is a novel structure found by the present inventors. In addition, as a whole structure of the film forming nozzle, nozzles having various structures including a structure capable of obtaining a supersonic speed generally called a Laval nozzle can be used. These existing nozzle structures basically have a tapered conical or pyramidal portion that is a fluid introduction part, and the tip part is narrowed to form a throat part. When the fluid passes through the throat part, the fluid suddenly changes. However, the structure beyond the throat has various shapes such as straight, divergent, and straight following the divergent part. In order to accelerate the powder particles uniformly while adjusting the flow of the gas flow from the throat, a length of about several tens to 300 mm is used. Accordingly, since the powder particles are sufficiently accelerated in the vicinity of the nozzle tip, an opening for discharging only a part of the gas flow can be provided. In the first invention, the vicinity of the nozzle end surface is within 100 mm, more preferably within 50 mm from the end surface of the tip, and may be appropriately determined according to the shape and dimensions of the tip from the throat.

また、前記第2の発明は、ガス流の一部を放出するための開口部が、一箇所または複数箇所の穴もしくはスリット形状であることを特徴とするものである。ここで、穴もしくはスリットの数、大きさおよび形状は特に限定されるものではなく、穴とスリットの組み合わせなど種々の構造とすることができる。なお、スリットは略長方形の開口部であっても、ノズル先端部から切り込みを形成した形の開口部であっても良い。 The second invention is characterized in that the opening for discharging a part of the gas flow is in the shape of one or a plurality of holes or slits. Here, the number, size, and shape of the holes or slits are not particularly limited, and various structures such as combinations of holes and slits can be used. The slit may be a substantially rectangular opening or may be an opening formed by cutting from the nozzle tip.

また、前記第3の発明は、開口部の総面積がノズル出口断面積の20%以上であることを特徴とするものである。開口部の総面積がノズル出口断面積の20%に満たない場合には、放出されるガス量が少なく弧状衝撃波面の影響を低減する効果が乏しいため20%以上とした。なお、開口部の総面積をノズル出口断面積の10倍(1000%)程度まで拡大した場合であっても弧状衝撃波面の影響を低減する効果が認められたが、開口部を形成する角度(ノズル中心軸に対する角度)や端面アールの大きさなどによって効果が変動するため、ガスの放出量が過大にならないように適宜調整すれば良い。 Further, the third invention is characterized in that the total area of the openings is 20% or more of the nozzle outlet cross-sectional area. When the total area of the openings is less than 20% of the nozzle outlet cross-sectional area, the amount of gas released is small, and the effect of reducing the influence of the arc-shaped shock wave front is insufficient, so the ratio is set to 20% or more. Although the effect of reducing the influence of the arc-shaped shock wave front was recognized even when the total area of the opening was increased to about 10 times (1000%) of the cross-sectional area of the nozzle outlet, the angle for forming the opening ( Since the effect varies depending on the angle with respect to the nozzle center axis), the size of the end face radius, and the like, adjustment may be made as appropriate so that the amount of released gas is not excessive.

また、前記第4の発明は、第1〜3の発明における成膜用ノズルを用いて、ガス流と共に成膜材料の粉末粒子をノズルから噴出し、基材表面に成膜材料を堆積させて成膜することを特徴とする皮膜の製造方法である。 In the fourth aspect of the invention, the film-forming nozzle according to any one of the first to third aspects is used to eject powder particles of the film-forming material from the nozzle together with the gas flow to deposit the film-forming material on the surface of the substrate. A film manufacturing method characterized by forming a film.

また、前記第5の発明は、第4の発明における皮膜の製造方法が、コールドスプレー法、エアロゾルデポジション法、ウォームスプレー法など粉末粒子を固相状態で基材に衝突させて堆積させる成膜法であることを特徴とする皮膜の製造方法である。粉末粒子を固相状態で基材に衝突させて堆積するためには、概略200m/s以上、さらに望ましくは音速以上のガス流速度が必要になることから弧状衝撃波面の影響が顕著であって、本発明による効果が大きい。 In the fifth invention, the method for producing a film according to the fourth invention is a film forming method in which powder particles such as a cold spray method, an aerosol deposition method and a warm spray method are deposited by colliding with a substrate in a solid state. It is a manufacturing method of the membrane | film | coat characterized by being a method. In order to deposit powder particles by colliding with a substrate in a solid state, a gas flow velocity of approximately 200 m / s or more, and more desirably a sound velocity or more is required. Therefore, the influence of the arc-shaped shock wave front is remarkable. The effect of the present invention is great.

