JPH05218391A - Quantum well wire and device with quantum well wire - Google Patents

Quantum well wire and device with quantum well wire

Info

Publication number
JPH05218391A
JPH05218391A JP1744892A JP1744892A JPH05218391A JP H05218391 A JPH05218391 A JP H05218391A JP 1744892 A JP1744892 A JP 1744892A JP 1744892 A JP1744892 A JP 1744892A JP H05218391 A JPH05218391 A JP H05218391A
Authority
JP
Japan
Prior art keywords
hill
substrate
dislocation
quantum well
quantum wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1744892A
Other languages
Japanese (ja)
Inventor
Taku Oshima
卓 大嶋
Akio Nishida
彰男 西田
Hidekazu Murakami
英一 村上
Kiyokazu Nakagawa
清和 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1744892A priority Critical patent/JPH05218391A/en
Publication of JPH05218391A publication Critical patent/JPH05218391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To form a quantum well wire and a device including the quantum well wire easily without using an advanced fine-pattern manufacturing method or a process at an ultra-low temperature, by utilizing misfitted dislocation that is generated by a mismatch in lattices at a hetero-interface. CONSTITUTION:The substrate 10 is made of monocrystal (100) GaAs, and the surface of the substrate 10 is partly removed so that a rectangular hill with a short side of 0.5 to 5mum and a long side twice as large as the short side. After the surface of the hill is cleaned in an ultra-high vacuum, a molecular beam made of Ga and P is cast to the hill with the substrate at about 500 deg.C. Then, GaP monocrystal 11 of about 50nm in thickness is formed so that a plurality of misfit dislocations 12, which moderates stress caused by a difference in lattice constant at a GaP/GaAs hetero-interface, are spread over the wide area other than the hill. On the hill, since the hetero-interface area is limited, the dislocation density is decreased and only one line of misfit dislocation 12 is generated in the elongated direction of the rectangular hill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極めて高速、かつ、低消
費電力の電子素子とその形成に必要となる量子細線に係
り、特に簡便な工程で再現性良く形成でき、極低温を必
要とすることなしに形成できる電子素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extremely high speed and low power consumption electronic element and a quantum wire required for forming the same, which can be formed with reproducibility by a particularly simple process and requires extremely low temperature. The present invention relates to an electronic device that can be formed without a problem.

【0002】[0002]

【従来の技術】従来の量子細線は、例えば、ジャパニー
ズジャーナルオブアプライドフィジックス 第28巻
(1989年)2188〜2192ページ(Japanese J
ournalof Applied Physics,28,(1989),21
88−2192)において論じられている。この場合、
量子細線を得るために、先ずAlGaAs/GaAs構
造を作りその界面にシート状の2次元電子ガスを形成す
る。次にこの構造を細い線状に加工して、2次元電子ガ
スを細い線の中に閉じ込めて量子細線を得ている。すな
わち、図4に示すように、GaAs上にAlGaAsを
エピ成長させた基板の上に、レジスト層(PMMA)を
形成する。細い(直径2.4nm)電子線を用いて線を描
画し現像してレジスト層中に幅の細い溝を形成する。A
lを蒸着し、レジスト上のAlをリフトオフ法によって
取り除く。残ったAlの細線状のパターンをマスクとし
て、イオンビームエッチングを行いAlGaAs/Ga
As構造を幅の狭いメサ状に残す。以上の工程によって
細線状の2次元電子ガスを形成し、温度を1.4K 程度
にして量子細線を得ていた。
2. Description of the Related Art Conventional quantum wires are described, for example, in Japanese Journal of Applied Physics, Vol. 28 (1989), pages 2188-2192 (Japanese J).
ournalof Applied Physics, 28, (1989), 21
88-2192). in this case,
In order to obtain a quantum wire, first, an AlGaAs / GaAs structure is formed and a sheet-shaped two-dimensional electron gas is formed at the interface. Next, this structure is processed into a thin line, and the two-dimensional electron gas is confined in the thin line to obtain a quantum thin line. That is, as shown in FIG. 4, a resist layer (PMMA) is formed on a substrate in which AlGaAs is epitaxially grown on GaAs. A line is drawn using a thin electron beam (2.4 nm in diameter) and developed to form a narrow groove in the resist layer. A
1 is vapor-deposited, and Al on the resist is removed by the lift-off method. Ion beam etching is performed using the remaining Al thin line pattern as a mask to form AlGaAs / Ga.
The As structure is left in the shape of a narrow mesa. The two-dimensional electron gas in the form of a thin wire was formed by the above steps, and the quantum wire was obtained at a temperature of about 1.4K.

【0003】[0003]

【発明が解決しようとする課題】量子細線を形成するた
めに従来技術では、薄膜を形成し、さらに膜の横方向の
電子の動きを制限するために高度な微細加工技術を用い
ていた。このため再現性量産性の点で悪いばかりでな
く、微細加工には限界があるために極めて低温にしなけ
れば量子細線としての効果を発揮しなかった。
In the prior art for forming quantum wires, a thin film was formed and, in addition, sophisticated microfabrication technology was used to limit the movement of electrons in the lateral direction of the film. For this reason, not only the reproducibility and mass productivity are poor, but also the effect as a quantum wire cannot be exhibited unless the temperature is extremely low because there is a limit to the fine processing.

【0004】[0004]

【課題を解決するための手段】本発明では、量子細線を
形成するための微細加工を不用とするために、ヘテロ界
面の格子不整合によるミスフィット転位を利用する。す
なわち、ヘテロ界面の幅を格子不整合に応じて1μm程
度から10μm程度の幅に制限してミスフィット転位の
本数を制御し、既ミスフィット転位を主な電気伝導領域
とすることによって、高度な微細加工法を用いることな
しに量子細線やこれを用いた素子を得るものである。
In the present invention, in order to eliminate the need for fine processing for forming quantum wires, misfit dislocations due to lattice mismatch at the hetero interface are utilized. That is, the number of misfit dislocations is controlled by limiting the width of the hetero interface to a width of about 1 μm to about 10 μm according to the lattice mismatch, and the already misfit dislocations are used as a main electric conduction region, so A quantum wire or an element using the same is obtained without using a fine processing method.

【0005】[0005]

【作用】格子定数の異なる2種の共有結合性の強い半導
体や絶縁体を接合すると、そのヘテロ界面にミスフィッ
ト転位が発生し易くなる。通常は特定の結晶方位を持っ
た転位線が界面に多数できるが、接合する領域を狭い範
囲に限定すると転位発生源の減少と応力緩和効果によっ
てその数を1本ないし数本に制御することができる。一
方、ミスフィット転位付近の電子状態に着目すると、不
対電子対が転位線に沿って形成され図1の(c)に示さ
れるように両材料の禁制帯14及び13の内部にエネル
ギ順位15が形成される。この準位内の電子は、転位線
の方向のみ連続的な運動が許され、一方転位線に垂直な
方向の運動は制限されてとびとびのエネルギ値のみ許さ
れるという特徴を持つ。温度や電位の選択により既ヘテ
ロ界面に電子や正孔が蓄積されない条件を選べば、ミス
フィット転位に沿ったエネルギ順位15を主な電気伝導
手段とすることが可能である。この二つの作用を組み合
わせることによって、荷電粒子の運動は膜厚方向と転位
線に垂直な方向は制限され、転位線の方向のみに許され
ると言ういわゆる量子細線が得られる。
When two kinds of strongly covalently bonded semiconductors or insulators having different lattice constants are joined, misfit dislocations are likely to occur at their hetero interfaces. Usually, many dislocation lines having a specific crystal orientation can be formed at the interface, but if the joining region is limited to a narrow range, the number of dislocation lines can be controlled to one or several due to the reduction of dislocation generation sources and the stress relaxation effect. it can. On the other hand, focusing on the electronic state near the misfit dislocation, an unpaired electron pair is formed along the dislocation line, and as shown in FIG. Is formed. The electrons in this level are characterized in that they are allowed to move continuously only in the direction of the dislocation lines, while the movement in the direction perpendicular to the dislocation lines is restricted and only discrete energy values are allowed. If the condition that electrons and holes are not accumulated in the already existing hetero interface is selected by selecting the temperature and the potential, the energy rank 15 along the misfit dislocation can be used as the main electric conduction means. By combining these two actions, a so-called quantum wire is obtained in which the movement of charged particles is restricted in the film thickness direction and the direction perpendicular to the dislocation line, and is allowed only in the direction of the dislocation line.

【0006】この方法によって得られる細線の幅は、原
理的に原子間隔のオーダと極めて狭いために、液体ヘリ
ウム温度以下などの極低温にしなくとも量子細線となる
という利点がある。さらに、細線の寸法と電子状態は材
料の結晶構造で決めるために、極めて再現性良く形成さ
れるという利点がある。
Since the width of the thin wire obtained by this method is theoretically extremely narrow on the order of the atomic spacing, there is an advantage that it becomes a quantum thin wire even if it is not brought to an extremely low temperature such as below the liquid helium temperature. Furthermore, since the dimensions and electronic states of the thin wires are determined by the crystal structure of the material, there is an advantage that they can be formed with extremely good reproducibility.

【0007】[0007]

【実施例】<実施例1>図1に本発明の実施例の1つを
示す。基板10として単結晶GaAsの(100)面を
用い、その表面をエッチングによって部分的に取り除
き、幅2μm,長さ10μmの長方形の丘を形成する。
この基板を超高真空中に入れ、表面清浄化を行い、基板
温度を500℃に保って、GaとPの分子線を照射し、
厚さ50nmのGaP単結晶11を形成する。この結
果、丘以外の広い領域には全面にわたってGaP/Ga
Asヘテロ界面に格子定数差による応力を緩和するため
のミスフィット転位12が多数発生する。一方、丘の上
にはヘテロ界面の領域を制限したことにより、転位密度
が減少し、長方形の長手方向に1本のみのミスフィット
転位12が発生する。
EXAMPLE 1 FIG. 1 shows one example of the present invention. A (100) plane of single crystal GaAs is used as the substrate 10, and the surface is partially removed by etching to form a rectangular hill having a width of 2 μm and a length of 10 μm.
This substrate is placed in an ultrahigh vacuum to clean the surface, the substrate temperature is kept at 500 ° C., and Ga and P molecular beams are irradiated.
A GaP single crystal 11 having a thickness of 50 nm is formed. As a result, GaP / Ga is spread over a wide area other than the hill.
A large number of misfit dislocations 12 for relaxing the stress due to the difference in lattice constant are generated at the As hetero interface. On the other hand, by limiting the area of the hetero interface on the hill, the dislocation density decreases, and only one misfit dislocation 12 is generated in the longitudinal direction of the rectangle.

【0008】GaP膜とGaAs基板の不純物濃度を低
くすることによって、液体窒素温度程度でも、ミスフィ
ット転位に沿って形成されるエネルギ準位15による電
気伝導が主体となり、量子細線が得られる。従って、本
実施例では、特殊な微細加工技術無しでも、1μm程度
の加工精度で再現性良く量子細線が得られ、しかも極低
温を必要としないという利点がある。
By reducing the impurity concentration of the GaP film and the GaAs substrate, the electric conduction due to the energy level 15 formed along the misfit dislocations becomes the main constituent even at the temperature of liquid nitrogen, and the quantum wire can be obtained. Therefore, the present embodiment has an advantage that a quantum wire can be obtained with a reproducibility of about 1 μm with good reproducibility without using a special fine processing technique, and an extremely low temperature is not required.

【0009】なお、ここでは、材料の例としてGaAs
とGaPを用いたが、単結晶で禁制帯内にフェルミ準位
を持ち、かつ格子定数差によりミスフィット転位を発生
する材料であれば、同様の効果がある。また、ここでは
ミスフィット転位の数を制御するために基板上に形成し
た長方形の丘を用いたが、それ以外にも、例えば、基板
上に非晶質高抵抗薄膜を形成しこの膜に長方形の穴をあ
けてその中に結晶成長しても、基板上に結晶成長する領
域を制限することになるため、同様の効果がある。ま
た、ここではミスフィット転位の数を1本としたが、長
方形の丘の短辺をより長く取り転位線を5本程度に増や
しても、特性のそろった量子細線が再現性良く得られる
ために1本の量子細線と同じ効果がある。
Here, GaAs is used as an example of the material.
Although GaP and GaP were used, the same effect can be obtained as long as the material is a single crystal and has a Fermi level in the forbidden band and generates misfit dislocations due to a difference in lattice constant. Although a rectangular hill formed on the substrate was used here to control the number of misfit dislocations, other than that, for example, an amorphous high resistance thin film is formed on the substrate and a rectangular hill is formed on this film. Even if a hole is formed and a crystal grows in the hole, the region where the crystal grows on the substrate is limited, so that the same effect is obtained. Although the number of misfit dislocations is set to one here, even if the shorter side of the rectangular hill is made longer and the number of dislocation lines is increased to about 5, a quantum wire with uniform characteristics can be obtained with good reproducibility. Has the same effect as one quantum wire.

