JP3865419B2 - Heat shield used in semiconductor heat treatment equipment - Google Patents

Heat shield used in semiconductor heat treatment equipment Download PDF

Info

Publication number
JP3865419B2
JP3865419B2 JP24373895A JP24373895A JP3865419B2 JP 3865419 B2 JP3865419 B2 JP 3865419B2 JP 24373895 A JP24373895 A JP 24373895A JP 24373895 A JP24373895 A JP 24373895A JP 3865419 B2 JP3865419 B2 JP 3865419B2
Authority
JP
Japan
Prior art keywords
heat
heat treatment
purity quartz
quartz glass
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24373895A
Other languages
Japanese (ja)
Other versions
JPH0963977A (en
Inventor
秀夫 中西
一雄 太田
豊和 松山
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP24373895A priority Critical patent/JP3865419B2/en
Publication of JPH0963977A publication Critical patent/JPH0963977A/en
Application granted granted Critical
Publication of JP3865419B2 publication Critical patent/JP3865419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、LSI等の半導体デバイス用シリコンウエハに酸化,拡散,アニール等の熱処理を施す半導体熱処理装置に用いられる遮熱体に関する。
【0002】
【従来の技術】
従来、この種の半導体熱処理装置としては、シリコンウエハ群が納置される熱処理領域の保温,均熱化と非熱処理領域の焼損防止を図ると共に、シリコンウエハ表面への処理ガスの均等供給を図るため、熱処理領域と非熱処理領域との間に、微小気泡を内包した1枚若しくは2枚の高純度石英ガラス板を間隔をあけて並置してなる遮熱体を介装した横型熱処理炉が知られている(実公平6−14480号公報参照)。
この横型熱処理炉においては、微小気泡を内包する高純度石英ガラス板により、熱処理領域から非熱処理領域へ向う熱流束を反射散乱させ、かつガス流分布を均等化させ、熱処理領域の均熱化や非熱処理領域の焼損防止等を図るものである。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の半導体熱処理装置では、遮熱体が一体構造であるので、以下に述べる不具合がある。すなわち、CVD処理に伴って付着する付着物に対するメンテナンスとして行われるエッチング処理は、付着が最も激しい熱処理領域側を基準にして行われるため、本来は不必要な非熱処理領域側までエッチングされることとなり、一体構造の遮熱体全体としての劣化が進む。
又、エッチングによる再生処理を行うために装置を停止することにより、装置の稼働率が低下する。特に、シリコンウエハが大口径化し、ICの高集積化が進むと、装置の稼働率の向上は、生産性向上にとって重要な課題となる。
更に、従来の半導体熱処理装置では、遮熱体の各高純度石英ガラス板の密度が同一であるので、微小気泡の量を多くして遮熱効率を高めようとすると、強度が低下し、かつダスト発生が増加する。一方、強度を高めて長寿命化しようとすると、微小気泡の量を少なくする必要があり、遮熱効率が低下する不具合がある。
そこで、本発明は、遮熱体全体として過剰なエッチングを防止し、その長寿命化を図ると共に、稼働率を向上し得る半導体熱処理装置に用いられる遮熱体を提供することを目的とする。
又、本発明の他の目的は、遮熱体が十分な強度を有し、かつダスト発生を低減しつつ遮熱効率を高め得る半導体熱処理装置に用いられる遮熱体を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記課題を解決するため、本発明にかかる半導体熱処理装置に用いられる遮熱体は、平均径が200μm以下の微小気泡を内包し、散乱係数が200〜1200m -1 、厚さが4〜10mmである高純度石英ガラスが4〜12枚、間隔をあけて並置され、かつ2群に分離可能に結合され、前記2群に分離可能に結合された高純度石英ガラスのうち、上側一群の高純度石英ガラス板の密度ρが、1.9<ρ≦2.2g/cm 3 であり、かつ下側一群の高純度石英ガラス板の密度ρが、1.7≦ρ≦2.1g/cm 3 であることを特徴としている。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。図1,図2は本発明にかかる遮熱体が用いられた縦型熱処理炉の縦断面図、その遮熱体の分解斜視図である。
図中1は高純度石英ガラスからなり、上端を閉塞しかつ下端を開口した円筒状の炉芯管で、この炉芯管1は、Oリング等のシール部材(図示せず)により開口端を気密に封止して炉床2上に垂直に立設されている。
炉芯管1は、その下端部を除くほぼ全長の外周を囲む円筒状の発熱体3と相俟って熱処理領域を形成しており、この熱処理領域は、炉体を形成する断熱材4によって覆われている。非熱処理領域である炉芯管1の下端部内には、炉床2上に載置した遮熱体5が納置されており、この遮熱体5上には、高純度石英ガラスからなり、シリコンウエハ6を適宜間隔で積層して搭載したウエハボート7が熱処理領域に位置して載置されている。
