JPH0521795A - Fabrication of thin-film transistor - Google Patents

Fabrication of thin-film transistor

Info

Publication number
JPH0521795A
JPH0521795A JP3168562A JP16856291A JPH0521795A JP H0521795 A JPH0521795 A JP H0521795A JP 3168562 A JP3168562 A JP 3168562A JP 16856291 A JP16856291 A JP 16856291A JP H0521795 A JPH0521795 A JP H0521795A
Authority
JP
Japan
Prior art keywords
mask
gate electrode
film
semiconductor layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3168562A
Other languages
Japanese (ja)
Inventor
Noriyuki Suzuki
範之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3168562A priority Critical patent/JPH0521795A/en
Publication of JPH0521795A publication Critical patent/JPH0521795A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To effect automatic alignment by using one mask which serves as both a mask for ion implantation and a mask for a second gate formation. CONSTITUTION:A resist is applied over a second conductive film 12. This film is then patterned to form a resist mask 13 for forming a second gate electrode. The resist mask 13 is patterned in a shape matched with a first gate electrode 8. Using the resist mask 13 as a mask, ions are implanted into an operating semiconductor layer 10 through a second conductive film 12 and a second gate dielectric film 11. The region below the mask 13 turns to a channel, and regions on both sides of the channel become a source region and a drain region, respectively. Using the resist mask 13 as a mask, the second conductive film 12 is etched to form a second gate electrode 14. Automatic alignment can be achieved by using the same mask 13 in the formation of both the channel and the second gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタの製造
方法に係り,特に動作半導体層を挟む2つのゲート電極
を有する薄膜トランジスタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor, and more particularly to a method of manufacturing a thin film transistor having two gate electrodes sandwiching an operating semiconductor layer.

【0002】抵抗負荷インバータ回路の配列されたSR
AMは,広く使用されている。図4は抵抗負荷インバー
タ回路を含むSRAMセルの回路図で,Rは負荷抵抗,
1 は駆動トランジスタ,T2 は転送トランジスタを表
す。
SR in which resistive load inverter circuits are arranged
AM is widely used. FIG. 4 is a circuit diagram of an SRAM cell including a resistance load inverter circuit, where R is a load resistance,
T 1 represents a driving transistor and T 2 represents a transfer transistor.

【0003】近年のLSIの高集積化に伴い,低消費電
力化のための低電圧動作及びセルの安定動作に対する要
求から,抵抗負荷に替えてTFT(薄膜トランジスタ)
負荷を導入することが検討されている。
With the recent high integration of LSIs, TFTs (thin film transistors) are used instead of resistive loads because of the demands for low voltage operation for low power consumption and stable operation of cells.
Introduction of load is being considered.

【0004】図5はTFT負荷インバータ回路を含むS
RAMセルの回路図で,2つのゲート電極を有するTF
Tは模式的に示している。TFTは低電圧駆動で大電流
をとるために動作半導体層を挟んで2つのゲート電極を
配置した構造とする。
FIG. 5 shows an S including a TFT load inverter circuit.
RAM circuit schematic, TF with two gate electrodes
T is shown schematically. The TFT has a structure in which two gate electrodes are arranged with an operating semiconductor layer sandwiched therebetween in order to take a large current by driving at a low voltage.

【0005】[0005]

【従来の技術】TFT負荷インバータ回路を含むSRA
Mセルを製造する従来例について,2つのゲート電極を
有するTFTの形成を主として説明する。インバータ回
路は対称であるから,1個のTFTと1個の駆動トラン
ジスタT1 を含む半分(図5の点線で囲まれた部分)の
形成の概略を説明する。
SRA including a TFT load inverter circuit
Regarding a conventional example of manufacturing an M cell, the formation of a TFT having two gate electrodes will be mainly described. Since the inverter circuit is symmetrical, the outline of formation of a half (a portion surrounded by a dotted line in FIG. 5) including one TFT and one driving transistor T 1 will be described.

【0006】図3(a) 〜(e) は従来例を示す工程順断面
図であり,以下これらの図を参照しながら説明する。 図3(a) 参照 Si基板1にLOCOS法により素子分離領域2を形成
する。素子領域に一般的な方法により,駆動トランジス
タを形成する。図中,4はゲート絶縁膜,5はゲート電
極,6はソース・ドレインを表す。
3 (a) to 3 (e) are process sectional views showing a conventional example, which will be described below with reference to these drawings. See FIG. 3A. The element isolation region 2 is formed on the Si substrate 1 by the LOCOS method. A drive transistor is formed in the element region by a general method. In the figure, 4 is a gate insulating film, 5 is a gate electrode, and 6 is a source / drain.