また、前記第6の発明は、第4の発明における皮膜の製造方法が、HVOF法、HVAF法、プラズマ溶射法など粉末粒子を溶融または半溶融状態で基材に衝突させて堆積させる成膜法であることを特徴とする皮膜の製造方法である。粉末粒子を溶融または半溶融状態で基材に衝突させて堆積させる溶射法においても、気孔率を低減して緻密な皮膜を形成するためにはガス流速度を可能な限り増大する必要があることから弧状衝撃波面の影響が現れるため、本発明による効果が得られる。 In the sixth invention, the film manufacturing method according to the fourth invention is a film forming method in which powder particles are deposited by colliding with a substrate in a molten or semi-molten state, such as HVOF method, HVAF method, plasma spraying method, etc. It is the manufacturing method of the membrane | film | coat characterized by these. Even in the thermal spraying method in which powder particles are deposited by colliding with a substrate in a molten or semi-molten state, it is necessary to increase the gas flow rate as much as possible in order to reduce the porosity and form a dense film. Therefore, the effect of the present invention can be obtained.

また、前記第7の発明は、第4〜6の発明における粉末粒子の平均粒径が1〜50μmであることを特徴とする皮膜の製造方法である。粒子径が小さくなるほど弧状衝撃波面の影響を直接受けるため本発明は効果的であるが、平均粒径が1μmに満たない粒子径では凝集や酸化などの問題から粉末としての取扱いが困難であり、50μmを越える場合には粒子の慣性力によって弧状衝撃波面を突破して基材に到達することが可能なので、平均粒径が1〜50μmの範囲とした。 The seventh invention is a method for producing a film, wherein the average particle diameter of the powder particles in the fourth to sixth inventions is 1 to 50 μm. The present invention is effective because it is directly affected by the arc-shaped shock wave front as the particle size becomes smaller, but it is difficult to handle as a powder due to problems such as aggregation and oxidation when the average particle size is less than 1 μm, When it exceeds 50 μm, it is possible to reach the substrate by breaking through the arc-shaped shock wave front by the inertial force of the particles, so the average particle size is set in the range of 1 to 50 μm.

また、前記第8の発明は、第5または7の発明における成膜材料が銅、アルミニウム、銀、金、ニッケルから選択されることを特徴とする皮膜の製造方法である。 The eighth invention is a method for producing a film, characterized in that the film forming material in the fifth or seventh invention is selected from copper, aluminum, silver, gold, and nickel.

また、前記第9の発明は、第4〜8の発明を用いて皮膜を形成した部材である。 The ninth invention is a member in which a film is formed by using the fourth to eighth inventions.

なお、本発明で用いるガス種は特に限定しないが、例えば圧縮空気、窒素、酸素、アルゴン、ヘリウムなどを用いることができる。また、本発明では粉末の投入は粉末供給器およびキャリアガスを用いてノズル内部に供給するが、この時の粉末の供給速度は均一であることが好ましい。また、本発明においては各種成膜材料や基材を選択することが可能であり、各種金属、セラミックス、超硬合金などのサーメット、ガラス、有機化合物などの皮膜形成に利用することができる。 The gas species used in the present invention is not particularly limited, and for example, compressed air, nitrogen, oxygen, argon, helium, or the like can be used. In the present invention, the powder is fed into the nozzle using a powder feeder and a carrier gas. At this time, the powder feed rate is preferably uniform. In the present invention, various film forming materials and base materials can be selected, and the film can be used for film formation of various metals, ceramics, cermets such as cemented carbide, glass, and organic compounds.

本発明の成膜用ノズルは、ノズルにガス流の一部を放出するための開口部を設ける新規な構造によって、顕著な粒子堆積効率改善効果を得ることができる。また、弧状衝撃波面による影響軽減により、粒子堆積効率の改善のみならず、より微細な粒径の粉末も堆積可能となる。これらに伴い、作製される皮膜部材の基材密着強度改善効果も得られる。
本発明の皮膜製造方法は、この新規な構造の成膜用ノズルを用いることで可能になるため、現状の製造工程の変更が必要なく、簡便に実施可能である。
The film-forming nozzle of the present invention can obtain a remarkable particle deposition efficiency improvement effect by a novel structure in which an opening for discharging a part of the gas flow is provided in the nozzle. Further, by reducing the influence of the arc-shaped shock wave front, not only the particle deposition efficiency is improved, but also finer powder particles can be deposited. In connection with these, the base-material adhesion | attachment strength improvement effect of the membrane | film | coat member produced is also acquired.
Since the film manufacturing method of the present invention is made possible by using the film-forming nozzle having this novel structure, it is not necessary to change the current manufacturing process and can be easily carried out.

本発明の実施例を以下に説明するが、当該実施例のみに限定されるものではない。 Examples of the present invention will be described below. However, the present invention is not limited to the examples.

実施例1:図1に示すコールドスプレー装置を用い、図2に示すガス放出のための開口部を有する成膜用ノズルを用いて純銅粒子(平均粒子径5.8μm)のSS400基材に対する付着効率および皮膜の密着強度(試験方法はJIS
H 8661に準拠)を測定した。成膜条件として、ガス種は圧縮空気、ノズル入口部でのガス圧力3.0MPa、ノズル入口部でのガス温度300℃、ノズル出口部内径7mm、粉末供給量16.7g/minとした。
Example 1: Adhesion of pure copper particles (average particle diameter 5.8 μm) to an SS400 substrate using a film forming nozzle having an opening for gas release shown in FIG. 2 using the cold spray device shown in FIG. Efficiency and film adhesion strength (Test method is JIS
H 8661). As the film forming conditions, the gas type was compressed air, the gas pressure at the nozzle inlet was 3.0 MPa, the gas temperature at the nozzle inlet was 300 ° C., the nozzle outlet inner diameter was 7 mm, and the powder supply amount was 16.7 g / min.

図2の成膜用ノズルを用いたコールドスプレーにおいて粒子堆積効率を測定した結果、銅粉末の全供給質量に対する基材に付着した銅粒子の質量は60%であった。また、皮膜の密着強度を測定した結果、20MPaであった。さらに、図3の成膜用ノズルを用いたコールドスプレーにおいて粒子堆積効率を測定した結果、銅粉末の全供給質量に対する基材に付着した銅粒子の質量は56%であった。また、皮膜の密着強度を測定した結果、19MPaであった。 As a result of measuring the particle deposition efficiency in the cold spray using the film forming nozzle of FIG. 2, the mass of the copper particles attached to the substrate with respect to the total supply mass of the copper powder was 60%. Moreover, as a result of measuring the adhesive strength of the film, it was 20 MPa. Furthermore, as a result of measuring the particle deposition efficiency in the cold spray using the film-forming nozzle of FIG. 3, the mass of the copper particles attached to the substrate with respect to the total supply mass of the copper powder was 56%. Moreover, it was 19 MPa as a result of measuring the adhesive strength of a film | membrane.

比較例1:図2の成膜用ノズルにおけるガス放出のための開口部を設けていないノズルを用いた以外は前記実施例と同じ条件で粒子堆積効率および皮膜の密着強度を測定した。 Comparative Example 1: The particle deposition efficiency and the adhesion strength of the coating were measured under the same conditions as in the above example except that the nozzle for forming a gas in the film forming nozzle shown in FIG. 2 was not used.

ガス放出のための開口部を設けていないノズルを用いたコールドスプレーにおいて粒子堆積効率を測定した結果、銅粉末の全供給質量に対する基材に付着した銅粒子の質量は5%であった。また、皮膜の密着強度を測定した結果、16MPaであった。 As a result of measuring the particle deposition efficiency in a cold spray using a nozzle not provided with an opening for releasing gas, the mass of the copper particles attached to the substrate with respect to the total supply mass of the copper powder was 5%. Moreover, as a result of measuring the adhesion strength of the film, it was 16 MPa.

本発明におけるノズルを用いる成膜装置の一例であるコールドスプレー装置の概要を示す図である。It is a figure which shows the outline | summary of the cold spray apparatus which is an example of the film-forming apparatus using the nozzle in this invention. 平行部にガス放出用の穴を設けた本発明に係る成膜用ノズルの一例を示す断面図である。It is sectional drawing which shows an example of the film-forming nozzle which concerns on this invention which provided the hole for gas discharge | release in the parallel part. 平行部にガス放出用のスリットを設けた本発明に係る成膜用ノズルの一例を示す断面図である。It is sectional drawing which shows an example of the film-forming nozzle which concerns on this invention which provided the slit for gas discharge | release in the parallel part.

符号の説明Explanation of symbols

101:高圧ガス発生部
102:ガス加熱用ヒーター
103:ガス温度センサー
104:ガス圧力センサー
105:ノズル
106:成膜距離
107:皮膜
108:基材
109:基材保持部
110:粉末供給器
111:キャリアガス
112:ガス放出用の開口部(丸穴形状)
113:ガス放出用の開口部(スリット形状)
101: High pressure gas generation unit 102: Gas heater 103: Gas temperature sensor 104: Gas pressure sensor 105: Nozzle 106: Film formation distance 107: Film 108: Base material 109: Base material holding part 110: Powder feeder 111: Carrier gas 112: Gas discharge opening (round hole shape)
113: Gas discharge opening (slit shape)

Claims (9)

高速ガスの流れに粉末粒子を混合して基材に噴射することによって皮膜を形成するための噴射するノズル出口を設けた成膜用ノズルであって、ノズル先端部ノズル出口の近傍にガス流の一部を放出するための開口部を設けたことを特徴とする成膜用ノズル。   A film-forming nozzle provided with a nozzle outlet for spraying to form a film by mixing powder particles in a high-speed gas flow and spraying onto the substrate, and the gas flow near the nozzle outlet at the nozzle tip A nozzle for film formation, characterized in that an opening for discharging a part thereof is provided. ガス流の一部を放出するための開口部が、一箇所または複数箇所の穴もしくはスリット形状であることを特徴とする請求項1に記載の成膜用ノズル。   The film-forming nozzle according to claim 1, wherein the opening for discharging a part of the gas flow has a hole or slit shape at one or a plurality of positions. 開口部の総面積がノズル出口断面積の20%以上であることを特徴とする請求項1〜2のいずれかに記載の成膜用ノズル。 Film forming nozzle according to any one of claims 1 to 2 total area of the opening, characterized in that at least 20% of the nozzle exit cross-sectional area. 請求項1〜3の何れか1項に記載の成膜用ノズルを用い、ガス流と共に成膜材料の粉末粒子をノズルから噴出し、基材表面に成膜材料を堆積させて成膜することを特徴とする皮膜の製造方法。 Using the film-forming nozzle according to any one of claims 1 to 3, the powder particles of the film-forming material are ejected from the nozzle together with the gas flow, and the film-forming material is deposited on the substrate surface to form a film. A method for producing a film characterized by the following. 前記皮膜の製造方法が、コールドスプレー法、エアロゾルデポジション法、ウォームスプレー法の一つ以上の組み合わせから成り、粉末粒子を固相状態で基材に衝突させて堆積させる成膜法であることを特徴とする請求項4に記載した皮膜の製造方法。 The method for producing the film is a film forming method comprising a combination of one or more of a cold spray method, an aerosol deposition method, and a warm spray method, and depositing powder particles by colliding with a substrate in a solid state. The method for producing a film according to claim 4, wherein 前記皮膜の製造方法が、HVOF法、HVAF法、プラズマ溶射法の一つ以上の組み合わせから成り、粉末粒子を溶融または半溶融状態で基材に衝突させて堆積させる成膜法であることを特徴とする請求項4に記載した皮膜の製造方法。 The method for producing the coating film is a film forming method comprising a combination of one or more of an HVOF method, an HVAF method, and a plasma spraying method, in which powder particles are deposited by colliding with a substrate in a molten or semi-molten state. The method for producing a film according to claim 4. 前記粉末粒子の平均粒径が1〜50μmであることを特徴とする請求項4〜6のいずれかに記載した皮膜の製造方法。 The average particle diameter of the said powder particle is 1-50 micrometers, The manufacturing method of the membrane | film | coat in any one of Claims 4-6 characterized by the above-mentioned. 成膜材料が銅、アルミニウム、銀、金、ニッケルから選択されることを特徴とする請求項5または7に記載した皮膜の製造方法。 The film forming method according to claim 5 or 7, wherein the film forming material is selected from copper, aluminum, silver, gold, and nickel. 請求項4〜8のいずれかに記載の製造方法を用いて皮膜を形成した部材。
The member which formed the film | membrane using the manufacturing method in any one of Claims 4-8.
JP2007297336A 2007-11-15 2007-11-15 Nozzle for film formation, film formation method, and film formation member Expired - Fee Related JP5228149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297336A JP5228149B2 (en) 2007-11-15 2007-11-15 Nozzle for film formation, film formation method, and film formation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297336A JP5228149B2 (en) 2007-11-15 2007-11-15 Nozzle for film formation, film formation method, and film formation member

Publications (2)

Publication Number Publication Date
JP2009120913A JP2009120913A (en) 2009-06-04
JP5228149B2 true JP5228149B2 (en) 2013-07-03

Family

ID=40813381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297336A Expired - Fee Related JP5228149B2 (en) 2007-11-15 2007-11-15 Nozzle for film formation, film formation method, and film formation member

Country Status (1)

Country Link
JP (1) JP5228149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603104A (en) * 2017-05-12 2019-12-20 拓自达电线株式会社 Sprayer nozzle, film forming device and film forming method
CN111962056A (en) * 2020-08-09 2020-11-20 湖北超卓航空科技股份有限公司 Control method for cold spraying vertical slit cavity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426647B2 (en) * 2016-03-24 2018-11-21 タツタ電線株式会社 Spray nozzle, film forming apparatus, and method of forming film
CN110339963A (en) * 2019-08-06 2019-10-18 中微半导体设备(上海)股份有限公司 Nozzle, the spray gun comprising the nozzle and its working method
US20230099818A1 (en) * 2020-03-05 2023-03-30 Tatsuta Electric Wire & Cable Co., Ltd. Spray nozzle, nozzle tip part, and thermal spraying device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588703B1 (en) * 2000-02-08 2003-07-08 Lockheed Martin Corporation Passive aerodynamic sonic boom suppression for supersonic aircraft
CA2444917A1 (en) * 2002-10-18 2004-04-18 United Technologies Corporation Cold sprayed copper for rocket engine applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603104A (en) * 2017-05-12 2019-12-20 拓自达电线株式会社 Sprayer nozzle, film forming device and film forming method
CN110603104B (en) * 2017-05-12 2022-07-12 拓自达电线株式会社 Sprayer nozzle, film forming device and film forming method
CN111962056A (en) * 2020-08-09 2020-11-20 湖北超卓航空科技股份有限公司 Control method for cold spraying vertical slit cavity

Also Published As

Publication number Publication date
JP2009120913A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
KR100767251B1 (en) Replaceable throat insert for a kinetic spray nozzle
US6845929B2 (en) High efficiency nozzle for thermal spray of high quality, low oxide content coatings
JP5184347B2 (en) Gas dynamic coating apparatus and coating method
US20030190415A1 (en) Method of producing a coating using a kinetic spray process with large particles and nozzles for the same
JP5228149B2 (en) Nozzle for film formation, film formation method, and film formation member
US20030190414A1 (en) Low pressure powder injection method and system for a kinetic spray process
EP2390570B1 (en) Combustion cold spray
JP4897001B2 (en) Injection nozzle device
JP2006265732A (en) Applying bond coat to engine components using cold spray
JPH06501131A (en) High-speed arc spraying equipment and spraying method
JP2006161161A (en) Vacuum cold spray process
TWI323188B (en)
JP5736138B2 (en) Coating deposition apparatus and method
RU2003130773A (en) METHOD FOR COATING AND COLLECTOR OF ROCKET ENGINE WITH SUCH COATING
JP2006183135A (en) Cold gas dynamic spraying of high strength copper
US20040126499A1 (en) Process and device for cold gas spraying
WO2018042684A1 (en) Silver powder production method and silver powder production apparatus
US8651394B2 (en) Laval nozzle for thermal spraying and kinetic spraying
US20050214474A1 (en) Kinetic spray nozzle system design
US6872427B2 (en) Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
KR100776194B1 (en) Nozzle for cold spray and cold spray apparatus using the same
EP1508379B1 (en) Gas collimator for a kinetic powder spray nozzle
JP2006052449A (en) Cold spray coating film formation method
WO2007091102A1 (en) Kinetic spraying apparatus and method
KR101476726B1 (en) Method for coating amorphous thin film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees