JPH05215473A - Heater - Google Patents

Heater

Info

Publication number
JPH05215473A
JPH05215473A JP4046349A JP4634992A JPH05215473A JP H05215473 A JPH05215473 A JP H05215473A JP 4046349 A JP4046349 A JP 4046349A JP 4634992 A JP4634992 A JP 4634992A JP H05215473 A JPH05215473 A JP H05215473A
Authority
JP
Japan
Prior art keywords
inorganic
heating device
coating layer
heating element
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4046349A
Other languages
Japanese (ja)
Other versions
JP3174379B2 (en
Inventor
Masaru Nakao
中尾  賢
Seiji Sakurai
誠二 桜井
Yoshihisa Miyahara
芳久 宮原
Yoshiyuki Motoyoshi
芳之 本吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Tohoku Ltd
Nichias Corp
Original Assignee
Tokyo Electron Tohoku Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Tohoku Ltd, Nichias Corp filed Critical Tokyo Electron Tohoku Ltd
Priority to JP04634992A priority Critical patent/JP3174379B2/en
Priority to US08/012,151 priority patent/US5323484A/en
Publication of JPH05215473A publication Critical patent/JPH05215473A/en
Application granted granted Critical
Publication of JP3174379B2 publication Critical patent/JP3174379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/12Heating of the reaction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To obtain a heater which has excellent spalling resistance, deterioration resistance and reactivity resistance and in which a temperature can be stably raised and lowered for a long period. CONSTITUTION:An inorganic coating layer 3 is used as a support of a heat generator 2 in a laminate in which the coating layer coated on its inner surface with inorganic fiber cloth and having a bulk density of 1.0-2.0g/cm<3> is formed on an inner surface of an inorganic molded form having a bulk density of 0.3-0.8g/cm<3>. A heater has a treating vessel 1 in which a material to be treated is disposed on an inner soaking area, the laminate so disposed as to surround the vessel 1, and the generator 2 supported to the coating layer of the laminate 3, and comprises cooling means for cooling the soaking area of the vessel 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱装置に関する。FIELD OF THE INVENTION The present invention relates to a heating device.

【0002】[0002]

【従来の技術】例えば半導体デバイスの製造プロセスに
おいては、半導体ウエハを加熱処理する各種の工程が含
まれる。例えば、酸化処理、拡散処理、CVD処理、エ
ピタキシャル処理、ドーピング処理等の工程である。こ
のような加熱処理に使用される加熱装置の一例において
は、被処理体である半導体ウエハが配置される処理容器
と、この処理容器を取囲むよう配置された断熱材と、こ
の断熱材の内壁に配置された発熱体とを備えてなる。断
熱材としては、従来、セラミックファイバが用いられ、
発熱体としては、従来、鉄(Fe)とクロム(Cr)と
アルミニウム(Al)の合金線であるカンタル(商品
名)線等の抵抗発熱体が用いられている。
2. Description of the Related Art For example, a semiconductor device manufacturing process includes various steps of heating a semiconductor wafer. For example, it is a process such as an oxidation process, a diffusion process, a CVD process, an epitaxial process, or a doping process. In an example of a heating device used for such a heat treatment, a processing container in which a semiconductor wafer that is an object to be processed is arranged, a heat insulating material arranged so as to surround the processing container, and an inner wall of the heat insulating material. And a heating element disposed in. Conventionally, a ceramic fiber is used as the heat insulating material,
As the heating element, a resistance heating element such as Kanthal (trade name) wire which is an alloy wire of iron (Fe), chromium (Cr) and aluminum (Al) has been conventionally used.

【0003】しかるに、最近では、半導体デバイスの生
産性を高める観点から、加熱装置としても高速で昇降温
できるものが要求されている。しかし、上記のようにカ
ンタル線からなる発熱体は許容電流密度が小さいため、
十分な高速で昇温させることが困難である。そこで、本
発明者は、発熱体の材料として二ケイ化モリブデン(M
oSi2 )を使用することについて検討してきた。この
MoSi2 によれば、熱容量が小さくて、高速で昇温が
可能である。
However, recently, from the viewpoint of increasing the productivity of semiconductor devices, a heating device capable of raising and lowering the temperature at high speed has been required. However, since the heating element made of Kanthal wire has a small allowable current density as described above,
It is difficult to raise the temperature at a sufficiently high speed. Therefore, the present inventor has proposed molybdenum disilicide (M
oSi 2 ) has been considered. With this MoSi 2 , the heat capacity is small and the temperature can be raised at high speed.

【0004】[0004]

【発明が解決しようとする課題】しかし、MoSi2
らなる発熱体を用いて高速で昇温させるプロセスを繰返
していくと、セラミックファイバからなる断熱材にスポ
ーリングによるクラックが入りやすく、断熱材の劣化が
著しいという問題が発生した。なお、スポーリングと
は、断熱材の構成材料が粉塵となって飛散する現象をい
う。また、半導体ウエハの加熱処理後、高速で降温させ
るために処理容器の均熱領域に強制的に冷却媒体を流し
て冷却するプロセスを繰返していくと、劣化した断熱材
からパーティクルが発生し、コンタミネーションの原因
となる問題も生じた。さらに、MoSi2 からなる発熱
体と断熱材との接触部分で両者が反応して発熱体が断線
するという問題も生じた。
However, when the process of raising the temperature at a high speed using a heating element made of MoSi 2 is repeated, cracks due to spalling easily occur in the heat insulating material made of ceramic fibers, and The problem of significant deterioration occurred. The spalling is a phenomenon in which the constituent material of the heat insulating material is scattered as dust. In addition, after the semiconductor wafer is heat-treated, if the process of forcibly flowing a cooling medium into the soaking region of the processing container to cool the semiconductor wafer at high speed is repeated and particles are generated from the deteriorated heat insulating material, contamination may occur. There was also a problem causing nation. Further, there has been a problem that the heating element made of MoSi 2 and the heat insulating material react with each other at the contact portion, and the heating element is broken.

【0005】そこで、本発明の第1の目的は、耐スポー
リング性、耐劣化性、耐反応性の優れた加熱装置を提供
することにある。また、本発明の第2の目的は、長期間
にわたり安定に昇降温できる加熱装置を提供することに
ある。
Therefore, a first object of the present invention is to provide a heating device having excellent spalling resistance, deterioration resistance and reaction resistance. A second object of the present invention is to provide a heating device that can stably raise and lower the temperature over a long period of time.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
め、本発明の加熱装置は以下の特徴を有する。 (1)カサ密度0.3〜0.8g/cm3 の無機質成形
体の内面に、無機繊維製クロスで内側面が被覆されたカ
サ密度が1.0〜2.0g/cm3 の無機質被覆層が形
成された積層体で、前記無機質被覆層が発熱体の支持部
とされていることを特徴とする。 (2)前記(1)の積層体が高温で焼成されたものであ
ることを特徴とする。 (3)前記(1)の無機質成形体が複数の分割品で筒状
に形成されていることを特徴とする。 (4)前記(1)の無機質成形体が、アルミナ質繊維、
無機質充填材および無機質バインダーから形成されてい
ることを特徴とする。 (5)前記(4)のアルミナ質繊維が、Al2 3 を9
0wt%以上含有するものであることを特徴とする。 (6)前記(1)の積層体中に含まれる下記不純物金属
元素の含有率が以下の範囲にあることを特徴とする。 ナトリウム(Na)とカリウム(K)の合計:2000ppm以下 銅(Cu) : 50ppm以下 鉄(Fe) : 500ppm以下 ニッケル(Ni) : 50ppm以下 (7)内部の均熱領域に被処理体が配置される処理容器
と、当該処理容器を取囲むよう配置された前記(1)の
積層体と、この積層体における無機質被覆層に支持され
た発熱体とを備えてなる加熱装置において、前記処理容
器の均熱領域を冷却する冷却手段を設けたことを特徴と
する。 (8)前記(7)の発熱体が二ケイ化モリブデン(Mo
Si2 )からなることを特徴とする。
In order to achieve the above object, the heating device of the present invention has the following features. (1) bulk to the inner surface of the inorganic molded body density 0.3 to 0.8 g / cm 3, bulk density the inner surface was coated with an inorganic textile cloth inorganic coating of 1.0 to 2.0 g / cm 3 It is a laminated body in which layers are formed, and the inorganic coating layer serves as a support portion of the heating element. (2) The laminated body according to (1) is characterized by being fired at a high temperature. (3) The inorganic molded body of (1) is characterized in that it is formed into a tubular shape by a plurality of divided products. (4) The inorganic molded body according to (1) above is an alumina fiber,
It is characterized by being formed from an inorganic filler and an inorganic binder. (5) The alumina fiber of (4) above contains 9% Al 2 O 3 .
It is characterized by containing 0 wt% or more. (6) The content of the following impurity metal element contained in the laminate of (1) is in the following range. Total of sodium (Na) and potassium (K): 2000ppm or less Copper (Cu): 50ppm or less Iron (Fe): 500ppm or less Nickel (Ni): 50ppm or less (7) The object to be treated is placed in the internal soaking region A processing apparatus comprising: a treatment container, a laminate of (1) arranged so as to surround the treatment container, and a heating element supported by an inorganic coating layer in the laminate; It is characterized in that a cooling means for cooling the soaking region is provided. (8) The heating element of (7) is molybdenum disilicide (Mo).
Si 2 ).

【0007】[0007]

【作用】積層体が、カサ密度の小さい無機質成形体に、
カサ密度の大きい無機質被覆層が積層されて構成され、
かつ、無機質被覆層の内側面が無機繊維製クロスにより
補強されているため、高速で昇降温させたときにもヒー
トショックによって割れや剥離が発生するおそれがな
い。積層体が高温で焼成されていると、積層体の歪が少
なくなる。無機質成形体が複数の分割品で筒状に形成さ
れていると、精密な構造の積層体が得られる。無機質成
形体が、アルミナ質繊維、無機質充填材および無機質バ
インダーから形成されていると、粉塵等の飛散が少な
い。アルミナ質繊維が、Al2 3 を90wt%以上含
有するものであると、耐熱性が向上する。積層体中に含
まれる特定の不純物金属元素の含有率を特定値以下に抑
制すると、コンタミネーションが小さくなる。処理容器
の均熱領域を冷却する冷却手段を設けて、高速で昇降温
させたときにも積層体を劣化させることがなく、長期間
にわたり安定に高速加熱処理を行うことができる。発熱
体として二ケイ化モリブデン(MoSi2 )を用いた場
合にも、無機質被覆層との反応性が小さく、発熱体の断
線が発生するおそれがない。
[Function] The laminated body becomes an inorganic molded body having a low bulk density,
Inorganic coating layer with a high bulk density is laminated and configured,
Moreover, since the inner surface of the inorganic coating layer is reinforced by the inorganic fiber cloth, there is no risk of cracking or peeling due to heat shock even when the temperature is raised or lowered at high speed. When the laminate is fired at a high temperature, the strain of the laminate is reduced. When the inorganic molded body is formed into a cylindrical shape by a plurality of divided products, a laminate having a precise structure can be obtained. When the inorganic molded body is formed of the alumina fiber, the inorganic filler and the inorganic binder, dust and the like are less scattered. When the alumina fiber contains 90 wt% or more of Al 2 O 3 , heat resistance is improved. When the content of the specific impurity metal element contained in the laminated body is suppressed to a specific value or less, the contamination becomes small. By providing a cooling means for cooling the soaking region of the processing container, it is possible to stably perform the high-speed heat treatment for a long period without deteriorating the laminate even when the temperature is raised and lowered at a high speed. Even when molybdenum disilicide (MoSi 2 ) is used as the heating element, the reactivity with the inorganic coating layer is small and there is no risk of the heating element breaking.

【0008】[0008]

【実施例】以下、本発明の実施例を説明する。なお、以
下の実施例は被処理体として半導体ウエハを使用した例
であるが、本発明においては、半導体ウエハに限定され
ることはなく、加熱対象は任意に選択することができ
る。例えばLCD等の加熱にも適用することができる。
EXAMPLES Examples of the present invention will be described below. The following examples are examples in which a semiconductor wafer is used as the object to be processed, but the present invention is not limited to the semiconductor wafer, and the heating target can be arbitrarily selected. For example, it can be applied to heating of an LCD or the like.

【0009】図1は実施例に係る加熱装置の概略図であ
る。1は処理容器、2は発熱体、3は積層体、4は半導
体ウエハ、5はウエハ保持具、6は保温筒、7は外匣、
8は基台、9は蓋部材である。処理容器1は例えば石英
管からなり、この外周を取囲むように積層体3が配置さ
れ、この積層体3に発熱体2が支持されている。積層体
3は、図2に示すように、カサ密度0.3〜0.8g/
cm3 の無機質成形体32の内面に、無機繊維製クロス
33で内側面が被覆されたカサ密度が1.0〜2.0g
/cm3 の無機質被覆層31が形成されて構成されてい
る。この無機質被覆層31が発熱体2の支持部とされて
いる。
FIG. 1 is a schematic view of a heating device according to an embodiment. 1 is a processing container, 2 is a heating element, 3 is a laminated body, 4 is a semiconductor wafer, 5 is a wafer holder, 6 is a heat retaining tube, 7 is an outer casing,
Reference numeral 8 is a base, and 9 is a lid member. The processing container 1 is made of, for example, a quartz tube, a laminated body 3 is arranged so as to surround the outer periphery thereof, and the heating element 2 is supported by the laminated body 3. As shown in FIG. 2, the laminated body 3 has a bulk density of 0.3 to 0.8 g /
The inner surface of the inorganic molded body 32 of cm 3 is coated with the inorganic fiber cloth 33 on the inner surface, and the bulk density is 1.0 to 2.0 g.
/ Cm 3 of the inorganic coating layer 31 is formed and configured. The inorganic coating layer 31 serves as a support for the heating element 2.

【0010】無機質被覆層31のカサ密度は、1.0〜
2.0g/cm3 の範囲にあることが必要である。カサ
密度が1.0未満のときは、耐風速性(耐エロージョン
性)が低下する。カサ密度が2.0g/cm3 を超える
場合は、熱的耐スポーリング性が低下する。無機質被覆
層31の内側面を被覆する無機繊維製クロス33として
は、アルミナ繊維質クロスが好適であり、無機質成形体
32の内面に無機質被覆層31の材料を被覆する際に埋
設された状態で張り付けられるものであって、無機質成
形体32のクラックおよびパーティクルの発生を抑制す
るものである。無機質被覆層31は、アルミナ質繊維、
無機質充填材、無機質バインダーにより形成することが
でき、これらの配合割合は、例えば、アルミナ質繊維/
無機質充填材/無機質バインダー=10〜15/40〜
60/20〜40(wt%)である。
The bulk density of the inorganic coating layer 31 is 1.0 to
It should be in the range of 2.0 g / cm 3 . When the bulk density is less than 1.0, wind speed resistance (erosion resistance) decreases. When the bulk density exceeds 2.0 g / cm 3 , the thermal spalling resistance decreases. Alumina fibrous cloth is suitable as the inorganic fiber cloth 33 that covers the inner surface of the inorganic coating layer 31, and it is embedded in the inner surface of the inorganic molded body 32 when the material of the inorganic coating layer 31 is coated. It is affixed and suppresses the generation of cracks and particles in the inorganic molded body 32. The inorganic coating layer 31 is made of alumina fiber,
It can be formed by an inorganic filler and an inorganic binder, and the mixing ratio of these is, for example, alumina fiber /
Inorganic filler / inorganic binder = 10-15 / 40-
It is 60 / 20-40 (wt%).

【0011】アルミナ質繊維としては、通常のAl2
3 成分を70wt%程度以上含有するものが使用可能で
あるが、高温下での再結晶化に伴う繊維の劣化が小さく
て耐熱性の良好なAl2 3 を90wt%以上含有する
もので、かつ、他の無機質充填材および無機質バインダ
ーの混合物中への均一分散を良好にして補強効果を促す
短繊維が好ましい。かかる短繊維の具体例としては、
「ルビール」(ニチアス株式会社製,Al2 3 /Si
2 =95/5(wt%))がある。無機質充填材とし
ては、例えばアルミナ粉末、ムライト粉末等を用いるこ
とができる。無機質バインダーとしては、例えばコロイ
ダルシリカ、コロイダルアルミナ等を用いることができ
る。なお、発熱体として二ケイ化モリブデン(MoSi
2 )を使用する場合は、被覆層材料としてアルミナ質繊
維、アルミナ粉末およびコロイダルアルミナからなる材
料で構成することが好ましい。
As the alumina fiber, usual Al 2 O is used.
It is possible to use those containing three components in an amount of about 70 wt% or more, but those containing 90 wt% or more of Al 2 O 3 which has little heat deterioration and good fiber deterioration due to recrystallization at high temperature, In addition, short fibers that promote uniform reinforcing in a mixture of other inorganic filler and inorganic binder to promote a reinforcing effect are preferable. Specific examples of such short fibers include:
"Ruby" (Nichias, Al 2 O 3 / Si
O 2 = 95/5 (wt%)). As the inorganic filler, for example, alumina powder, mullite powder or the like can be used. As the inorganic binder, for example, colloidal silica, colloidal alumina or the like can be used. As a heating element, molybdenum disilicide (MoSi)
When 2 ) is used, the material for the coating layer is preferably composed of a material composed of alumina fiber, alumina powder and colloidal alumina.

【0012】無機質被覆層31の硬度は、耐スポーリン
グ性を高めるために、高いことが好ましく、例えばビッ
カース硬度Hv50〜100程度が好ましい。無機質被
覆層31の表面は、急熱および急冷による構成材料(パ
ーティクル)の粉塵化による飛散防止のため、その表面
粗さは20μm以下とすることが好ましい。無機質被覆
層31の厚さは、熱衝撃によるクラック発生の防止、熱
容量の低減による昇温特性の向上の点から0.5〜3m
m程度の範囲が好ましい。
The hardness of the inorganic coating layer 31 is preferably high in order to enhance the spalling resistance, and for example, a Vickers hardness Hv of about 50 to 100 is preferable. The surface roughness of the inorganic coating layer 31 is preferably 20 μm or less in order to prevent the constituent materials (particles) from scattering due to dusting due to rapid heating and rapid cooling. The thickness of the inorganic coating layer 31 is 0.5 to 3 m from the viewpoint of preventing the occurrence of cracks due to thermal shock and improving the temperature rise characteristics by reducing the heat capacity.
A range of about m is preferable.

【0013】無機質成形体32のカサ密度は0.3〜
0.8g/cm3 の範囲にあることが必要である。カサ
密度が0.3未満のときは、高温下(1000℃以上)
での熱伝導率が大きくなり、断熱特性が低下する。一
方、カサ密度が0.8を超えるときは、熱容量が大きく
なり、また重量の増大をきたす。無機質成形体32は、
無機質繊維、無機質充填材、無機質バインダーにより形
成することができ、これらの配合割合は、例えば、無機
質繊維/無機質充填材/無機質バインダー=20〜65
/35〜70/3〜10(wt%)である。無機質繊
維、無機質充填材、無機質バインダーの具体的材料とし
ては、無機質被覆層31と同様のものを用いることがで
きる。無機質成形体32の厚さは、例えば5〜30mm
程度である。
The bulk density of the inorganic molded body 32 is 0.3 to
It must be in the range of 0.8 g / cm 3 . When the bulk density is less than 0.3, high temperature (1000 ℃ or more)
The thermal conductivity at high temperature becomes large, and the heat insulating property deteriorates. On the other hand, when the bulk density exceeds 0.8, the heat capacity increases and the weight also increases. The inorganic molded body 32 is
It can be formed by an inorganic fiber, an inorganic filler, and an inorganic binder, and the mixing ratio of these is, for example, inorganic fiber / inorganic filler / inorganic binder = 20 to 65.
/ 35 to 70/3 to 10 (wt%). As the specific material of the inorganic fiber, the inorganic filler, and the inorganic binder, the same material as the inorganic coating layer 31 can be used. The thickness of the inorganic molded body 32 is, for example, 5 to 30 mm.
It is a degree.

【0014】以上の無機質被覆層31と無機質成形体3
2との積層体3は高温で焼成されていることが好まし
い。なお、「高温」とは、加熱装置の使用時において、
積層体3が実際に到達する使用温度よりも高い温度をい
う。例えば半導体ウエハの酸化処理や拡散処理の加熱装
置とする場合には、処理温度が1200℃程度に達する
ので、例えば1200〜1600℃の高温で焼成する。
このような高温で焼成することにより、使用時における
ヒートショックによる緻密な無機質被覆層31の割れや
剥離が抑制され、耐スポーリング性が向上する。また、
結晶構造面からも無機質被覆層31を構成するAl2
3 、SiO2 がムライト化(3Al2 3 ・2Si
2 )することにより、遊離のSiO2 成分が減少し、
耐熱性が向上するとともに、二ケイ化モリブデン(Mo
Si2 )よりなる発熱体2との反応を抑制し、発熱体2
の劣化を防止する。
The above inorganic coating layer 31 and the inorganic molded body 3
It is preferable that the laminate 3 with 2 is fired at a high temperature. In addition, "high temperature" means when using the heating device,
It is a temperature higher than the operating temperature at which the laminated body 3 actually reaches. For example, in the case of using a heating device for oxidation treatment or diffusion treatment of a semiconductor wafer, since the treatment temperature reaches about 1200 ° C., firing is performed at a high temperature of 1200 to 1600 ° C., for example.
By firing at such a high temperature, cracking or peeling of the dense inorganic coating layer 31 due to heat shock during use is suppressed, and spalling resistance is improved. Also,
Al 2 O forming the inorganic coating layer 31 also from the crystal structure side
3 , SiO 2 becomes mullite (3Al 2 O 3 .2Si
O 2 ) reduces the free SiO 2 component,
Heat resistance is improved and molybdenum disilicide (Mo
The reaction with the heating element 2 made of Si 2 ) is suppressed,
Prevent deterioration of the.

【0015】また、積層体3において、アルカリ金属で
あるナトリウム(Na)とカリウム(K)の合計の含有
量が2000ppm以下、重金属である銅(Cu)の含
有量が50ppm以下、重金属である鉄(Fe)の含有
量が500ppm以下、重金属であるニッケル(Ni)
の含有量が50ppm以下であることが好ましい。この
ような不純物金属元素の含有量を小さく抑制することに
より、積層体3の耐スポーリング性がさらに向上し、ま
た、耐コンタミネーションも向上する。
In the laminate 3, the total content of alkali metal sodium (Na) and potassium (K) is 2000 ppm or less, the content of heavy metal copper (Cu) is 50 ppm or less, and the heavy metal iron. Nickel (Ni) that is a heavy metal with a (Fe) content of 500 ppm or less
Is preferably 50 ppm or less. By suppressing the content of such an impurity metal element to be small, the spalling resistance of the laminate 3 is further improved and the contamination resistance is also improved.

【0016】積層体3は、全体としては円筒状である
が、図3に示すように、半円筒状のものを2個組合せて
形成されている。発熱体2は、一本の線材を上下部でU
字状に折り曲げて、縦形に連続するミヤンダ状に形成さ
れている。この発熱体2は、ステープル21により積層
体3の内壁に取付け保持されている。
The laminated body 3 has a cylindrical shape as a whole, but as shown in FIG. 3, it is formed by combining two semi-cylindrical shapes. The heating element 2 has a single wire U at the top and bottom.
It is bent into a letter shape and is formed into a vertically continuous Miyander shape. The heating element 2 is attached and held to the inner wall of the stack 3 by staples 21.

【0017】具体的には、次のようにして製造すること
ができる。 (1)アルミナ質繊維と、無機質充填材と、無機質バイ
ンダーとを用いて、無機質被覆層のための筒体(内筒
体)を成形し、これを縦に4分割し、各分割体の表面に
アルミナクロスを接着させながら全面を被覆し、さら
に、焼成する。 (2)無機質繊維と、無機質充填材と、無機質バインダ
ーとを用いて、無機質成形体のための筒体(外筒体)を
成形し、これを縦に2分割する。 (3)一方の半割りの外筒体の内面側に2つの分割体
(内筒体)を配置して両者を接着し、乾燥して、一方の
積層体を作製する。 (4)前記(3)で得られた一方の積層体の内面側に発
熱体をステープルで締結して、一方の半割り品を得る。 (5)他方の半割りの外筒体についても前記(3)およ
び(4)と同様にして他方の半割り品を得る。 (6)一方の半割り品と他方の半割り品とを合体させて
筒状体を形成する。
Specifically, it can be manufactured as follows. (1) Alumina fibers, an inorganic filler, and an inorganic binder are used to form a cylinder (inner cylinder) for the inorganic coating layer, which is vertically divided into four, and the surface of each divided body is formed. The whole surface is covered while adhering alumina cloth to the, and further baked. (2) Using an inorganic fiber, an inorganic filler, and an inorganic binder, a cylindrical body (outer cylindrical body) for an inorganic molded body is molded, and this is vertically divided into two parts. (3) Two divided bodies (inner cylinders) are arranged on the inner surface side of one half of the outer cylinder body, both are adhered, and dried to produce one laminated body. (4) A heating element is fastened to the inner surface of one of the laminates obtained in (3) above with a staple to obtain one half-divided product. (5) With respect to the other half-divided outer cylinder body, the other half-divided product is obtained in the same manner as in (3) and (4) above. (6) One half product and the other half product are combined to form a tubular body.

【0018】発熱体2としては、二ケイ化モリブデン
(MoSi2 )を好ましく用いることができる。このM
oSi2 は、単線として使用することができ、約180
0℃の高温にも十分に耐えることができるので、高温で
処理を行う加熱装置の材料として好適である。また、M
oSi2 は、熱容量も小さいため、高速での昇温に好適
であり、高温時での電気抵抗値の安定性も優れているた
め、加熱温度の均一性も高い。
As the heating element 2, molybdenum disilicide (MoSi 2 ) can be preferably used. This M
oSi 2 can be used as a single wire and is about 180
Since it can sufficiently withstand a high temperature of 0 ° C., it is suitable as a material for a heating device that performs processing at a high temperature. Also, M
Since oSi 2 has a small heat capacity, it is suitable for heating at a high speed, and since the stability of the electric resistance value at high temperatures is also excellent, the heating temperature is highly uniform.

【0019】処理容器1の均熱領域11を冷却する冷却
手段(図示省略)を設けることが好ましい。この冷却手
段の付加により、処理容器1を高速で降温させることが
できる。冷却手段としては、例えば処理容器1と積層体
3との間隙12に冷却ガスを流す構成等を採用すること
ができる。冷却ガスとしては、空気、窒素やアルゴンな
どの不活性ガスを用いることができる。半導体ウエハの
酸化処理や拡散処理の場合は、処理容器1の均熱領域を
例えば300〜400℃程度まで冷却するのが好まし
い。
It is preferable to provide cooling means (not shown) for cooling the soaking area 11 of the processing container 1. By adding this cooling means, the temperature of the processing container 1 can be lowered at high speed. As the cooling means, for example, a configuration in which a cooling gas is caused to flow in the gap 12 between the processing container 1 and the laminated body 3 can be adopted. Air or an inert gas such as nitrogen or argon can be used as the cooling gas. In the case of oxidation treatment or diffusion treatment of a semiconductor wafer, it is preferable to cool the soaking region of the processing container 1 to, for example, about 300 to 400 ° C.

【0020】処理容器1は、例えば石英(SiO2 )等
により形成することができる。この処理容器1は下端に
開口を有する筒状の形態を有しており、ウエハ保持具5
および半導体ウエハ4を発熱体2および積層体3から隔
離して半導体ウエハ1の雰囲気を外部から分離するもの
である。基台8は、例えばステンレススチール製であ
り、この基台8に、処理容器1と積層体3が保持されて
いる。ウエハ保持具5は保温筒6に載置され、この保温
筒6は蓋部材9に固定されている。ウエハ保持具5に
は、複数の半導体ウエハ4が水平に等間隔で配置されて
いる。蓋部材9は昇降手段(図示省略)により上下に往
復移動されるようになっている。蓋部材9が下降すると
ウエハ保持具5が一体となって下降し、アンロードの状
態となる。一方、蓋部材9が上昇して処理容器1を密閉
すると、ロードの状態となる。
The processing container 1 can be formed of, for example, quartz (SiO 2 ). The processing container 1 has a cylindrical shape having an opening at the lower end, and a wafer holder 5
The semiconductor wafer 4 is isolated from the heating element 2 and the laminated body 3 to isolate the atmosphere of the semiconductor wafer 1 from the outside. The base 8 is made of, for example, stainless steel, and the base 8 holds the processing container 1 and the laminated body 3. The wafer holder 5 is placed on a heat insulation cylinder 6, and the heat insulation cylinder 6 is fixed to a lid member 9. On the wafer holder 5, a plurality of semiconductor wafers 4 are horizontally arranged at equal intervals. The lid member 9 is vertically reciprocally moved by an elevating means (not shown). When the lid member 9 descends, the wafer holder 5 integrally descends, and the wafer is unloaded. On the other hand, when the lid member 9 is lifted up and the processing container 1 is sealed, the loading state is established.

【0021】以上、本発明を実施例に基づいて説明した
が、本発明の熱処理装置は、常圧のプロセス、減圧プロ
セス、真空プロセスのいずれにも適用することができ
る。また、酸化処理、拡散処理、CVD処理、アニール
等の各種の加熱処理に適用することができる。
Although the present invention has been described based on the embodiments, the heat treatment apparatus of the present invention can be applied to any of a normal pressure process, a reduced pressure process and a vacuum process. Further, it can be applied to various heat treatments such as oxidation treatment, diffusion treatment, CVD treatment, and annealing.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば以
下の効果が得られる。 (1)請求項1の発明によれば、耐スポーリング性、耐
劣化性、耐反応性の優れた加熱装置が得られる。 (2)請求項2の発明によれば、歪の少ない加熱装置が
得られる。 (3)請求項3の発明によれば、複雑な構造であっても
精密な加熱装置が得られる。 (4)請求項4の発明によれば、クリーンな加熱装置が
得られる。 (5)請求項5の発明によれば、クリーンで強固な加熱
装置が得られる。 (6)請求項6の発明によれば、耐コンタミネーション
の優れた加熱装置が得られる。 (7)請求項7の発明によれば、長期間にわたり安定に
昇降温できる加熱装置が得られる。 (8)請求項8の発明によれば、長期間にわたり安定に
高速で昇降温できる加熱装置が得られる。
As described above, according to the present invention, the following effects can be obtained. (1) According to the invention of claim 1, a heating device having excellent spalling resistance, deterioration resistance, and reaction resistance can be obtained. (2) According to the invention of claim 2, a heating device with less distortion can be obtained. (3) According to the invention of claim 3, a precise heating device can be obtained even with a complicated structure. (4) According to the invention of claim 4, a clean heating device can be obtained. (5) According to the invention of claim 5, a clean and strong heating device can be obtained. (6) According to the invention of claim 6, a heating device excellent in contamination resistance can be obtained. (7) According to the invention of claim 7, it is possible to obtain a heating device capable of stably raising and lowering the temperature over a long period of time. (8) According to the invention of claim 8, it is possible to obtain a heating device capable of stably raising and lowering the temperature at high speed over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る加熱装置の概略断面図である。FIG. 1 is a schematic sectional view of a heating device according to an embodiment.

【図2】実施例に係る積層体および発熱体の断面図であ
る。
FIG. 2 is a cross-sectional view of a laminated body and a heating element according to an example.

【図3】実施例に係る積層体に発熱体を取付けた状態の
斜視図である。
FIG. 3 is a perspective view showing a state where a heating element is attached to the laminated body according to the embodiment.

【符号の説明】[Explanation of symbols]

1 処理容器 11 均熱領域 12 間隙 2 発熱体 21 ステープル 3 積層体 31 内層 32 外層 33 無機繊維製クロス 4 半導体ウ
エハ 5 ウエハ保持具 6 保温筒 7 外匣 8 基台 9 蓋部材
DESCRIPTION OF SYMBOLS 1 Processing container 11 Uniform heat area 12 Gap 2 Heating element 21 Staple 3 Laminated body 31 Inner layer 32 Outer layer 33 Inorganic fiber cloth 4 Semiconductor wafer 5 Wafer holder 6 Insulating cylinder 7 Outer casing 8 Base 9 Lid member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮原 芳久 神奈川県横浜市鶴見区岸谷3−2−8 (72)発明者 本吉 芳之 神奈川県横浜市緑区青葉台1−6−9 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihisa Miyahara 3-2-8 Kishitani, Tsurumi-ku, Yokohama-shi, Kanagawa (72) Inventor Yoshiyuki Motoyoshi 1-6-9 Aobadai, Midori-ku, Yokohama-shi, Kanagawa

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 カサ密度0.3〜0.8g/cm3 の無
機質成形体の内面に、無機繊維製クロスで内側面が被覆
されたカサ密度が1.0〜2.0g/cm3の無機質被
覆層が形成された積層体で、前記無機質被覆層が発熱体
の支持部とされていることを特徴とする加熱装置。
The inner surface of the 1. A mineral molding of bulk density 0.3 to 0.8 g / cm 3, bulk density the inner surface coated with inorganic fibers made cloth of 1.0 to 2.0 g / cm 3 A heating device comprising a laminate having an inorganic coating layer formed thereon, wherein the inorganic coating layer serves as a support portion for a heating element.
【請求項2】 請求項1の積層体が高温で焼成されたも
のであることを特徴とする加熱装置。
2. A heating device, wherein the laminate according to claim 1 is fired at a high temperature.
【請求項3】 請求項1の無機質成形体が複数の分割品
で筒状に形成されていることを特徴とする加熱装置。
3. A heating device, wherein the inorganic molded body according to claim 1 is formed into a cylindrical shape by a plurality of divided products.
【請求項4】 請求項1の無機質成形体が、アルミナ質
繊維、無機質充填材および無機質バインダーから形成さ
れていることを特徴とする加熱装置。
4. A heating device, wherein the inorganic molded body according to claim 1 is formed from an alumina fiber, an inorganic filler and an inorganic binder.
【請求項5】 請求項4のアルミナ質繊維が、Al2
3 を90wt%以上含有するものであることを特徴とす
る加熱装置。
5. The alumina fiber according to claim 4 is Al 2 O.
A heating device containing 90% by weight or more of 3 .
【請求項6】 請求項1の積層体中に含まれる下記不純
物金属元素の含有率が以下の範囲にあることを特徴とす
る加熱装置。 ナトリウム(Na)とカリウム(K)の合計:2000ppm以下 銅(Cu) : 50ppm以下 鉄(Fe) : 500ppm以下 ニッケル(Ni) : 50ppm以下
6. A heating device, wherein the content of the following impurity metal elements contained in the layered product according to claim 1 is in the following range. Total of sodium (Na) and potassium (K): 2000 ppm or less Copper (Cu): 50 ppm or less Iron (Fe): 500 ppm or less Nickel (Ni): 50 ppm or less
【請求項7】 内部の均熱領域に被処理体が配置される
処理容器と、当該処理容器を取囲むよう配置された請求
項1の積層体と、この積層体における無機質被覆層に支
持された発熱体とを備えてなる加熱装置において、前記
処理容器の均熱領域を冷却する冷却手段を設けたことを
特徴とする加熱装置。
7. A processing container in which an object to be processed is arranged in an internal temperature-equalizing region, a laminated body according to claim 1 arranged so as to surround the processing container, and an inorganic coating layer in the laminated body. A heating device comprising: a heating element; and a cooling unit for cooling a soaking region of the processing container.
【請求項8】 請求項7の発熱体が二ケイ化モリブデン
からなることを特徴とする加熱装置。
8. A heating device according to claim 7, wherein the heating element is made of molybdenum disilicide.
JP04634992A 1992-02-03 1992-02-03 Heating equipment Expired - Lifetime JP3174379B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04634992A JP3174379B2 (en) 1992-02-03 1992-02-03 Heating equipment
US08/012,151 US5323484A (en) 1992-02-03 1993-01-28 Heating apparatus with multilayer insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04634992A JP3174379B2 (en) 1992-02-03 1992-02-03 Heating equipment

Publications (2)

Publication Number Publication Date
JPH05215473A true JPH05215473A (en) 1993-08-24
JP3174379B2 JP3174379B2 (en) 2001-06-11

Family

ID=12744672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04634992A Expired - Lifetime JP3174379B2 (en) 1992-02-03 1992-02-03 Heating equipment

Country Status (2)

Country Link
US (1) US5323484A (en)
JP (1) JP3174379B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306636A (en) * 1995-05-09 1996-11-22 Nichibi:Kk Heat-insulating ring for diffusion furnace
JP2003082569A (en) * 2001-04-13 2003-03-19 Toshiba Monofrax Co Ltd Inorganic fiber product
JP2007173481A (en) * 2005-12-21 2007-07-05 Kyushu Nissho:Kk Heating device
JP2008298977A (en) * 2007-05-30 2008-12-11 Kyushu Nissho:Kk Heat treatment apparatus
WO2014157369A1 (en) * 2013-03-28 2014-10-02 ニチアス株式会社 Metal heating element and heat-generating structure
JP2020011865A (en) * 2018-07-18 2020-01-23 日本電気硝子株式会社 Method for controlling temperature of heating element and method for manufacturing glass article

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616264A (en) * 1993-06-15 1997-04-01 Tokyo Electron Limited Method and apparatus for controlling temperature in rapid heat treatment system
US5507639A (en) * 1993-06-30 1996-04-16 Tokyo Electron Kabushiki Kaisha Heat treatment apparatus and method thereof
US5900177A (en) * 1997-06-11 1999-05-04 Eaton Corporation Furnace sidewall temperature control system
US6244197B1 (en) 1999-01-04 2001-06-12 Gary L. Coble Thermal induced cooling of industrial furnace components
US7003014B2 (en) * 2002-03-19 2006-02-21 Koyo Thermo Systems Co., Ltd Electric heater for thermal treatment furnace
US7705276B2 (en) * 2006-09-14 2010-04-27 Momentive Performance Materials Inc. Heater, apparatus, and associated method
US8395096B2 (en) * 2009-02-05 2013-03-12 Sandvik Thermal Process, Inc. Precision strip heating element
US8950470B2 (en) * 2010-12-30 2015-02-10 Poole Ventura, Inc. Thermal diffusion chamber control device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE529194C (en) * 1924-12-16 1931-07-11 Heraeus Vacuumschmelze Akt Ges Electrically heated, standing bright annealing furnace
US3735008A (en) * 1970-03-20 1973-05-22 Kokusai Electric Co Ltd Electric furnace
US4147888A (en) * 1977-07-20 1979-04-03 Seiki Sato Electric heating element for electric resistance furnaces
US4493089A (en) * 1983-03-21 1985-01-08 Refractory Poroducts Co. Electric furnace insulation
US4966201A (en) * 1989-06-16 1990-10-30 General Electric Company Transfer tube
US5038019A (en) * 1990-02-06 1991-08-06 Thermtec, Inc. High temperature diffusion furnace
JPH0739908B2 (en) * 1991-02-28 1995-05-01 ニチアス株式会社 Heating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306636A (en) * 1995-05-09 1996-11-22 Nichibi:Kk Heat-insulating ring for diffusion furnace
JP2939791B2 (en) * 1995-05-09 1999-08-25 株式会社ニチビ Diffusion furnace insulation ring
JP2003082569A (en) * 2001-04-13 2003-03-19 Toshiba Monofrax Co Ltd Inorganic fiber product
JP2007173481A (en) * 2005-12-21 2007-07-05 Kyushu Nissho:Kk Heating device
JP2008298977A (en) * 2007-05-30 2008-12-11 Kyushu Nissho:Kk Heat treatment apparatus
WO2014157369A1 (en) * 2013-03-28 2014-10-02 ニチアス株式会社 Metal heating element and heat-generating structure
JP2014192115A (en) * 2013-03-28 2014-10-06 Nichias Corp Metal heating element and heat generation structure
JP2020011865A (en) * 2018-07-18 2020-01-23 日本電気硝子株式会社 Method for controlling temperature of heating element and method for manufacturing glass article

Also Published As

Publication number Publication date
JP3174379B2 (en) 2001-06-11
US5323484A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
JP3174379B2 (en) Heating equipment
EP1435654A2 (en) Electrostatic chuck
JPS63257218A (en) Component of diffusion furnace
JPH03215670A (en) Substrate heater
JP3840990B2 (en) Semiconductor / LCD manufacturing equipment
JPH08102447A (en) Quartz glass jig for semiconductor heat treatment and manufacture thereof
JP2013007549A (en) Heat treatment furnace, and heat treatment apparatus
US4613305A (en) Horizontal furnace with a suspension cantilever loading system
JP2000130951A (en) Substrate firing furnace for plasma display panel and furnace member therefor
EP0990630B1 (en) Structural body comprising aluminum nitride and method of producing the same
JP4023774B2 (en) Heat-resistant jig
JPS6319300Y2 (en)
JPS6229706B2 (en)
JP3865419B2 (en) Heat shield used in semiconductor heat treatment equipment
JPH11317441A (en) Electrostatic chuck and evaluation method thereof
JPS602661A (en) Roll for heat treatment furnace
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JP3419992B2 (en) Ceramic members
JPH06172012A (en) Microwave heater
JP4050891B2 (en) Method for producing glassy carbon pipe and core for producing glassy carbon pipe
JP5110790B2 (en) Heat treatment equipment
JP3758196B2 (en) Hot isostatic press
JPH076745B2 (en) Hot isostatic pressing equipment
JPH11251038A (en) Ceramics heater
JP2022092223A (en) Vertical wafer boat

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

EXPY Cancellation because of completion of term