【0010】<実施例2>図2に本発明の他実施例の1
つを示す。実施例1で示した量子細線20を用い、この
両端に、Siイオン打ち込みと活性化アニールを行い、
電流注入取り出し手段となるソース,ドレイン用の高濃
度不純物領域21を形成する。この上に、絶縁膜25を
形成し、ソース,ドレイン領域のみエッチングによって
取り除く。次にリフトオフ法を用いて、Au電極を加工
し、ソース22,ドレイン23,ゲート24電極を形成
してできあがる。
<Second Embodiment> FIG. 2 shows a first embodiment of another embodiment of the present invention.
Shows one. Using the quantum wire 20 shown in Example 1, Si ion implantation and activation annealing are performed on both ends of the quantum wire 20.
A high-concentration impurity region 21 for a source and a drain which serves as a current injection / extraction means is formed. An insulating film 25 is formed on this, and only the source and drain regions are removed by etching. Then, the lift-off method is used to process the Au electrode to form the source 22, drain 23 and gate 24 electrodes.

【0011】ソース−ドレイン間に一定の電圧をかけ、
ゲート電極に与える電圧を変えて行くと、図2の(b)
に示されるように、ドレイン電流が振動する。これは、
ゲート電極直下の部分では、ミスフィット転位によると
びとびのエネルギ準位とフェルミ準位との相対電位がゲ
ート電圧によって変化し、エネルギ準位とフェルミ準位
が一致する場合にのみ、大きな電流の増大が見られるた
めである。
A constant voltage is applied between the source and drain,
When the voltage applied to the gate electrode is changed, (b) in FIG.
The drain current oscillates as shown in FIG. this is,
In the portion directly under the gate electrode, the relative potential between the discrete energy level and the Fermi level due to the misfit dislocation changes with the gate voltage, and a large current increase occurs only when the energy level and the Fermi level match. Because it can be seen.

【0012】この結果、大きな増幅率を持つ領域と、負
性抵抗の領域を複数持った素子が得られる。この素子
は、量子細線という、極めて小さなエネルギで電気的性
質が変る材料を用いているために、極めて低消費電力で
かつ極めて高速に動作するという利点がある。また、電
流の山と谷が複数個現れるために、多値論理回路にも応
用可能であるという利点がある。
As a result, an element having a region having a large amplification factor and a plurality of regions having negative resistance can be obtained. Since this element uses a quantum wire, which is a material whose electrical properties change with extremely small energy, it has the advantage of extremely low power consumption and extremely high speed operation. Further, since a plurality of peaks and troughs of current appear, there is an advantage that it can be applied to a multi-valued logic circuit.

【0013】<実施例3>図3を用いて本発明の実施例
3を説明する。基板31として(100)方位の表面を
持つSi単結晶を用いる。基板を熱酸化して表面にSi
2 膜32を形成する。この膜の一部を幅2.5 から3
μm長さ5μm以上の長方形状にエッチングし、Si基
板31を露出させる(図3の(a))。この表面を超高
真空中にいれ、表面清浄化した後、SiとGeを4対1
の割合で蒸発させて厚さ150nmの膜を形成する(図
3の(b))。この結果、Si上にSiGe固溶体の単
結晶33が成長し基板との界面には長方形の長手方向に
沿って1本の転位線が発生する。一方SiO2 膜上には
多結晶膜34が形成される。この多結晶膜をエッチング
して取り除き、長方形の単結晶SiGe膜33のみを残
す(図3の(c))。
<Third Embodiment> A third embodiment of the present invention will be described with reference to FIG. As the substrate 31, a Si single crystal having a (100) -oriented surface is used. Thermally oxidize the substrate to form Si on the surface.
The O 2 film 32 is formed. Width 2.5 to 3
The Si substrate 31 is exposed by etching into a rectangular shape having a length of 5 μm or more (FIG. 3A). This surface is put in an ultra-high vacuum to clean the surface, and Si and Ge are then added to 4: 1.
To form a film having a thickness of 150 nm (FIG. 3B). As a result, the single crystal 33 of the SiGe solid solution grows on Si, and one dislocation line is generated at the interface with the substrate along the longitudinal direction of the rectangle. On the other hand, a polycrystalline film 34 is formed on the SiO 2 film. This polycrystalline film is removed by etching, leaving only the rectangular single crystal SiGe film 33 (FIG. 3 (c)).

【0014】この後、CVDによってSiO2 膜32を
形成し、転位線の両端の部分のみエッチングによって取
り去る。この領域にPイオン打ち込みと活性化アニール
によって高濃度不純物領域35を形成する(図3の
(d))。最後に、Al電極を形成し、転位線両端の高
濃度不純物領域にソース37及びドレイン38電極を、
さらに両者の間でかつ転位線の上の領域にゲート電極3
6を得る(図3の(e))。
After that, a SiO 2 film 32 is formed by CVD, and only the ends of the dislocation lines are removed by etching. A high concentration impurity region 35 is formed in this region by P ion implantation and activation annealing ((d) of FIG. 3). Finally, an Al electrode is formed, and the source 37 and drain 38 electrodes are formed in the high-concentration impurity regions at both ends of the dislocation line.
Further, the gate electrode 3 is formed between the both and in the region above the dislocation line.
6 is obtained ((e) of FIG. 3).

【0015】この様にして得られた素子は、実施例2と
同様に極低温を必要とせず比較的高い温度で量子細線素
子として機能し、特殊な微細加工技術を用いることなし
に再現性良く得られるという利点を有する事のみなら
ず、通常のSi−LSI作成技術を用いて形成できるた
めに高集積化が可能であると言う利点がある。
The element thus obtained functions as a quantum wire element at a relatively high temperature without requiring an extremely low temperature as in Example 2, and has good reproducibility without using a special fine processing technique. Not only does it have the advantage that it can be obtained, but there is also the advantage that it can be highly integrated because it can be formed using ordinary Si-LSI fabrication techniques.

【0016】なお本実施例では4族元素の材料としてS
iとSi80%−Ge20%合金を用いたがこれ以外の
組成,組成比を用いても格子不整合に応じて結晶成長領
域の幅を選ぶことにより同様の効果が得られる。
In this embodiment, S is used as the material of the group 4 element.
Although i and Si80% -Ge20% alloy were used, the same effect can be obtained by using other compositions and composition ratios by selecting the width of the crystal growth region according to the lattice mismatch.

【0017】[0017]

【発明の効果】本発明によれば、特殊な微細加工技術無
しに再現性良く形成され、かつ極低温を必要としない量
子細線が得られるという利点がある。また、形成方法が
容易で、動作時に極低温を必要とせず極めて低消費電力
でかつ高速動作する量子細線素子が得られる。さらに、
形成方法が容易で、動作時に極低温を必要とせず極めて
低消費電力かつ高速動作する集積回路が得られる。
According to the present invention, there is an advantage that a quantum wire which can be formed with good reproducibility without a special microfabrication technique and which does not require cryogenic temperature can be obtained. In addition, a quantum wire device that is easy to form, does not require cryogenic temperature during operation, has extremely low power consumption, and operates at high speed can be obtained. further,
It is possible to obtain an integrated circuit which is easy to form, does not require cryogenic temperature during operation, and has extremely low power consumption and operates at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の構造で、それぞれ(a)断
面図,(b)平面図,(c)バンド説明図。
FIG. 1A is a cross-sectional view, FIG. 1B is a plan view, and FIG. 1C is a band explanatory view in the structure of Example 1 of the present invention.

【図2】本発明の実施例2の量子細線素子の(a)断面
構造図および(b)動作特性図。
FIG. 2A is a cross-sectional structural view and FIG. 2B is an operating characteristic view of a quantum wire device according to a second embodiment of the present invention.

【図3】本発明の実施例3の量子細線素子の作成工程を
示す平面図。
FIG. 3 is a plan view showing a manufacturing process of a quantum wire device according to a third embodiment of the present invention.

【図4】従来の量子細線の作成工程の断面図。FIG. 4 is a sectional view of a conventional quantum wire producing process.

【符号の説明】[Explanation of symbols]

10…GaAs(100)基板、11…GaP単結晶、
12…ミスフィット転位線、13…基板の禁制帯、14
…成長膜の禁制帯、15…ミスフィット転位に沿って形
成されるエネルギ準位。
10 ... GaAs (100) substrate, 11 ... GaP single crystal,
12 ... Misfit dislocation line, 13 ... Forbidden band of substrate, 14
... Forbidden band of growth film, 15 ... Energy level formed along misfit dislocations.

フロントページの続き (72)発明者 中川 清和 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Kiyokazu Nakagawa 1-280 Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数種の半導体あるいは絶縁体材料が接合
し、第一の材料と第二の材料との間に0.2% から5%
程度の格子不整合のある系に於て、第一の材料と第二の
材料とが接合する領域を、短辺が0.5μm から5μ
m、長辺がその2倍以上の長方形あるいはこれに類似の
細長い形状に制限した構造とすることによって、両材料
の界面に1ないし5本のミスフィット転位を持つこと
と、両材料の接合領域付近には不純物がドープされてい
ないかあるいは有っても外部からの電位によってフェル
ミ準位が両材料の禁制帯の内部に有ることを特徴とする
量子細線。
1. A plurality of types of semiconductor or insulator materials are bonded together, and the first material and the second material are 0.2% to 5%.
In a system with a degree of lattice mismatch, the region where the first material and the second material are joined has a short side of 0.5 μm to 5 μm.
m, the long side is limited to a rectangle having a length more than twice the length, or an elongated shape similar to this, so that 1 to 5 misfit dislocations are present at the interface between both materials, and the joining region of both materials A quantum wire characterized in that the Fermi level is inside the forbidden band of both materials depending on the potential from the outside even if impurities are not doped in the vicinity or there is it.
【請求項2】請求項1記載の量子細線を用い、一対の電
流注入取り出し手段を設け、さらに両者の間に量子細線
に電場を印加する制御電極を設けた素子。
2. An element using the quantum wire according to claim 1, wherein a pair of current injection / extraction means is provided, and a control electrode for applying an electric field to the quantum wire is provided therebetween.
【請求項3】請求項2において、材料としてSi又はG
e又は少なくとも2種のSi,Ge,C,Sn等の4属
元素から成る固溶体を用いた素子。
3. The material according to claim 2, wherein Si or G is used as a material.
An element using a solid solution composed of e or at least two kinds of Group 4 elements such as Si, Ge, C and Sn.
JP1744892A 1992-02-03 1992-02-03 Quantum well wire and device with quantum well wire Pending JPH05218391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1744892A JPH05218391A (en) 1992-02-03 1992-02-03 Quantum well wire and device with quantum well wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1744892A JPH05218391A (en) 1992-02-03 1992-02-03 Quantum well wire and device with quantum well wire

Publications (1)

Publication Number Publication Date
JPH05218391A true JPH05218391A (en) 1993-08-27

Family

ID=11944309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1744892A Pending JPH05218391A (en) 1992-02-03 1992-02-03 Quantum well wire and device with quantum well wire

Country Status (1)

Country Link
JP (1) JPH05218391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279843A (en) * 2004-03-29 2005-10-13 Univ Of Tokyo Crystal material including fine wires, method of producing it, and nanowire device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279843A (en) * 2004-03-29 2005-10-13 Univ Of Tokyo Crystal material including fine wires, method of producing it, and nanowire device using it

Similar Documents

Publication Publication Date Title
US6753593B1 (en) Quantum wire field-effect transistor and method of making the same
US5001534A (en) Heterojunction bipolar transistor
JPH0818029A (en) Resonance tunneling device and its preparation
JPH05251713A (en) Lateral resonance tunneling transistor
US5559343A (en) Semiconductor device with metallic precipitate and its manufacture
JPS6313355B2 (en)
JP3058345B2 (en) Semiconductor element
JPH04330790A (en) Electron transition effect device and its method of manufacturing
US5059545A (en) Three terminal tunneling device and method
US5448086A (en) Field effect transistor
Mensz et al. Real‐space transfer in three‐terminal InGaAs/InAlAs/InGaAs heterostructure devices
US6139483A (en) Method of forming lateral resonant tunneling devices
JPH0613411A (en) Field effect transistor and manufacture thereof
US6528370B2 (en) Semiconductor device and method of manufacturing the same
JPH07273310A (en) Resonance tunnelling fet and its preparation
JPH05218391A (en) Quantum well wire and device with quantum well wire
JP2558418B2 (en) Field effect element and method of manufacturing the same
JPH0337735B2 (en)
JPS59181069A (en) Semiconductor device
US6080996A (en) Unipolar three-terminal resonant-tunneling transistor
JP3616745B2 (en) Manufacturing method of semiconductor device
JP3484005B2 (en) Semiconductor device
JPH04277680A (en) Tunnel transistor and manufacture of the same
JP2803555B2 (en) Fabrication method of ultra-fine tunnel barrier
JP3020578B2 (en) Semiconductor device