【0007】ゲート電極5を層間分離するため,SiO
2 膜7を成長する。SiO2 膜7にゲート電極5とコン
タクトする窓(図示せず)を開口した後,全面にポリS
i膜を成長し,それをパターニングしてTFTの第1の
ゲート電極8を形成する。
In order to separate the gate electrode 5 between layers, SiO
2 The film 7 is grown. After opening a window (not shown) for contacting the gate electrode 5 in the SiO 2 film 7, poly S is formed on the entire surface.
The i film is grown and patterned to form the first gate electrode 8 of the TFT.

【0008】図3(b) 参照 全面に第1のゲート絶縁膜としてSiO2 膜9を成長す
る。SiO2 膜9に駆動トランジスタのノードとコンタ
クトする窓を開口した後,全面にTFTのチャネルとな
るアモルファスSi膜を成長し,それをパターニングし
てTFTの動作半導体層10を形成する。
Referring to FIG. 3B, a SiO 2 film 9 is grown as a first gate insulating film on the entire surface. After opening a window in the SiO 2 film 9 that contacts the node of the drive transistor, an amorphous Si film which will be a channel of the TFT is grown on the entire surface and is patterned to form an operating semiconductor layer 10 of the TFT.

【0009】次に,動作半導体層10を覆うレジストを塗
布し,それをパターニングしてチャネル部を覆うレジス
トマスク13a を形成する。レジストマスク13a は第1の
ゲート電極8と重なる形状にパターニングする。レジス
トマスク13a をマスクにして,動作半導体層10にイオン
注入を行い,チャネルの両側のソース・ドレインを形成
する。
Next, a resist covering the operating semiconductor layer 10 is applied and patterned to form a resist mask 13a covering the channel portion. The resist mask 13a is patterned into a shape overlapping the first gate electrode 8. Ions are implanted into the operating semiconductor layer 10 using the resist mask 13a as a mask to form the source / drain on both sides of the channel.

【0010】図3(c) 参照 レジストマスク13a を除去した後,全面に第2のゲート
絶縁膜となるSiO2 膜11を成長する。SiO2 膜11に
駆動トランジスタのゲート電極5とコンタクトする窓
(図示せず)を開口した後,全面に第2の導電膜12とし
て,ポリSi膜12を成長する。
Referring to FIG. 3C, after removing the resist mask 13a, a SiO 2 film 11 serving as a second gate insulating film is grown on the entire surface. After opening a window (not shown) in the SiO 2 film 11 for contacting the gate electrode 5 of the drive transistor, a poly-Si film 12 is grown as a second conductive film 12 on the entire surface.

【0011】第2の導電膜12上にレジストを塗布し,そ
れをパターニングして第2のゲート電極を形成するため
のレジストマスク13b を形成する。レジストマスク13b
は第1のゲート電極8と重なる形状にパターニングす
る。
A resist is applied on the second conductive film 12, and the resist is patterned to form a resist mask 13b for forming a second gate electrode. Resist mask 13b
Is patterned into a shape overlapping the first gate electrode 8.

【0012】図3(d) 参照 レジストマスク13b をマスクにして第2の導電膜12をエ
ッチングし,第2のゲート電極14を形成する。
Referring to FIG. 3D, the second conductive film 12 is etched by using the resist mask 13b as a mask to form the second gate electrode 14.

【0013】図3(e) 参照 全面に絶縁膜15としてSiO2 膜15, 絶縁膜16としてP
SG膜16を順次成長する。駆動トランジスタのソース・
ドレイン領域に電極取り出し用の窓を開口し,Al配線
してソース・ドレイン電極17を形成する。
Referring to FIG. 3 (e), an SiO 2 film 15 as an insulating film 15 and a P as an insulating film 16 are formed on the entire surface.
The SG film 16 is sequentially grown. Source of drive transistor
A window for taking out an electrode is opened in the drain region and Al wiring is performed to form a source / drain electrode 17.

【0014】ところで,この従来法には次のような問題
がある。レジストマスク13a をマスクにして,動作半
導体層10にイオン注入を行う時,動作半導体層10が薄い
ため,イオンが下地に突き抜けてしまい,動作半導体層
10に注入されにくい。加速エネルギーを下げて動作半導
体層10内でとどめようとしても制御が難しく,注入電流
を多くとれないため長時間を要する。
By the way, this conventional method has the following problems. When the operating semiconductor layer 10 is ion-implanted using the resist mask 13a as a mask, the operating semiconductor layer 10 is thin, so that the ions penetrate into the base and the operating semiconductor layer
Hard to inject into 10. Even if an attempt is made to reduce the acceleration energy to keep it in the operating semiconductor layer 10, it is difficult to control, and it takes a long time because the injection current cannot be increased.

【0015】イオン注入後レジストマスク13a を剥離
するため,つぎに第2のゲート電極14を形成するための
レジストマスク13b を形成する時,イオン注入領域の確
認が困難となり,位置合わせの精度が上がらない。
Since the resist mask 13a is peeled off after the ion implantation, when the resist mask 13b for forming the second gate electrode 14 is formed next, it is difficult to confirm the ion implantation region and the alignment accuracy is improved. Absent.

【0016】[0016]

【発明が解決しようとする課題】本発明は,上記の問題
に鑑み,注入イオンが動作半導体層10を突き抜けるのを
抑制して精度よく動作半導体層10にイオン注入し,同時
にチャネル部と第2のゲート電極の位置あわせが簡単
で,しかも精度のよい方法を提供することを目的とす
る。
In view of the above problems, the present invention suppresses implanted ions from penetrating the operating semiconductor layer 10 and implants the operating semiconductor layer 10 with high accuracy, and at the same time, the channel portion and the second portion are formed. It is an object of the present invention to provide a method with which the position of the gate electrode can be easily adjusted and the accuracy is high.

【0017】[0017]

【課題を解決するための手段】図1(P1)〜(P4), (S1)〜
(S4)及び図2(P5)〜(P7), (S5)〜(S7)は,実施例を示す
工程順平面図と断面図(その1)及び(その2)であ
る。
[Means for Solving the Problems] FIG. 1 (P1) to (P4), (S1) to
(S4) and FIGS. 2 (P5) to (P7), (S5) to (S7) are a process sequence plan view and a cross-sectional view (No. 1) and (No. 2) showing an embodiment.

【0018】上記課題は,第1のゲート電極8と第1の
ゲート絶縁膜9と動作半導体層10と第2のゲート絶縁膜
11と第2のゲート電極14がこの順に積層された構造を有
する薄膜トランジスタの製造方法であって,表面が絶縁
物7である基体に第1の導電膜を形成し,それをパター
ニングして第1のゲート電極8を形成する工程と,該第
1のゲート電極8上に第1のゲート絶縁膜9を形成する
工程と,該第1のゲート絶縁膜9上に該第1のゲート電
極8上から両側に展延する動作半導体層10を形成する工
程と, 該動作半導体層10上に第2のゲート絶縁膜11及び
第2の導電膜12をこの順に形成する工程と, 該第2の導
電膜12上に該第1のゲート電極8と重なるマスク13を形
成する工程と,該マスク13をマスクにして該第2の導電
膜12及び該第2のゲート絶縁膜11を通して該動作半導体
層10にイオン注入を行った後,該マスク13マスクにして
該第2の導電膜12をエッチングし,第2のゲート電極14
を形成する工程を有する薄膜トランジスタの製造方法に
よって解決される。
The above problems are solved by the first gate electrode 8, the first gate insulating film 9, the operating semiconductor layer 10, and the second gate insulating film.
A method of manufacturing a thin film transistor having a structure in which 11 and a second gate electrode 14 are laminated in this order, in which a first conductive film is formed on a substrate whose surface is an insulator 7, and is patterned to form a first conductive film. The step of forming the gate electrode 8 of the above, the step of forming the first gate insulating film 9 on the first gate electrode 8, and the step of forming the first gate insulating film 9 on the first gate electrode 8. The step of forming the operating semiconductor layer 10 extending from the side to the both sides, the step of forming the second gate insulating film 11 and the second conductive film 12 on the operating semiconductor layer 10 in this order, and the step of forming the second conductive film. A step of forming a mask 13 on the film 12 so as to overlap with the first gate electrode 8; and the operation semiconductor layer 10 through the second conductive film 12 and the second gate insulating film 11 using the mask 13 as a mask. After ion implantation into the substrate, the second conductive film 12 is etched using the mask 13 as a mask. And, a second gate electrode 14
This is solved by a method for manufacturing a thin film transistor having a step of forming.