遮熱体5は、熱処理領域から非熱処理領域へ向う熱流束を反射散乱することにより、炉床2に直接到達する熱量を低減するもので、微小気泡を内包した円形の3枚の高純度石英ガラス板8を、複数の高純度石英ガラス支柱9により所要間隔をあけて連結した上側部(以下、熱処理側部と称す)5aと、微小気泡を内包した円形の4枚の高純度石英ガラス板10を、複数の高純度石英ガラス支柱11により所要間隔をあけて連結した下側部(非熱処理側部と称す)5bとから構成されている。
そして、両部5a,5bは、熱処理側部5aの最下部の高純度石英ガラス板8に設けた複数のダボ穴12と、これと対応させて非熱処理側部5bの最上部の高純度石英ガラス板8に突設した高純度石英ガラス製のダボ13とにより、分離可能に直列に結合されている。
【0006】
遮熱体5の各高純度石英ガラス板8,10は、微小気泡の平均径を200μm以下、散乱係数を200〜1200m-1、密度ρを1.7≦ρ≦2.2g/cm3 としている。
微小気泡の平均径が200μmを超えると、機械的強度が小さくなり、散乱係数が200m-1未満であると、遮熱効果が急激に小さくなる一方、1200m-1を超えると、遮熱効果は大きくなるが機械的強度が小さく、ダストの発生が大きくなり、又、密度ρが1.7g/cm3 未満であると、強度が低下し、かつダストの発生が大きくなる一方、2.2g/cm3 を超えると、遮熱効果が急激に小さくなる。より好ましくは、平均径が20〜120μmである。
又、複数の高純度石英ガラス板8,10は、枚数を4〜12枚、1枚当りの厚さを4〜10mmとしている。
枚数が4枚未満であると、熱流束を十分に遮蔽することができない一方、12枚を超えると、熱流束の減少率はほぼ一定になり、効果が頭打ちとなり、又、1枚当りの厚さが4mm未満であると、遮熱効果が十分でない一方、10mmを超えると、厚さの割には遮熱効果が余り期待できず、むしろ熱容量的に悪影響を与える。より好ましくは、枚数が6〜9枚である。
【0007】
上記構成の縦型熱処理炉においては、付着が激しい熱処理側部5aを取り外して新しいものと交換することが可能となるので、装置の稼働中に遮熱体5の熱処理側部5aをエッチング処理することができ、装置の稼働率を向上させることができる。
又、付着の激しい部分のみを新しいものと交換可能となるので、それ以外の部分について過剰エッチングすることがなく、長寿命化を図ることができる。
更に、高純度石英ガラス板の微小気泡の平均径、散乱係数及び密度を特定することにより、遮熱効率を向上させることができる。
なお、上述した実施の一形態では、遮熱体5を全高の1/3を占める熱処理側部5aと、残る2/3を占める非熱処理側部5bとの2群で構成する場合について述べたが、これに限定されるものではなく、全高の1/2ずつを占める2群又は全高の1/3ずつを占める3群あるいは適宜高さを占める4群以上とし、かつ各群を分離可能に結合する構成としてもよい。
【0008】
図3は本発明の他の形態を示す遮熱体の斜視図である。この縦型熱処理炉において、遮熱体14は、微小気泡を内包した円形の6枚の高純度石英ガラス板15を、微小気泡を内包した複数の高純度石英ガラス支柱16により所要間隔をあけて一体連結すると共に、密度ρが熱処理領域側1.9<ρ≦2.2g/cm3,非熱処理領域側1.7≦ρ≦2.1g/cm3の範囲で2段階に異ならせたり、あるいは密度ρが1.7≦ρ≦2.2g/cm3の範囲で熱処理領域側から非熱処理領域側にかけて小さくなるように多段階に異ならせたりし、密度を熱処理領域側から非熱処理領域側にかけて小さくした少なくとも2段階に異ならせて構成されている。他の構成は、図1のものとほぼ同様であるので、その説明を省略する。
【0009】
熱処理領域側の高純度石英ガラス板15及び高純度石英ガラス支柱16の密度ρは、1.9g/cm3 未満であると、強度が低下し、クリープや熱衝撃に耐えることができず、2.2g/cm3 を超えると、遮熱効率が低下する。好ましくは、2.0≦ρ≦2.1g/cm3 である。
又、非熱処理領域側の高純度石英ガラス板15及び高純度石英ガラス支柱16の密度は、2.1g/cm3 を超えると、遮熱効果が著しく低下し、1.7g/cm3 未満であると、強度が低下し、ダストの発生のおそれがある。好ましくは、1.8≦ρ≦2.0g/cm3 である。
なお、高純度石英ガラス板15の散乱係数、枚数及び厚さ等は、実施の一形態の場合とほぼ同様であるので、その説明を省略する。
【0010】
上記構成の縦型熱処理炉においては、熱処理領域側を強度的に優れ、かつ非熱処理領域側をダスト発生が低く遮熱効果に優れた遮熱体14とすることができ、遮熱体14全体として遮熱効率を高めると共に、十分な強度を有し、かつダスト発生の低いものとすることができる。
【0011】
なお、上記発明の実施の各形態の説明においては、半導体熱処理装置として縦型熱処理炉について述べたが、これに限定されるものではなく、横型熱処理炉にも適用できる。
【0012】
【実施例】
次に、本発明の実施の一形態の実施例を比較例と共に説明する。
先ず、炉内温度1200℃に保持した縦型熱処理炉に、微小気泡の平均径を30〜80μmとし1枚の厚さが4mm、枚数が9枚(3枚+3枚+3枚)、間隔が25mmの3分割構造で、散乱係数及び密度を表1の通りにした高純度石英ガラス板等からなる遮熱体を納置し、炉内温度が所定温度に到達してから60分経過後の炉床部の温度を測定したところ、表1に示すようになった。
【0013】
【表1】

Figure 0003865419
【0014】
表1に示されているように、微小気泡の量が少なく、散乱係数が200m-1未満のものでは、遮熱効果が急激に小さくなることがわかる。一方、微小気泡の量が多く、散乱係数が1200m-1を超えるものでは、遮熱効果は大きくなるが、機械的強度が小さく、かつダストの発生が多くなるので、半導体熱処理用としては不適当であった。したがって、散乱係数は、200〜1200m-1であることが好ましく、より好ましくは、300〜1000m-1であることがわかった。
又、1000℃以上の炉内温度に対して、微小気泡を内包した高純度石英ガラス板(600m-1)の厚みについて検討し、単位厚さ当りの遮熱量を測定した結果、10mm程度までは遮熱に有効であるが、それ以上厚くしても厚さの割には遮熱効果が余り期待できず、むしろ熱容量的に悪影響を与えることがわかった。一方、厚さが4mm未満であると、強度が不十分となった。したがって、1枚当りの厚さは、4〜10mmが好ましく、より好ましくは、4〜7mmであることがわかった。
更に、微小気泡を内包した高純度石英ガラス板(600m-1,4mm)の全枚数について測定を行った結果、4枚以上でなければ、熱流束を十分に遮蔽することができず、かつ13枚以上としても遮熱効果の向上を期待できず、熱容量的に悪影響があることがわかった。したがって、枚数は、4〜12枚が好ましく、より好ましくは、6〜9枚であることがわかった。
【0015】
次いで、6インチウエハ用縦型熱処理炉に使用する実施例の遮熱体として、表2記載の仕様で、全高の熱処理領域側1/3部分と残り2/3部分とを分離可能な構造のものとし、1/3部分を連続20回使用毎に取り外して新しいものと交換する一方、表2記載の仕様の一体構造の遮熱体を比較例として連続使用したところ、炉床部の温度は、表3に示すようになった。
【0016】
【表2】
Figure 0003865419
【0017】
【表3】
Figure 0003865419
【0018】
表3に示されているように、本実施例の場合、20回の使用で炉床部の温度は120℃となり、使用初期(約80℃)と比べて約40℃高くなったが、付着の激しかった1/3部分を交換することにより、炉床部の温度は95℃となり、約25℃分だけ回復した。その後、次の20回の使用で炉床部の温度は143℃となり、約48℃高くなった。ここで、再び付着の激しかった1/3部分を交換することにより、炉床部の温度は105℃となり、約38℃分だけ回復した。そして、更に次の20回の使用で炉床部の温度は155℃となった。
一方、比較例の場合、40回の連続使用で炉床部の温度は150℃となり、更に次の20回の連続使用で炉床部の温度は172℃となった。
ちなみに、炉床部の上限温度は、フランジのパッキン等の熱劣化を防止するため、160℃である。
したがって、本実施例によれば、比較例よりも遮熱性能を維持できる使用回数を50%も増やすことができる。
【0019】
又、本発明の実施の他の形態の実施例を比較例1〜3と共に説明する。
先ず、6インチウエハ用縦型熱処理炉に使用する遮熱体として、直径200mm,厚さ5mmの微小気泡を内包した高純度石英ガラス板6枚を、微小気泡を内包した高純度石英ガラス支柱各3本で等間隔に積層して全体の高さを200mmとしたものであって、熱処理領域側の3枚の高純度石英ガラス板及びその間の高純度石英ガラス支柱の密度を2.1g/cm3 、非熱処理領域側の3枚の石英ガラス板及び残りの高純度石英ガラス支柱の密度を1.9g/cm3 としたものを実施例、全体の密度を1.9g/cm3 ,2.1g/cm3 及び2.0g/cm3 としたものを比較例1,2及び3とした。
次いで、実施例,比較例1〜3の遮熱体を縦型熱処理炉に納置し、最高温度1200℃で熱処理した。この際の加熱,冷却の速度は100℃/min、等温保持は5時間とし、かつ遮熱体上には、6インチウエハ及びウエハボートの重量に相当する38kgの透明石英ガラス製の円筒状の重錘を載せた。
50回の加熱,冷却使用を繰り返した後の各遮熱体の評価結果を表4に示す。なお、変形量は、上記高さが全体としてどの程度短くなったかを示すものである。
【0020】
【表4】
Figure 0003865419
【0021】
表4に示されているように、遮熱効率を重視して全体を密度1.9g/cm3 とした比較例1の結果は、炉床部の温度が95℃と最も低く、遮熱効率のよさが示された。しかし、変形量が1.2mmと非常に大きく、このままでは実用に供することはできない。
一方、強度特性を重視して全体を密度2.1g/cm3 とした比較例2の結果は、比較例1とは逆に変形量は0.4mmと小さいが、炉床部の温度が160℃と高かった。このものは、実用的には遮熱効率が不十分である。
比較例3は、全体を比較例1と比較例2の中間の密度である2.0g/cm3 としたもので、炉床部の温度が110℃、変形量が0.8mmと比較的バランスのよい特性を示している。
これらの比較例1〜3に対して実施例の結果は、遮熱効率はそれを重視した比較例1と、又、強度特性はそれを重視した比較例2とほぼ同等である。更に、比較例3と比べると、遮熱効率はほぼ同等であるが、変形量が60%少ない。したがって、実施例の遮熱体は、遮熱効率と強度特性で総合的に優れていることがわかる。
なお、ダスト発生量は、強度の低下の程度とほぼ対応するものである。
【0022】
【発明の効果】
以上説明したように、本発明の遮熱体によれば、付着が激しい部分を取り外して新しいものと交換することが可能となるので、装置の稼働中に遮熱体の熱処理側部をエッチング処理することができ、装置の稼働率を向上させることができる。又、付着の激しい部分のみ新しいものと交換可能となるので、それ以外の部分について過剰エッチングをすることがなく、長寿命化を図ることができる。更に、高純度石英ガラス板の微小気泡の平均径、散乱係数及び密度を特定したことにより、遮熱効率を向上させることができる。又、遮熱体の熱処理領域側で強度を担保する一方、非熱処理領域側でダスト発生を低減しつつ遮熱効率を担保するので、従来に比べて十分な強度を有する遮熱体とすることができ、かつダスト発生を低減しつつその遮熱効率を高めることができる。
【図面の簡単な説明】
【図1】 本発明にかかる遮熱体が用いられた縦型熱処理炉の縦断面図である。
【図2】 図1に示された遮熱体の分解斜視図である
【図3】 図3は本発明の他の形態を示す遮熱体の斜視図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat shield used in a semiconductor heat treatment apparatus for performing heat treatment such as oxidation, diffusion, annealing, etc. on a silicon wafer for semiconductor devices such as LSI.
[0002]
[Prior art]
Conventionally, in this type of semiconductor heat treatment apparatus, the heat treatment region in which the silicon wafer group is placed is kept warm, the temperature is uniformed, and the non-heat treatment region is prevented from being burned, and the processing gas is uniformly supplied to the surface of the silicon wafer. Therefore, there is known a horizontal heat treatment furnace in which one or two high-purity quartz glass plates containing microbubbles are arranged in parallel with a space between a heat treatment region and a non-heat treatment region. (See Japanese Utility Model Publication No. 6-14480).
In this horizontal heat treatment furnace, a high-purity quartz glass plate enclosing microbubbles reflects and scatters the heat flux from the heat treatment region to the non-heat treatment region, equalizes the gas flow distribution, This is intended to prevent burnout in the non-heat treated region.
[0003]
[Problems to be solved by the invention]
However, in the conventional semiconductor heat treatment apparatus, since the heat shield has an integral structure, there are the following problems. In other words, the etching process that is performed as a maintenance for the deposits that accompany the CVD process is performed on the side of the heat treatment region where adhesion is the most severe, and is therefore etched to the non-heat treatment region side that is originally unnecessary. As a result, the entire heat shield with an integrated structure is deteriorated.
In addition, when the apparatus is stopped to perform the regeneration process by etching, the operating rate of the apparatus decreases. In particular, as silicon wafers become larger in diameter and ICs are more highly integrated, improving the operating rate of the apparatus becomes an important issue for improving productivity.
Further, in the conventional semiconductor heat treatment apparatus, since the density of each high-purity quartz glass plate of the heat shield is the same, if the amount of microbubbles is increased to increase the heat shield efficiency, the strength is reduced and the dust is reduced. Incidence increases. On the other hand, in order to increase the strength and extend the life, it is necessary to reduce the amount of microbubbles, and there is a problem that the heat shielding efficiency is lowered.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat shield used in a semiconductor heat treatment apparatus capable of preventing excessive etching of the heat shield as a whole, extending its life, and improving the operating rate.
Another object of the present invention is to provide a heat shield used in a semiconductor heat treatment apparatus that has a sufficient strength and can improve heat shield efficiency while reducing dust generation. .
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the heat shield used in the semiconductor heat treatment apparatus according to the present invention includes microbubbles having an average diameter of 200 μm or less, a scattering coefficient of 200 to 1200 m −1 , and a thickness of 4 to 10 mm. 4 to 12 high-purity quartz glasses are juxtaposed at intervals and are separably coupled to two groups. Among the high-purity quartz glasses separably coupled to the two groups, the upper group of high-purity quartz glasses The density ρ of the quartz glass plate is 1.9 <ρ ≦ 2.2 g / cm 3 , and the density ρ of the lower group of high-purity quartz glass plates is 1.7 ≦ ρ ≦ 2.1 g / cm 3. It is characterized by being.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a longitudinal sectional view of a vertical heat treatment furnace in which a heat shield according to the present invention is used, and an exploded perspective view of the heat shield .
In the figure, 1 is a cylindrical furnace core tube made of high-purity quartz glass with the upper end closed and the lower end opened. This furnace core tube 1 has an open end formed by a seal member (not shown) such as an O-ring. It is hermetically sealed and is erected vertically on the hearth 2.
The furnace core tube 1 forms a heat treatment region in combination with a cylindrical heating element 3 that surrounds a substantially full length outer periphery excluding its lower end, and this heat treatment region is formed by a heat insulating material 4 that forms the furnace body. Covered. A heat shield 5 placed on the hearth 2 is placed in the lower end of the furnace core tube 1 that is a non-heat treatment region, and the heat shield 5 is made of high-purity quartz glass, A wafer boat 7 on which silicon wafers 6 are stacked and mounted at appropriate intervals is placed in the heat treatment region.
The heat shield 5 reduces the amount of heat directly reaching the hearth 2 by reflecting and scattering the heat flux from the heat treatment region to the non-heat treatment region, and is composed of three circular high-purity quartz particles containing microbubbles. An upper portion (hereinafter referred to as a heat treatment side portion) 5a in which a glass plate 8 is connected by a plurality of high-purity quartz glass columns 9 with a required interval, and four circular high-purity quartz glass plates enclosing microbubbles 10 is composed of a lower side portion (referred to as a non-heat-treated side portion) 5b connected with a plurality of high-purity quartz glass columns 11 at a required interval.
The two parts 5a and 5b are a plurality of dowel holes 12 provided in the lowermost high-purity quartz glass plate 8 of the heat treatment side part 5a, and the high-purity quartz of the uppermost part of the non-heat treatment side part 5b. A high-purity quartz glass dowel 13 projecting from the glass plate 8 is separably connected in series.
[0006]
The high-purity quartz glass plates 8 and 10 of the heat shield 5 have an average diameter of microbubbles of 200 μm or less, a scattering coefficient of 200 to 1200 m −1 , and a density ρ of 1.7 ≦ ρ ≦ 2.2 g / cm 3. Yes.
When the average diameter of the microbubbles exceeds 200 μm, the mechanical strength decreases, and when the scattering coefficient is less than 200 m −1 , the heat shielding effect decreases rapidly, whereas when it exceeds 1200 m −1 , the heat shielding effect is Although the mechanical strength is small, the generation of dust is large, and when the density ρ is less than 1.7 g / cm 3 , the strength decreases and the generation of dust increases, while 2.2 g / If it exceeds cm 3 , the heat shielding effect is rapidly reduced. More preferably, the average diameter is 20 to 120 μm.
The plurality of high-purity quartz glass plates 8 and 10 are 4 to 12 in number and 4 to 10 mm in thickness per sheet.
If the number of sheets is less than 4, the heat flux cannot be sufficiently shielded. If the number of sheets is more than 12, the reduction rate of the heat flux becomes almost constant, the effect reaches a peak, and the thickness per sheet If the thickness is less than 4 mm, the heat shielding effect is not sufficient. On the other hand, if it exceeds 10 mm, the heat shielding effect cannot be expected so much for the thickness, but rather adversely affects the heat capacity. More preferably, the number is 6-9.
[0007]
In the vertical heat treatment furnace having the above-described configuration, the heat treatment side portion 5a with high adhesion can be removed and replaced with a new one, so that the heat treatment side portion 5a of the heat shield 5 is etched during operation of the apparatus. And the operating rate of the apparatus can be improved.
In addition, since only the part where adhesion is intense can be replaced with a new one, the remaining part is not excessively etched and the life can be extended.
Furthermore, the heat shielding efficiency can be improved by specifying the average diameter, scattering coefficient, and density of the microbubbles in the high-purity quartz glass plate.