【0019】[0019]

【作用】本発明によれば,動作半導体層10へのイオン注
入は第2の導電膜12及び第2のゲート絶縁膜11を通して
行うので,たとえ動作半導体層10が薄くともイオン注入
条件の設定が容易となり,精度のよい注入を行うことが
できる。
According to the present invention, since ion implantation into the operating semiconductor layer 10 is performed through the second conductive film 12 and the second gate insulating film 11, the ion implantation conditions can be set even if the operating semiconductor layer 10 is thin. It becomes easy and accurate injection can be performed.

【0020】イオン注入のためのマスクと第2のゲート
電極形成のためのマスクを共用するから,位置合わせが
自動的に行われ,第2のゲート電極をチャネルに対して
精度よく形成することができる。
Since the mask for ion implantation and the mask for forming the second gate electrode are shared, the alignment is automatically performed and the second gate electrode can be accurately formed with respect to the channel. it can.

【0021】[0021]

【実施例】図1(P1)〜(P4), (S1)〜(S4)及び図2(P5)〜
(P7), (S5)〜(S7)は,図5の点線で囲まれた部分を形成
する実施例を示す工程順平面図と断面図(その1)及び
(その2)であり,以下,これらの図を参照しながら説
明する。
EXAMPLE FIG. 1 (P1)-(P4), (S1)-(S4) and FIG. 2 (P5)-
(P7), (S5) to (S7) are process order plan views and cross-sectional views (No. 1) and (No. 2) showing an embodiment forming a portion surrounded by a dotted line in FIG. Description will be given with reference to these figures.

【0022】P1〜P7は平面図であり,S1〜S7はA−A断
面図である。 図1(P1), (S1)参照 Si基板1にLOCOS法により素子領域3を区画する
厚さ5000Åの素子分離領域2を形成する。素子領域3に
厚さ 200Åのゲート絶縁膜4を形成する。
P1 to P7 are plan views, and S1 to S7 are sectional views taken along the line AA. 1 (P1), (S1). An element isolation region 2 having a thickness of 5000Å is formed on a Si substrate 1 by a LOCOS method to partition the element region 3. A gate insulating film 4 having a thickness of 200Å is formed in the element region 3.

【0023】図1(P2), (S2)参照 一般的な方法により,素子領域3にインバータ用の駆動
トランジスタを形成する。図中,5はゲート電極,6は
ソース・ドレインを表す。
Referring to FIGS. 1 (P2) and 1 (S2), a drive transistor for an inverter is formed in the element region 3 by a general method. In the figure, 5 is a gate electrode and 6 is a source / drain.

【0024】図1(P3), (S3)参照 ゲート電極5と層間分離するため,CVD法により厚さ
1000ÅのSiO2 膜7を成長する。SiO2 膜7にゲー
ト電極5とコンタクトする窓を開口した後,全面にCV
D法により第1の導電膜4として厚さ 500ÅのポリSi
膜を成長し,それをパターニングしてTFTの第1のゲ
ート電極8を形成する。TFTの第1のゲート電極8
は,駆動トランジスタのゲート電極5と接続する。
See FIGS. 1 (P3) and (S3). The thickness of the gate electrode 5 is separated by CVD in order to separate it from the gate electrode 5.
A 1000 Å SiO 2 film 7 is grown. After opening a window in the SiO 2 film 7 for contacting the gate electrode 5, CV is formed on the entire surface.
As the first conductive film 4 by the D method, poly-Si having a thickness of 500 Å
The film is grown and patterned to form the first gate electrode 8 of the TFT. First gate electrode 8 of TFT
Is connected to the gate electrode 5 of the drive transistor.

【0025】図1(P4), (S4)参照 全面にCVD法により第1のゲート絶縁膜として厚さ 3
00ÅのSiO2 膜9を成長する。SiO2 膜9に駆動ト
ランジスタのノードとコンタクトする窓を開口した後,
全面にCVD法によりTFTの動作層となる厚さ 400Å
のアモルファスSi膜を成長し,それをパターニングし
て動作半導体層10を形成する。
See FIGS. 1 (P4) and (S4). The thickness of the first gate insulating film 3 is formed on the entire surface by the CVD method.
A 00Å SiO 2 film 9 is grown. After opening a window in the SiO 2 film 9 that contacts the node of the drive transistor,
Thickness of 400 Å to be the operating layer of TFT by CVD method on the entire surface
The amorphous Si film is grown and patterned to form the operating semiconductor layer 10.

【0026】図2(P5), (S5)参照 全面にCVD法により第2のゲート絶縁膜として厚さ 3
00ÅのSiO2 膜11を成長する。SiO2 膜11に駆動ト
ランジスタのゲート電極5とコンタクトする窓を開口し
た後,全面にCVD法により第2の導電膜12として,厚
さ 500ÅのポリSi膜を成長する。
2 (P5), (S5) See FIG. 2 (P5), (S5).
A 00Å SiO 2 film 11 is grown. After opening a window for contacting the gate electrode 5 of the drive transistor in the SiO 2 film 11, a poly-Si film having a thickness of 500 Å is grown as a second conductive film 12 on the entire surface by the CVD method.

【0027】次に,第2の導電膜12上にレジストを塗布
し,それをパターニングして第2のゲート電極を形成す
るためのレジストマスク13を形成する。レジストマスク
13は第1のゲート電極8と重なる形状にパターニングす
る。
Next, a resist is applied on the second conductive film 12 and patterned to form a resist mask 13 for forming a second gate electrode. Resist mask
13 is patterned in a shape overlapping the first gate electrode 8.

【0028】レジストマスク13をマスクにして,第2の
導電膜12及び第2のゲート絶縁膜11を通して動作半導体
層10にイオン注入を行う。注入条件は,例えば,イオン
種BF+ ,加速エネルギー20keV,ドーズ量1×1014
cm-2である。マスク13下はチャネルとなり, その両側は
ソース・ドレインとなる。
Using the resist mask 13 as a mask, ions are implanted into the operating semiconductor layer 10 through the second conductive film 12 and the second gate insulating film 11. The implantation conditions are, for example, ion species BF + , acceleration energy 20 keV, and dose 1 × 10 14.
cm -2 . A channel is formed under the mask 13, and source and drain are on both sides of the channel.

【0029】図2(P6), (S6)参照 レジストマスク13をマスクにして第2の導電膜12をエッ
チングし,第2のゲート電極14を形成する。
Referring to FIGS. 2P6 and 2S6, the second conductive film 12 is etched using the resist mask 13 as a mask to form the second gate electrode 14.

【0030】図2(P7), (S7)参照 全面にCVD法により絶縁膜15として厚さ 500ÅのSi
2膜15, 絶縁膜16として厚さ4000ÅのPSG膜16を順
次成長する。駆動トランジスタのソース・ドレイン領域
に電極取り出し用の窓を開口し,Al配線してソース・
ドレイン電極17を形成して工程を終わる。
2 (P7), (S7) See FIG. 2 (P7), (S7). As shown in FIG.
As the O 2 film 15 and the insulating film 16, a PSG film 16 having a thickness of 4000 Å is sequentially grown. A window for taking out an electrode is opened in the source / drain region of the driving transistor, and an Al wiring is used for the source / drain region.
The drain electrode 17 is formed and the process is completed.

【0031】上記のようにして,TFTの動作半導体層
10に精度よくイオン注入を行うことができる。チャネル
部の形成と第2のゲート電極形成はマスク13を共用する
ので位置あわせが自動的に行われ,工程も短縮される。
As described above, the operating semiconductor layer of the TFT
Ion implantation can be performed accurately. Since the mask 13 is shared by the formation of the channel portion and the formation of the second gate electrode, the alignment is automatically performed and the process is shortened.

【0032】なお,上記の例では動作半導体層10をアモ
ルファスSi膜としたが,ポリSiや単結晶Siの半導
体膜を使用できることは勿論である。
Although the operating semiconductor layer 10 is an amorphous Si film in the above example, it is needless to say that a semiconductor film of poly-Si or single crystal Si can be used.

【0033】[0033]

【発明の効果】以上説明したように,本発明によれば,
TFTの形成において注入イオンが動作半導体層10を突
き抜けるのを抑制して精度よく動作半導体層10にイオン
注入を行うことができる。チャネル部の形成と第2のゲ
ート電極形成のためにマスク形成を2度行い,位置合わ
せを2度行う従来法に比べて工程が短縮され,しかも位
置合わせが容易で精度も高い。
As described above, according to the present invention,
It is possible to suppress implantation ions from penetrating the operating semiconductor layer 10 in the formation of the TFT and to perform ion implantation into the operating semiconductor layer 10 with high accuracy. The process is shorter than the conventional method in which the mask is formed twice for the formation of the channel portion and the second gate electrode and the alignment is performed twice, and the alignment is easy and the accuracy is high.

【0034】本発明は,二つのゲート電極を有する薄膜
トランジスタの性能向上に寄与し,ひいてはTFT負荷
を有するインバータ回路の性能向上,さらに,このよう
なインバータ回路の配列されたSRAMの性能向上に寄
与する。
The present invention contributes to improving the performance of a thin film transistor having two gate electrodes, and thus to improving the performance of an inverter circuit having a TFT load, and further improving the performance of an SRAM in which such an inverter circuit is arranged. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】(P1)〜(P4), (S1)〜(S4)は実施例を示す工程順
平面図と断面図(その1)である。
1 (P1) to (P4) and (S1) to (S4) are a process sequence plan view and a cross-sectional view (No. 1) showing an embodiment.

【図2】(P5)〜(P7), (S5)〜(S7)は実施例を示す工程順
平面図と断面図(その2)である。
2 (P5) to (P7) and (S5) to (S7) are a process sequence plan view and a cross-sectional view (No. 2) showing an embodiment.

【図3】(a)〜(e) は従来例を示す工程順断面図であ
る。
3A to 3E are cross-sectional views in order of the processes, showing a conventional example.

【図4】抵抗負荷インバータ回路を含むSRAMセルの
回路図である。
FIG. 4 is a circuit diagram of an SRAM cell including a resistance load inverter circuit.

【図5】TFT負荷インバータ回路を含むSRAMセル
の回路図である。
FIG. 5 is a circuit diagram of an SRAM cell including a TFT load inverter circuit.

【符号の説明】[Explanation of symbols]

1は半導体基板であってSi基板 2は素子分離領域であってフィールド絶縁膜 3は素子領域 4はゲート絶縁膜 5はゲート電極であって駆動トランジスタのゲート電極 6はソース・ドレインであって駆動トランジスタのソー
ス・ドレイン 7は絶縁膜であってSiO2 膜 8は第1のゲート電極 9は第1のゲート絶縁膜であってSiO2 膜 10は動作半導体層であってアモルファスSi膜 11は第2のゲート絶縁膜であってSiO2 膜 12は第2の導電膜であってポリSi膜 13,13a, 13bはマスクであってレジストマスク 14は第2のゲート電極 15は絶縁膜であってSiO2 膜 16は絶縁膜であってPSG膜 17はソース・ドレイン電極 T1 は駆動トラジスタ T2 は転送トランジスタ Rは負荷抵抗 TFTは薄膜トランジスタ
Reference numeral 1 is a semiconductor substrate, Si substrate 2 is a device isolation region, field insulating film 3 is a device region 4, gate insulating film 5 is a gate electrode, and gate electrode 6 of a driving transistor is a source / drain. The source / drain 7 of the transistor is an insulating film, the SiO 2 film 8 is the first gate electrode 9 the first gate insulating film, the SiO 2 film 10 is the operating semiconductor layer, and the amorphous Si film 11 is the first 2 is a gate insulating film, the SiO 2 film 12 is a second conductive film, the poly-Si films 13, 13a and 13b are masks, the resist mask 14 is a second gate electrode 15 is an insulating film. The SiO 2 film 16 is an insulating film, the PSG film 17 is the source / drain electrode T 1, the driving transistor T 2, the transfer transistor R is the load resistance, and the TFT is the thin film transistor.

Claims (1)

【特許請求の範囲】 【請求項1】 第1のゲート電極(8) と第1のゲート絶
縁膜(9) と動作半導体層(10)と第2のゲート絶縁膜(11)
と第2のゲート電極(14)がこの順に積層された構造を有
する薄膜トランジスタの製造方法であって, 表面が絶縁物(7) である基体に第1の導電膜を形成し,
それをパターニングして第1のゲート電極(8) を形成す
る工程と, 該第1のゲート電極(8) 上に第1のゲート絶縁膜(9) を
形成する工程と, 該第1のゲート絶縁膜(9) 上に該第1のゲート電極(8)
上から両側に展延する動作半導体層(10)を形成する工程
と, 該動作半導体層(10)上に第2のゲート絶縁膜(11)及び第
2の導電膜(12)をこの順に形成する工程と, 該第2の導電膜(12)上に該第1のゲート電極(8) と重な
るマスク(13)を形成する工程と, 該マスク(13)をマスクにして該第2の導電膜(12)及び該
第2のゲート絶縁膜(11)を通して該動作半導体層(10)に
イオン注入を行った後,該マスク(13)をマスクにして該
第2の導電膜(12)をエッチングし,第2のゲート電極(1
4)を形成する工程を有することを特徴とする薄膜トラン
ジスタの製造方法。
Claims: 1. A first gate electrode (8), a first gate insulating film (9), an operating semiconductor layer (10), and a second gate insulating film (11).
A method of manufacturing a thin film transistor having a structure in which a second gate electrode (14) and a second gate electrode (14) are laminated in this order, in which a first conductive film is formed on a substrate whose surface is an insulator (7),
Patterning it to form a first gate electrode (8); forming a first gate insulating film (9) on the first gate electrode (8); The first gate electrode (8) on the insulating film (9)
A step of forming an operating semiconductor layer (10) extending from both sides from above, and forming a second gate insulating film (11) and a second conductive film (12) in this order on the operating semiconductor layer (10) And a step of forming a mask (13) on the second conductive film (12) overlapping the first gate electrode (8), and using the mask (13) as a mask After ion-implanting the operating semiconductor layer (10) through the film (12) and the second gate insulating film (11), the second conductive film (12) is formed using the mask (13) as a mask. The second gate electrode (1
A method of manufacturing a thin film transistor, comprising the step of forming 4).
JP3168562A 1991-07-10 1991-07-10 Fabrication of thin-film transistor Withdrawn JPH0521795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168562A JPH0521795A (en) 1991-07-10 1991-07-10 Fabrication of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168562A JPH0521795A (en) 1991-07-10 1991-07-10 Fabrication of thin-film transistor

Publications (1)

Publication Number Publication Date
JPH0521795A true JPH0521795A (en) 1993-01-29

Family

ID=15870336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168562A Withdrawn JPH0521795A (en) 1991-07-10 1991-07-10 Fabrication of thin-film transistor

Country Status (1)

Country Link
JP (1) JPH0521795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922622A (en) * 1996-09-03 1999-07-13 Vanguard International Semiconductor Corporation Pattern formation of silicon nitride
US6919606B2 (en) * 2000-12-26 2005-07-19 Kabushiki Kaisha Toshiba Semiconductor device comprising an insulating mask formed on parts of a gate electrode and semiconductor layer crossing an active region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922622A (en) * 1996-09-03 1999-07-13 Vanguard International Semiconductor Corporation Pattern formation of silicon nitride
US6919606B2 (en) * 2000-12-26 2005-07-19 Kabushiki Kaisha Toshiba Semiconductor device comprising an insulating mask formed on parts of a gate electrode and semiconductor layer crossing an active region

Similar Documents

Publication Publication Date Title
US5283455A (en) Thin film field effect element having an LDD structure
KR0139573B1 (en) Double channel tft and its manufacturing method
JPH0685263A (en) Laminated thin-film transistor and its manufacture
JPH08148693A (en) Thin-film transistor and manufacture thereof
US6340829B1 (en) Semiconductor device and method for manufacturing the same
US6271064B2 (en) Thin film transistor and method of manufacturing the same
JPS6089975A (en) Semiconductor device
US5100816A (en) Method of forming a field effect transistor on the surface of a substrate
JPH0521795A (en) Fabrication of thin-film transistor
JPH08122813A (en) Liquid crystal display element and its manufacture
JPH06140421A (en) Manufacture of thin film transistor
JP3471252B2 (en) Thin film transistor and method of manufacturing the same
JPH06349856A (en) Thin-film transistor and its manufacture
JP3131850B2 (en) Method for manufacturing thin film transistor
JPH04252072A (en) Semiconductor device
KR950005486B1 (en) Tft and its making method
JP3013407B2 (en) Semiconductor memory device
JP2638685B2 (en) Semiconductor device and manufacturing method thereof
JP2003298058A (en) Thin film transistor and its manufacturing method
JPH05259457A (en) Thin film transistor
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JP3221777B2 (en) Manufacturing method of thin film transistor
JPH0653441A (en) Cell structure and sram memory cell structure having thin film transistor and formation thereof
JPH11186557A (en) Semiconductor device and manufacture thereof
JPH0113230B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008