In the embodiment described above, the case where the heat shield 5 is composed of two groups of the heat treatment side part 5a occupying 1/3 of the total height and the non-heat treatment side part 5b occupying the remaining 2/3 has been described. However, the present invention is not limited to this, and two groups occupying ½ of the total height, three groups occupying one third of the total height, or four or more groups occupying an appropriate height, and each group can be separated. It is good also as composition to combine.
[0008]
FIG. 3 is a perspective view of a heat shield showing another embodiment of the present invention . In this vertical heat treatment furnace, the heat shield 14 includes six circular high-purity quartz glass plates 15 enclosing microbubbles, and a plurality of high-purity quartz glass columns 16 enclosing the microbubbles at predetermined intervals. with integrally linked, or varied in two stages in the range of density [rho heat treatment region side 1.9 <ρ ≦ 2.2g / cm 3 , the non-heat-treated region side 1.7 ≦ ρ ≦ 2.1g / cm 3 , Alternatively, the density ρ is varied in multiple steps so that the density ρ decreases from the heat treatment region side to the non-heat treatment region side in the range of 1.7 ≦ ρ ≦ 2.2 g / cm 3 , and the density is changed from the heat treatment region side to the non-heat treatment region side. It is made to differ by at least two steps made small. The other configuration is almost the same as that of FIG.
[0009]
If the density ρ of the high-purity quartz glass plate 15 and the high-purity quartz glass column 16 on the heat treatment region side is less than 1.9 g / cm 3 , the strength decreases, and it cannot withstand creep and thermal shock. If it exceeds 2 g / cm 3 , the heat shielding efficiency decreases. Preferably, 2.0 ≦ ρ ≦ 2.1 g / cm 3 .
Further, when the density of the high-purity quartz glass plate 15 and the high-purity quartz glass column 16 on the non-heat treatment region side exceeds 2.1 g / cm 3 , the heat shielding effect is remarkably reduced, and the density is less than 1.7 g / cm 3 . If so, the strength is lowered and dust may be generated. Preferably, 1.8 ≦ ρ ≦ 2.0 g / cm 3 .
Note that the scattering coefficient, the number, the thickness, and the like of the high-purity quartz glass plate 15 are substantially the same as those in the embodiment, and thus the description thereof is omitted.
[0010]
In the vertical heat treatment furnace having the above-described configuration, the heat treatment region side is excellent in strength, and the non-heat treatment region side can be the heat shield 14 with low dust generation and excellent heat shielding effect. As well as improving the heat shielding efficiency, it has sufficient strength and low dust generation.
[0011]
In the description of each embodiment of the present invention, the vertical heat treatment furnace is described as the semiconductor heat treatment apparatus. However, the present invention is not limited to this and can be applied to a horizontal heat treatment furnace.
[0012]
【Example】
Next, an example of one embodiment of the present invention will be described together with a comparative example.
First, in a vertical heat treatment furnace maintained at a furnace temperature of 1200 ° C., the average diameter of microbubbles is 30 to 80 μm, the thickness of one sheet is 4 mm, the number of sheets is 9 (3 sheets + 3 sheets + 3 sheets), and the interval is 25 mm. A heat shield made of a high-purity quartz glass plate or the like having a scattering coefficient and density as shown in Table 1 is placed, and the furnace after 60 minutes have passed since the furnace temperature reached a predetermined temperature. When the temperature of the floor portion was measured, it was as shown in Table 1.
[0013]
[Table 1]
Figure 0003865419
[0014]
As shown in Table 1, it can be seen that when the amount of microbubbles is small and the scattering coefficient is less than 200 m −1 , the heat shielding effect decreases rapidly. On the other hand, when the amount of microbubbles is large and the scattering coefficient exceeds 1200 m −1 , the heat shielding effect is large, but the mechanical strength is small and the generation of dust is large. Met. Therefore, the scattering coefficient is preferably 200~1200M -1, more preferably, it was found that a 300~1000m -1.
In addition, as a result of examining the thickness of a high-purity quartz glass plate (600 m -1 ) enclosing microbubbles against a furnace temperature of 1000 ° C or higher, and measuring the amount of heat shielding per unit thickness, up to about 10 mm Although it is effective for heat insulation, it has been found that even if it is thicker than that, the heat insulation effect cannot be expected so much with respect to the thickness, but rather it adversely affects the heat capacity. On the other hand, when the thickness was less than 4 mm, the strength was insufficient. Therefore, it was found that the thickness per sheet is preferably 4 to 10 mm, and more preferably 4 to 7 mm.
Furthermore, as a result of measuring the total number of high-purity quartz glass plates (600 m −1 , 4 mm) enclosing microbubbles, the heat flux cannot be sufficiently shielded unless the number is four or more, and 13 It was found that the heat shielding effect could not be expected even when the number of sheets was larger, and there was an adverse effect on the heat capacity. Therefore, it was found that the number of sheets is preferably 4 to 12, more preferably 6 to 9.
[0015]
Next, as a heat shield of an embodiment used in a vertical heat treatment furnace for 6-inch wafers, the structure described in Table 2 has a structure capable of separating the heat treatment region side 1/3 portion and the remaining 2/3 portion of the total height. 1/3 part is removed every 20 times in succession and replaced with a new one. On the other hand, when a heat shield with an integrated structure having the specifications shown in Table 2 is used continuously as a comparative example, the temperature of the hearth part is As shown in Table 3.
[0016]
[Table 2]
Figure 0003865419
[0017]
[Table 3]
Figure 0003865419
[0018]
As shown in Table 3, in the case of this example, the temperature of the hearth was 120 ° C. after 20 uses, which was about 40 ° C. higher than the initial use (about 80 ° C.). By exchanging the 1/3 portion which was intense, the temperature of the hearth became 95 ° C. and recovered by about 25 ° C. Thereafter, the temperature of the hearth became 143 ° C. and increased by about 48 ° C. in the next 20 uses. Here, by exchanging the 1/3 portion where the adhesion was intense again, the temperature of the hearth became 105 ° C. and recovered by about 38 ° C. And the temperature of the hearth part became 155 degreeC by use of the next 20 times.
On the other hand, in the case of the comparative example, the temperature of the hearth part became 150 ° C. after 40 continuous use, and the temperature of the hearth part became 172 ° C. after the next 20 continuous use.
Incidentally, the upper limit temperature of the hearth is 160 ° C. in order to prevent thermal deterioration of the flange packing and the like.
Therefore, according to the present Example, the frequency | count of use which can maintain heat-shielding performance can be increased by 50% rather than a comparative example.
[0019]
Moreover, the Example of the other form of implementation of this invention is described with Comparative Examples 1-3.
First, as a heat shield used in a vertical heat treatment furnace for 6-inch wafers, each of high-purity quartz glass struts containing six bubbles of high-purity quartz glass enclosing minute bubbles with a diameter of 200 mm and a thickness of 5 mm. Three pieces are laminated at equal intervals so that the total height is 200 mm, and the density of the three high-purity quartz glass plates on the heat treatment region side and the high-purity quartz glass column between them is 2.1 g / cm. 3. Example in which the density of the three quartz glass plates on the non-heat-treated region side and the remaining high-purity quartz glass column was 1.9 g / cm 3, and the overall density was 1.9 g / cm 3 . Comparative examples 1, 2 and 3 were defined as 1 g / cm 3 and 2.0 g / cm 3 , respectively.
Next, the heat shields of Examples and Comparative Examples 1 to 3 were placed in a vertical heat treatment furnace and heat-treated at a maximum temperature of 1200 ° C. At this time, the heating and cooling rates are 100 ° C./min, the isothermal holding is 5 hours, and a 38 kg transparent quartz glass cylindrical shape corresponding to the weight of a 6 inch wafer and a wafer boat is placed on the heat shield. A weight was placed.
Table 4 shows the evaluation results of each heat shield after repeated heating and cooling 50 times. The deformation amount indicates how much the height is shortened as a whole.
[0020]
[Table 4]
Figure 0003865419
[0021]
As shown in Table 4, the result of Comparative Example 1 in which the overall density was 1.9 g / cm 3 with emphasis on the thermal insulation efficiency, the temperature of the hearth was the lowest at 95 ° C, and the thermal insulation efficiency was good. It has been shown. However, the amount of deformation is as extremely large as 1.2 mm and cannot be put into practical use as it is.
On the other hand, the result of Comparative Example 2 in which the strength characteristic was emphasized and the density was 2.1 g / cm 3 as a whole, contrary to Comparative Example 1, the amount of deformation was as small as 0.4 mm, but the hearth temperature was 160 mm. It was as high as ℃. This product has insufficient heat shielding efficiency in practical use.
In Comparative Example 3, the whole density was 2.0 g / cm 3 , which is an intermediate density between Comparative Example 1 and Comparative Example 2, and the hearth temperature was 110 ° C. and the deformation was 0.8 mm, which was relatively balanced. It shows good characteristics.
The results of the examples with respect to these Comparative Examples 1 to 3 are almost the same as those of Comparative Example 1 in which the heat shielding efficiency places importance on the heat shielding efficiency, and Comparative Example 2 in which the strength characteristics are emphasized. Furthermore, compared with Comparative Example 3, the heat shielding efficiency is almost the same, but the deformation is 60% less. Therefore, it can be seen that the heat shields of the examples are generally excellent in heat shield efficiency and strength characteristics.
The dust generation amount substantially corresponds to the degree of strength reduction.
[0022]
【The invention's effect】
As described above , according to the heat shield of the present invention, it is possible to remove a part that adheres heavily and replace it with a new one, so that the heat treatment side of the heat shield is etched during operation of the apparatus. And the operating rate of the apparatus can be improved. In addition, since only the part with the strong adhesion can be replaced with a new one, the remaining part is not excessively etched, and the life can be extended. Furthermore, the heat shielding efficiency can be improved by specifying the average diameter, scattering coefficient, and density of the microbubbles in the high-purity quartz glass plate. In addition, while ensuring the strength on the heat treatment region side of the heat shield, while ensuring the heat shield efficiency while reducing dust generation on the non-heat treatment region side, it is possible to provide a heat shield having sufficient strength compared to the conventional one. It is possible to increase the heat shielding efficiency while reducing dust generation.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vertical heat treatment furnace in which a heat shield according to the present invention is used.
FIG. 2 is an exploded perspective view of the heat shield shown in FIG .
FIG . 3 is a perspective view of a heat shield showing another embodiment of the present invention .

Claims (1)

平均径が200μm以下の微小気泡を内包し、散乱係数が200〜1200mIt contains microbubbles with an average diameter of 200 μm or less and a scattering coefficient of 200 to 1200 m -1-1 、厚さが4〜10mmである高純度石英ガラスが4〜12枚、間隔をあけて並置され、かつ2群に分離可能に結合され、4 to 12 high-purity quartz glasses having a thickness of 4 to 10 mm, juxtaposed at intervals, and detachably coupled to two groups,
前記2群に分離可能に結合された高純度石英ガラスのうち、上側一群の高純度石英ガラス板の密度ρが、1.9<ρ≦2.2g/cmAmong the high-purity quartz glasses detachably coupled to the two groups, the density ρ of the upper group of high-purity quartz glass plates is 1.9 <ρ ≦ 2.2 g / cm. 3Three であり、かつ下側一群の高純度石英ガラス板の密度ρが、1.7≦ρ≦2.1g/cmAnd the density ρ of the lower group of high-purity quartz glass plates is 1.7 ≦ ρ ≦ 2.1 g / cm. 3Three であることを特徴とする半導体熱処理装置に用いられる遮熱体。A heat shield for use in a semiconductor heat treatment apparatus.
JP24373895A 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment Expired - Fee Related JP3865419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24373895A JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24373895A JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH0963977A JPH0963977A (en) 1997-03-07
JP3865419B2 true JP3865419B2 (en) 2007-01-10

Family

ID=17108257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24373895A Expired - Fee Related JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3865419B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085349A (en) * 1999-09-17 2001-03-30 Toshiba Ceramics Co Ltd Vertical heat treatment device
JP2002343789A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Auxiliary heat-retention jig, its manufacturing method, wafer boat with heat insulator in plate form, vertical heat treatment equipment, method for modifying the same and method for manufacturing semiconductor device
US20170178758A1 (en) * 2015-12-18 2017-06-22 Applied Materials, Inc. Uniform wafer temperature achievement in unsymmetric chamber environment
CN113957540A (en) * 2021-11-01 2022-01-21 中国电子科技集团公司第四十八研究所 Heat treatment device suitable for mercury cadmium telluride material

Also Published As

Publication number Publication date
JPH0963977A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP3473715B2 (en) Quartz glass wafer boat
US6357604B1 (en) Long tooth rails for semiconductor wafer carriers
US7972703B2 (en) Baffle wafers and randomly oriented polycrystalline silicon used therefor
US8323411B2 (en) Semiconductor workpiece apparatus
EP1760170B1 (en) Chemical vapor deposition apparatus
KR100419812B1 (en) Thermal processing apparatus and process
JP3865419B2 (en) Heat shield used in semiconductor heat treatment equipment
US6515297B2 (en) CVD-SiC self-supporting membrane structure and method for manufacturing the same
JP3174379B2 (en) Heating equipment
US4613305A (en) Horizontal furnace with a suspension cantilever loading system
JP4014724B2 (en) Method for producing silica glass
JP3317781B2 (en) Method of manufacturing susceptor for heat treatment of semiconductor wafer
US4598665A (en) Silicon carbide process tube for semiconductor wafers
JPS6250970B2 (en)
JP7380872B2 (en) Heat treatment method for silicon wafers using a horizontal heat treatment furnace
JP2007059606A (en) Vertical wafer boat and vertical heat treatment furnace
CN209418474U (en) A kind of integral type silicon boat
JPS62189726A (en) Susceptor for vapor growth of semiconductor
JP2005166823A (en) Semiconductor substrate heat treatment apparatus, wafer boat therefor, and heat treatment method of semiconductor substrate
JP3205488B2 (en) Jig for heat treatment
JPH1131639A (en) Semiconductor manufacturing apparatus
JPS6224939B2 (en)
JPH065530A (en) Heat treatment furnace boat
JP7298406B2 (en) Method and apparatus for regenerating members in silicon single crystal pulling apparatus, and method for manufacturing silicon single crystal using regenerated members
KR0186103B1 (en) Dummy plate of manufacturing wafer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees