JPH0963977A - Semiconductor heat treatment device - Google Patents

Semiconductor heat treatment device

Info

Publication number
JPH0963977A
JPH0963977A JP24373895A JP24373895A JPH0963977A JP H0963977 A JPH0963977 A JP H0963977A JP 24373895 A JP24373895 A JP 24373895A JP 24373895 A JP24373895 A JP 24373895A JP H0963977 A JPH0963977 A JP H0963977A
Authority
JP
Japan
Prior art keywords
heat treatment
heat
quartz glass
purity quartz
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24373895A
Other languages
Japanese (ja)
Other versions
JP3865419B2 (en
Inventor
Hideo Nakanishi
秀夫 中西
Kazuo Ota
一雄 太田
Toyokazu Matsuyama
豊和 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP24373895A priority Critical patent/JP3865419B2/en
Publication of JPH0963977A publication Critical patent/JPH0963977A/en
Application granted granted Critical
Publication of JP3865419B2 publication Critical patent/JP3865419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor heat treatment device on which the whole heat shielding body is prevented from excesive etching, a long life can be ensured and working efficiency can be improved. SOLUTION: A plurality of high purity quartz glass plates 8 and 10, containing microscopic bubbles, are juxtaposed (9 and 11) between a heat treatment region and a non-heat treatment region leaving intervals, and the quartz glass plates are connected in such a manner that they can be separated at least into two groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LSI等の半導体
デバイス用シリコンウエハに酸化,拡散,アニール等の
熱処理を施す半導体熱処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor heat treatment apparatus for performing heat treatment such as oxidation, diffusion and annealing on a silicon wafer for semiconductor devices such as LSI.

【0002】[0002]

【従来の技術】従来、この種の半導体熱処理装置として
は、シリコンウエハ群が納置される熱処理領域の保温,
均熱化と非熱処理領域の焼損防止を図ると共に、シリコ
ンウエハ表面への処理ガスの均等供給を図るため、熱処
理領域と非熱処理領域との間に、微小気泡を内包した1
枚若しくは2枚の高純度石英ガラス板を間隔をあけて並
置してなる遮熱体を介装した横型熱処理炉が知られてい
る(実公平6−14480号公報参照)。この横型熱処
理炉においては、微小気泡を内包する高純度石英ガラス
板により、熱処理領域から非熱処理領域へ向う熱流束を
反射散乱させ、かつガス流分布を均等化させ、熱処理領
域の均熱化や非熱処理領域の焼損防止等を図るものであ
る。
2. Description of the Related Art Conventionally, as a semiconductor heat treatment apparatus of this type, heat insulation of a heat treatment area in which a silicon wafer group is stored,
In order to equalize the temperature and prevent the non-heat-treated region from burning, and to uniformly supply the processing gas to the surface of the silicon wafer, micro bubbles are included between the heat-treated region and the non-heat-treated region.
There is known a horizontal heat treatment furnace having a heat shield formed by arranging one or two high-purity quartz glass plates side by side with a space therebetween (see Japanese Utility Model Publication No. 6-14480). In this horizontal heat treatment furnace, a high-purity quartz glass plate containing microbubbles reflects and scatters the heat flux from the heat treatment area to the non-heat treatment area and equalizes the gas flow distribution, so The purpose is to prevent burning of the non-heat-treated region.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
半導体熱処理装置では、遮熱体が一体構造であるので、
以下に述べる不具合がある。すなわち、CVD処理に伴
って付着する付着物に対するメンテナンスとして行われ
るエッチング処理は、付着が最も激しい熱処理領域側を
基準にして行われるため、本来は不必要な非熱処理領域
側までエッチングされることとなり、一体構造の遮熱体
全体としての劣化が進む。又、エッチングによる再生処
理を行うために装置を停止することにより、装置の稼働
率が低下する。特に、シリコンウエハが大口径化し、I
Cの高集積化が進むと、装置の稼働率の向上は、生産性
向上にとって重要な課題となる。更に、従来の半導体熱
処理装置では、遮熱体の各高純度石英ガラス板の密度が
同一であるので、微小気泡の量を多くして遮熱効率を高
めようとすると、強度が低下し、かつダスト発生が増加
する。一方、強度を高めて長寿命化しようとすると、微
小気泡の量を少なくする必要があり、遮熱効率が低下す
る不具合がある。そこで、本発明は、遮熱体全体として
過剰なエッチングを防止し、その長寿命化を図ると共
に、稼働率を向上し得る半導体熱処理装置を提供するこ
とを目的とする。又、本発明の他の目的は、遮熱体が十
分な強度を有し、かつダスト発生を低減しつつ遮熱効率
を高め得る半導体熱処理装置を提供することにある。
However, in the conventional semiconductor heat treatment apparatus, since the heat shield has an integral structure,
There is a problem described below. That is, since the etching process performed as a maintenance for the adhered substances accompanying the CVD process is performed on the side of the heat-treated region where the adherence is the strongest, the non-heat-treated region side, which is originally unnecessary, is etched. The deterioration of the integrated heat shield as a whole progresses. In addition, the operation rate of the device is lowered by stopping the device to perform the regeneration process by etching. In particular, silicon wafers have a large diameter and
As the degree of integration of C increases, improving the operating rate of the device becomes an important issue for improving productivity. Further, in the conventional semiconductor heat treatment apparatus, since each high-purity quartz glass plate of the heat shield has the same density, if the amount of microbubbles is increased to increase the heat shield efficiency, the strength is lowered and the dust is reduced. Incidence increases. On the other hand, in order to increase the strength and prolong the life, it is necessary to reduce the amount of fine bubbles, which causes a problem that the heat shield efficiency is lowered. Therefore, it is an object of the present invention to provide a semiconductor heat treatment apparatus capable of preventing excessive etching of the heat shield as a whole, prolonging its life, and improving its operating rate. Another object of the present invention is to provide a semiconductor heat treatment apparatus in which the heat shield has sufficient strength and which can improve the heat shield efficiency while reducing dust generation.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の半導体熱処理装置は、熱処理領域と
非熱処理領域との間に、微小気泡を内包した複数の高純
度石英ガラス板が、間隔をあけて並置され、かつ少なく
とも2群に分離可能に結合されていることを特徴とす
る。前記複数の高純度石英ガラス板は、微小気泡の平均
径が200μm以下、散乱係数が200〜1200
-1、密度ρが1.7≦ρ≦2.2g/cm3 であること
が好ましい。又、前記複数の高純度石英ガラス板は、全
枚数が4〜12枚、1枚当りの厚さが4〜10mmである
ことが好ましい。又、第2の半導体熱処理装置は、熱処
理領域と非熱処理領域との間に、微小気泡を内包した複
数の高純度石英ガラス板が、間隔をあけて並置され、か
つこの密度を熱処理領域側から非熱処理領域側にかけて
小さくした少なくとも2段階に異ならせていることを特
徴とする。前記複数の高純度石英ガラス板は、密度ρが
熱処理領域側1.9<ρ≦2.2g/cm3 ,非熱処理領
域側1.7≦ρ≦2.1g/cm3 の範囲で2段階に異な
らせていることが好ましい。又、前記複数の高純度石英
ガラス板は、密度ρが1.7≦ρ≦2.2g/cm3の範
囲で熱処理領域側から非熱処理領域側にかけて小さくな
るように多段階に異ならせてもよい。
In order to solve the above-mentioned problems, a first semiconductor heat treatment apparatus of the present invention comprises a plurality of high-purity quartz glass plates containing microbubbles between a heat treatment region and a non-heat treatment region. Are juxtaposed at intervals and separably coupled to at least two groups. In the plurality of high-purity quartz glass plates, the average diameter of microbubbles is 200 μm or less, and the scattering coefficient is 200 to 1200.
It is preferable that m −1 and the density ρ are 1.7 ≦ ρ ≦ 2.2 g / cm 3 . The total number of the plurality of high-purity quartz glass plates is preferably 4 to 12, and the thickness of each plate is 4 to 10 mm. Further, in the second semiconductor heat treatment apparatus, a plurality of high-purity quartz glass plates containing microbubbles are juxtaposed at intervals between the heat treatment region and the non-heat treatment region, and the density of the high purity quartz glass plates is set from the heat treatment region side. It is characterized in that it is made different in at least two stages that are made smaller toward the non-heat-treated region side. Wherein the plurality of high-purity quartz glass plate, the density [rho heat treatment region side 1.9 <ρ ≦ 2.2g / cm 3 , 2 stages in the range of non-heat region side 1.7 ≦ ρ ≦ 2.1g / cm 3 It is preferable that they are different from each other. Further, the plurality of high-purity quartz glass plates may be made different in multiple steps so that the density ρ becomes smaller from the heat treatment region side to the non-heat treatment region side in the range of 1.7 ≦ ρ ≦ 2.2 g / cm 3. Good.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1,図2は本発明の半導
体熱処理装置に係る実施の一形態を示す縦型熱処理炉の
縦断面図、その要部の分解斜視図である。図中1は高純
度石英ガラスからなり、上端を閉塞しかつ下端を開口し
た円筒状の炉芯管で、この炉芯管1は、Oリング等のシ
ール部材(図示せず)により開口端を気密に封止して炉
床2上に垂直に立設されている。炉芯管1は、その下端
部を除くほぼ全長の外周を囲む円筒状の発熱体3と相俟
って熱処理領域を形成しており、この熱処理領域は、炉
体を形成する断熱材4によって覆われている。非熱処理
領域である炉芯管1の下端部内には、炉床2上に載置し
た遮熱体5が納置されており、この遮熱体5上には、高
純度石英ガラスからなり、シリコンウエハ6を適宜間隔
で積層して搭載したウエハボート7が熱処理領域に位置
して載置されている。遮熱体5は、熱処理領域から非熱
処理領域へ向う熱流束を反射散乱することにより、炉床
2に直接到達する熱量を低減するもので、微小気泡を内
包した円形の3枚の高純度石英ガラス板8を、複数の高
純度石英ガラス支柱9により所要間隔をあけて連結した
熱処理側部5aと、微小気泡を内包した円形の4枚の高
純度石英ガラス板10を、複数の高純度石英ガラス支柱
11により所要間隔をあけて連結した非熱処理側部5b
とから構成されている。そして、両部5a,5bは、熱
処理側部5aの最下部の高純度石英ガラス板8に設けた
複数のダボ穴12と、これと対応させて非熱処理側部5
bの最上部の高純度石英ガラス板8に突設した高純度石
英ガラス製のダボ13とにより、分離可能に直列に結合
されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a vertical cross-sectional view of a vertical heat treatment furnace showing an embodiment of a semiconductor heat treatment apparatus of the present invention and an exploded perspective view of a main part thereof. In the figure, 1 is a cylindrical furnace core tube made of high-purity quartz glass and closed at the upper end and opened at the lower end. The furnace core tube 1 has an open end with a sealing member (not shown) such as an O-ring. It is hermetically sealed and stands vertically on the hearth 2. The furnace core tube 1 forms a heat treatment area in cooperation with a cylindrical heating element 3 that surrounds the outer periphery of almost the entire length excluding the lower end portion thereof, and this heat treatment area is formed by a heat insulating material 4 that forms the furnace body. Is covered. A heat shield 5 placed on the hearth 2 is housed in the lower end of the furnace core tube 1 which is a non-heat treatment area, and on the heat shield 5 is made of high-purity quartz glass, A wafer boat 7 in which silicon wafers 6 are stacked and mounted at appropriate intervals is placed in the heat treatment area. The heat shield 5 reduces the amount of heat that directly reaches the hearth 2 by reflecting and scattering the heat flux from the heat treatment area to the non-heat treatment area. The heat shield 5 has three circular high-purity quartz particles containing microbubbles. A plurality of high-purity quartz glass plates 8 are formed by connecting a plurality of high-purity quartz glass support columns 9 at predetermined intervals to each other, a heat treatment side portion 5a, four circular high-purity quartz glass plates 10 containing microbubbles. Non-heat treatment side part 5b connected by glass columns 11 at a required interval
It is composed of Both parts 5a and 5b are provided with a plurality of dowel holes 12 provided in the high-purity quartz glass plate 8 at the bottom of the heat-treated side part 5a, and the non-heat-treated side part 5 corresponding thereto.
It is separably connected in series by a dowel 13 made of high-purity quartz glass protruding from the high-purity quartz glass plate 8 at the top of b.

【0006】遮熱体5の各高純度石英ガラス板8,10
は、微小気泡の平均径を200μm以下、散乱係数を2
00〜1200m-1、密度ρを1.7≦ρ≦2.2g/
cm3としている。微小気泡の平均径が200μmを超え
ると、機械的強度が小さくなり、散乱係数が200m-1
未満であると、遮熱効果が急激に小さくなる一方、12
00m-1を超えると、遮熱効果は大きくなるが機械的強
度が小さく、ダストの発生が大きくなり、又、密度ρが
1.7g/cm3 未満であると、強度が低下し、かつダス
トの発生が大きくなる一方、2.2g/cm3 を超える
と、遮熱効果が急激に小さくなる。より好ましくは、平
均径が20〜120μmである。又、複数の高純度石英
ガラス板8,10は、枚数を4〜12枚、1枚当りの厚
さを4〜10mmとしている。枚数が4枚未満であると、
熱流束を十分に遮蔽することができない一方、12枚を
超えると、熱流束の減少率はほぼ一定になり、効果が頭
打ちとなり、又、1枚当りの厚さが4mm未満であると、
遮熱効果が十分でない一方、10mmを超えると、厚さの
割には遮熱効果が余り期待できず、むしろ熱容量的に悪
影響を与える。より好ましくは、枚数が6〜9枚であ
る。
High-purity quartz glass plates 8 and 10 of the heat shield 5
Is an average diameter of microbubbles of 200 μm or less and a scattering coefficient of 2
00 to 1200 m -1 , density ρ is 1.7 ≤ ρ ≤ 2.2 g /
cm 3 When the average diameter of the micro bubbles exceeds 200 μm, the mechanical strength becomes small and the scattering coefficient becomes 200 m −1.
If it is less than 12, the heat-shielding effect is sharply reduced, while
If it exceeds 00 m -1 , the heat shielding effect will be large, but the mechanical strength will be small and the generation of dust will be large, and if the density ρ is less than 1.7 g / cm 3 , the strength will be reduced and the dust will be reduced. However, when the amount exceeds 2.2 g / cm 3 , the heat shielding effect sharply decreases. More preferably, the average diameter is 20 to 120 μm. The plurality of high-purity quartz glass plates 8 and 10 have a number of 4 to 12 and a thickness of 4 to 10 mm. If the number is less than 4,
While the heat flux cannot be sufficiently shielded, when the number of sheets exceeds 12, the reduction rate of the heat flux becomes almost constant, the effect reaches the ceiling, and when the thickness per sheet is less than 4 mm,
While the heat shielding effect is not sufficient, if it exceeds 10 mm, the heat shielding effect cannot be expected so much for the thickness, and rather the heat capacity is adversely affected. More preferably, the number is 6-9.

【0007】上記構成の縦型熱処理炉においては、付着
が激しい熱処理側部5aを取り外して新しいものと交換
することが可能となるので、装置の稼働中に遮熱体5の
熱処理側部5aをエッチング処理することができ、装置
の稼働率を向上させることができる。又、付着の激しい
部分のみを新しいものと交換可能となるので、それ以外
の部分について過剰エッチングすることがなく、長寿命
化を図ることができる。更に、高純度石英ガラス板の微
小気泡の平均径、散乱係数及び密度を特定することによ
り、遮熱効率を向上させることができる。なお、上述し
た実施の一形態では、遮熱体5を全高の1/3を占める
熱処理側部5aと、残る2/3を占める非熱処理側部5
bとの2群で構成する場合について述べたが、これに限
定されるものではなく、全高の1/2ずつを占める2群
又は全高の1/3ずつを占める3群あるいは適宜高さを
占める4群以上とし、かつ各群を分離可能に結合する構
成としてもよい。
In the vertical heat treatment furnace having the above structure, it is possible to remove the heat treatment side portion 5a having strong adhesion and replace it with a new one, so that the heat treatment side portion 5a of the heat shield 5 can be removed while the apparatus is in operation. Etching can be performed, and the operating rate of the device can be improved. In addition, since only the portion where the adhesion is strong can be replaced with a new one, it is possible to prolong the life without excessive etching of the other portions. Further, the heat shield efficiency can be improved by specifying the average diameter, the scattering coefficient and the density of the fine bubbles of the high purity quartz glass plate. In the embodiment described above, the heat shield 5 occupies 1/3 of the total height of the heat shield 5 and the non heat treated side 5 occupies the remaining 2/3.
Although the case of being composed of two groups b and b has been described, the present invention is not limited to this, and two groups occupying ½ of the total height or three groups occupying ⅓ of the total height or occupying appropriate heights. There may be four or more groups, and each group may be separably coupled.

【0008】図3は本発明の半導体熱処理装置に係る実
施の他の形態を示す縦型熱処理炉の要部の斜視図であ
る。この縦型熱処理炉において、遮熱体14は、微小気
泡を内包した円形の6枚の高純度石英ガラス板15を、
微小気泡を内包した複数の高純度石英ガラス支柱16に
より所要間隔をあけて一体連結すると共に、密度ρが熱
処理領域側1.9<ρ≦2.2g/cm3 ,非熱処理領域
側1.7≦ρ≦2.1g/cm3 の範囲で2段階に異なら
せたり、あるいは密度ρが1.7≦ρ≦2.2g/cm3
の範囲で熱処理領域側から非熱処理領域側にかけて小さ
くなるように多段階に異ならせたりし、密度を熱処理領
域側から非熱処理領域側にかけて小さくした少なくとも
2段階に異ならせて構成されている。他の構成は、図1
のものとほぼ同様であるので、その説明を省略する。
FIG. 3 is a perspective view of a main part of a vertical heat treatment furnace showing another embodiment of the semiconductor heat treatment apparatus of the present invention. In this vertical heat treatment furnace, the heat shield 14 comprises six circular high-purity quartz glass plates 15 containing fine bubbles.
A plurality of high-purity silica glass columns 16 containing micro-bubbles are integrally connected at a required interval, and the density ρ is 1.9 <ρ ≦ 2.2 g / cm 3 , the non-heat-treated area side is 1.7. Different in two steps within the range of ≤ρ≤2.1 g / cm 3 , or the density ρ is 1.7≤ρ≤2.2 g / cm 3
In this range, the heat treatment region side is changed to a non-heat treatment region side so as to be reduced in multiple stages, and the density is reduced from the heat treatment region side to the non-heat treatment region side in at least two stages. Other configurations are shown in FIG.
The description is omitted because it is almost the same as the one described above.

【0009】熱処理領域側の高純度石英ガラス板15及
び高純度石英ガラス支柱16の密度ρは、1.9g/cm
3 未満であると、強度が低下し、クリープや熱衝撃に耐
えることができず、2.2g/cm3 を超えると、遮熱効
率が低下する。好ましくは、2.0≦ρ≦2.1g/cm
3 である。又、非熱処理領域側の高純度石英ガラス板1
5及び高純度石英ガラス支柱16の密度は、2.1g/
cm3 を超えると、遮熱効果が著しく低下し、1.7g/
cm3 未満であると、強度が低下し、ダストの発生のおそ
れがある。好ましくは、1.8≦ρ≦2.0g/cm3
ある。なお、高純度石英ガラス板15の散乱係数、枚数
及び厚さ等は、実施の一形態の場合とほぼ同様であるの
で、その説明を省略する。
The density ρ of the high-purity quartz glass plate 15 and the high-purity quartz glass column 16 on the heat treatment area side is 1.9 g / cm.
When it is less than 3 , the strength is lowered, and it cannot withstand creep and thermal shock. When it exceeds 2.2 g / cm 3 , the heat shield efficiency is lowered. Preferably 2.0 ≦ ρ ≦ 2.1 g / cm
Is 3 . In addition, the high-purity quartz glass plate 1 on the non-heat treatment area side
5 and high-purity quartz glass column 16 have a density of 2.1 g /
If it exceeds cm 3 , the heat shield effect is significantly reduced, and 1.7 g /
If it is less than cm 3 , the strength is reduced and dust may be generated. Preferably, 1.8 ≦ ρ ≦ 2.0 g / cm 3 . The scattering coefficient, the number of sheets, the thickness, and the like of the high-purity quartz glass plate 15 are almost the same as in the case of the first embodiment, and thus the description thereof will be omitted.

【0010】上記構成の縦型熱処理炉においては、熱処
理領域側を強度的に優れ、かつ非熱処理領域側をダスト
発生が低く遮熱効果に優れた遮熱体14とすることがで
き、遮熱体14全体として遮熱効率を高めると共に、十
分な強度を有し、かつダスト発生の低いものとすること
ができる。
In the vertical heat treatment furnace having the above-mentioned structure, the heat treatment area can be used as the heat shield 14 which is excellent in strength, and the non-heat treatment area can be used as the heat shield 14 which has a low dust generation and an excellent heat shield effect. It is possible to increase the heat shield efficiency of the entire body 14 and to have sufficient strength and low dust generation.

【0011】なお、上記発明の実施の各形態の説明にお
いては、半導体熱処理装置として縦型熱処理炉について
述べたが、これに限定されるものではなく、横型熱処理
炉にも適用できる。
In the description of each of the embodiments of the present invention, the vertical heat treatment furnace is described as the semiconductor heat treatment apparatus, but the present invention is not limited to this and can be applied to a horizontal heat treatment furnace.

【0012】[0012]

【実施例】次に、本発明の実施の一形態の実施例を比較
例と共に説明する。先ず、炉内温度1200℃に保持し
た縦型熱処理炉に、微小気泡の平均径を30〜80μm
とし1枚の厚さが4mm、枚数が9枚(3枚+3枚+3
枚)、間隔が25mmの3分割構造で、散乱係数及び密度
を表1の通りにした高純度石英ガラス板等からなる遮熱
体を納置し、炉内温度が所定温度に到達してから60分
経過後の炉床部の温度を測定したところ、表1に示すよ
うになった。
EXAMPLES Next, examples of one embodiment of the present invention will be described together with comparative examples. First, in a vertical heat treatment furnace maintained at a furnace temperature of 1200 ° C., the average diameter of fine bubbles was 30 to 80 μm.
The thickness of one sheet is 4 mm, and the number of sheets is 9 sheets (3 + 3 + 3
Sheet), a three-division structure with a space of 25 mm, and a heat shield made of high-purity quartz glass plate with scattering coefficient and density as shown in Table 1 was placed in the furnace, and after the temperature in the furnace reached a predetermined temperature, When the temperature of the hearth after 60 minutes was measured, it was as shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示されているように、微小気泡の量
が少なく、散乱係数が200m-1未満のものでは、遮熱
効果が急激に小さくなることがわかる。一方、微小気泡
の量が多く、散乱係数が1200m-1を超えるもので
は、遮熱効果は大きくなるが、機械的強度が小さく、か
つダストの発生が多くなるので、半導体熱処理用として
は不適当であった。したがって、散乱係数は、200〜
1200m-1であることが好ましく、より好ましくは、
300〜1000m-1であることがわかった。又、10
00℃以上の炉内温度に対して、微小気泡を内包した高
純度石英ガラス板(600m-1)の厚みについて検討
し、単位厚さ当りの遮熱量を測定した結果、10mm程度
までは遮熱に有効であるが、それ以上厚くしても厚さの
割には遮熱効果が余り期待できず、むしろ熱容量的に悪
影響を与えることがわかった。一方、厚さが4mm未満で
あると、強度が不十分となった。したがって、1枚当り
の厚さは、4〜10mmが好ましく、より好ましくは、4
〜7mmであることがわかった。更に、微小気泡を内包し
た高純度石英ガラス板(600m-1,4mm)の全枚数に
ついて測定を行った結果、4枚以上でなければ、熱流束
を十分に遮蔽することができず、かつ13枚以上として
も遮熱効果の向上を期待できず、熱容量的に悪影響があ
ることがわかった。したがって、枚数は、4〜12枚が
好ましく、より好ましくは、6〜9枚であることがわか
った。
As shown in Table 1, it can be seen that the heat shielding effect is sharply reduced when the amount of microbubbles is small and the scattering coefficient is less than 200 m -1 . On the other hand, when the amount of fine bubbles is large and the scattering coefficient exceeds 1200 m -1 , the heat shielding effect is large, but the mechanical strength is small and dust is generated a lot, which is unsuitable for semiconductor heat treatment. Met. Therefore, the scattering coefficient is 200 to
It is preferably 1200 m -1 , more preferably,
It was found to be 300 to 1000 m -1 . Also, 10
We examined the thickness of a high-purity quartz glass plate (600 m -1 ) containing microbubbles at a furnace temperature of 00 ° C or higher, and measured the amount of heat shield per unit thickness, and as a result, the heat shield up to about 10 mm. It was found that the heat-shielding effect could not be expected so much even if the thickness was made thicker than that, but rather the heat capacity was adversely affected. On the other hand, when the thickness is less than 4 mm, the strength is insufficient. Therefore, the thickness per sheet is preferably 4 to 10 mm, more preferably 4 mm.
It was found to be ~ 7 mm. Furthermore, as a result of measuring all the high-purity quartz glass plates (600 m -1 , 4 mm) containing micro bubbles, the heat flux cannot be sufficiently shielded unless the number is 4 or more, and 13 It was found that even if the number of sheets is more than one, improvement of the heat shield effect cannot be expected, and the heat capacity is adversely affected. Therefore, it was found that the number of sheets is preferably 4 to 12, and more preferably 6 to 9.

【0015】次いで、6インチウエハ用縦型熱処理炉に
使用する実施例の遮熱体として、表2記載の仕様で、全
高の熱処理領域側1/3部分と残り2/3部分とを分離
可能な構造のものとし、1/3部分を連続20回使用毎
に取り外して新しいものと交換する一方、表2記載の仕
様の一体構造の遮熱体を比較例として連続使用したとこ
ろ、炉床部の温度は、表3に示すようになった。
Next, as the heat shield of the embodiment used in the vertical heat treatment furnace for 6-inch wafers, according to the specifications shown in Table 2, the heat treatment area side 1/3 portion of the total height and the remaining 2/3 portion can be separated. The heat shield with the integrated structure of the specifications shown in Table 2 was continuously used as a comparative example while the 1/3 part was removed and replaced with a new one every 20 times of continuous use. The temperature of was as shown in Table 3.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表3に示されているように、本実施例の場
合、20回の使用で炉床部の温度は120℃となり、使
用初期(約80℃)と比べて約40℃高くなったが、付
着の激しかった1/3部分を交換することにより、炉床
部の温度は95℃となり、約25℃分だけ回復した。そ
の後、次の20回の使用で炉床部の温度は143℃とな
り、約48℃高くなった。ここで、再び付着の激しかっ
た1/3部分を交換することにより、炉床部の温度は1
05℃となり、約38℃分だけ回復した。そして、更に
次の20回の使用で炉床部の温度は155℃となった。
一方、比較例の場合、40回の連続使用で炉床部の温度
は150℃となり、更に次の20回の連続使用で炉床部
の温度は172℃となった。ちなみに、炉床部の上限温
度は、フランジのパッキン等の熱劣化を防止するため、
160℃である。したがって、本実施例によれば、比較
例よりも遮熱性能を維持できる使用回数を50%も増や
すことができる。
As shown in Table 3, in the case of this example, the temperature of the hearth portion became 120 ° C. after 20 uses, which was about 40 ° C. higher than the initial temperature (about 80 ° C.). However, the temperature of the hearth became 95 ° C by replacing the 1/3 portion where the adhesion was intense, and the temperature recovered by about 25 ° C. After that, the temperature of the hearth portion increased to 143 ° C. and increased by about 48 ° C. in the next 20 uses. Here, the temperature of the hearth was reduced to 1 by replacing the 1/3 part where the adhesion was intense again.
The temperature reached 05 ° C, and the temperature was recovered by about 38 ° C. Then, the temperature of the hearth portion became 155 ° C. in the next 20 uses.
On the other hand, in the case of the comparative example, the temperature of the hearth portion was 150 ° C. after 40 consecutive uses, and the temperature of the hearth portion was 172 ° C. after the next 20 consecutive uses. By the way, the upper limit temperature of the hearth is to prevent thermal deterioration of the packing of the flange,
160 ° C. Therefore, according to the present embodiment, the number of times of use capable of maintaining the heat shield performance can be increased by 50% as compared with the comparative example.

【0019】又、本発明の実施の他の形態の実施例を比
較例1〜3と共に説明する。先ず、6インチウエハ用縦
型熱処理炉に使用する遮熱体として、直径200mm,厚
さ5mmの微小気泡を内包した高純度石英ガラス板6枚
を、微小気泡を内包した高純度石英ガラス支柱各3本で
等間隔に積層して全体の高さを200mmとしたものであ
って、熱処理領域側の3枚の高純度石英ガラス板及びそ
の間の高純度石英ガラス支柱の密度を2.1g/cm3
非熱処理領域側の3枚の石英ガラス板及び残りの高純度
石英ガラス支柱の密度を1.9g/cm3 としたものを実
施例、全体の密度を1.9g/cm3 ,2.1g/cm3
び2.0g/cm3 としたものを比較例1,2及び3とし
た。次いで、実施例,比較例1〜3の遮熱体を縦型熱処
理炉に納置し、最高温度1200℃で熱処理した。この
際の加熱,冷却の速度は100℃/min、等温保持は5時
間とし、かつ遮熱体上には、6インチウエハ及びウエハ
ボートの重量に相当する38kgの透明石英ガラス製の円
筒状の重錘を載せた。50回の加熱,冷却使用を繰り返
した後の各遮熱体の評価結果を表4に示す。なお、変形
量は、上記高さが全体としてどの程度短くなったかを示
すものである。
An example of another embodiment of the present invention will be described together with Comparative Examples 1 to 3. First, as heat shields used in a vertical heat treatment furnace for 6-inch wafers, six high-purity quartz glass plates containing microbubbles with a diameter of 200 mm and a thickness of 5 mm were used. The total height is 200 mm by stacking three pieces at equal intervals, and the density of the three high-purity quartz glass plates on the heat treatment area side and the high-purity quartz glass columns between them is 2.1 g / cm. 3 ,
An example in which the density of the three quartz glass plates and the remaining high-purity quartz glass columns on the non-heat-treated region side was 1.9 g / cm 3 was used as an example, and the overall density was 1.9 g / cm 3 , 2.1 g / cm 3 . cm 3 and 2.0 g / cm 3 were designated as Comparative Examples 1, 2 and 3. Then, the heat shields of Examples and Comparative Examples 1 to 3 were placed in a vertical heat treatment furnace and heat-treated at a maximum temperature of 1200 ° C. The heating / cooling rate at this time was 100 ° C./min, the isothermal temperature was 5 hours, and the heat shield had a cylindrical shape of 38 kg of transparent quartz glass corresponding to the weight of the 6-inch wafer and wafer boat. I put a weight on it. Table 4 shows the evaluation results of the heat shields after repeated heating and cooling of 50 times. The amount of deformation indicates how short the height has become as a whole.

【0020】[0020]

【表4】 [Table 4]

【0021】表4に示されているように、遮熱効率を重
視して全体を密度1.9g/cm3 とした比較例1の結果
は、炉床部の温度が95℃と最も低く、遮熱効率のよさ
が示された。しかし、変形量が1.2mmと非常に大き
く、このままでは実用に供することはできない。一方、
強度特性を重視して全体を密度2.1g/cm3 とした比
較例2の結果は、比較例1とは逆に変形量は0.4mmと
小さいが、炉床部の温度が160℃と高かった。このも
のは、実用的には遮熱効率が不十分である。比較例3
は、全体を比較例1と比較例2の中間の密度である2.
0g/cm3 としたもので、炉床部の温度が110℃、変
形量が0.8mmと比較的バランスのよい特性を示してい
る。これらの比較例1〜3に対して実施例の結果は、遮
熱効率はそれを重視した比較例1と、又、強度特性はそ
れを重視した比較例2とほぼ同等である。更に、比較例
3と比べると、遮熱効率はほぼ同等であるが、変形量が
60%少ない。したがって、実施例の遮熱体は、遮熱効
率と強度特性で総合的に優れていることがわかる。な
お、ダスト発生量は、強度の低下の程度とほぼ対応する
ものである。
As shown in Table 4, the results of Comparative Example 1 in which the overall density was 1.9 g / cm 3 with an emphasis on the heat shield efficiency, the hearth temperature was the lowest at 95 ° C. The good thermal efficiency was shown. However, the amount of deformation is as large as 1.2 mm, and it cannot be put to practical use as it is. on the other hand,
Contrary to Comparative Example 1, the result of Comparative Example 2 in which the entire density was 2.1 g / cm 3 with an emphasis on strength characteristics, the deformation amount was as small as 0.4 mm, but the temperature of the hearth was 160 ° C. it was high. This one has insufficient heat-shielding efficiency in practical use. Comparative Example 3
Is an intermediate density between Comparative Example 1 and Comparative Example 2.
The value of 0 g / cm 3 indicates that the temperature of the hearth is 110 ° C. and the amount of deformation is 0.8 mm, which is a relatively well-balanced characteristic. The results of the examples of Comparative Examples 1 to 3 are almost the same as those of Comparative Example 1 in which heat shielding efficiency is emphasized and Comparative Example 2 in which strength characteristics are emphasized. Further, compared with Comparative Example 3, the heat shield efficiency is almost the same, but the deformation amount is 60% smaller. Therefore, it can be seen that the heat shields of Examples are comprehensively excellent in heat shield efficiency and strength characteristics. The amount of dust generated almost corresponds to the degree of decrease in strength.

【0022】[0022]

【発明の効果】以上説明したように、本発明の第1の半
導体熱処理装置によれば、付着が激しい部分を取り外し
て新しいものと交換することが可能となるので、装置の
稼働中に遮熱体の熱処理側部をエッチング処理すること
ができ、装置の稼働率を向上させることができる。又、
付着の激しい部分のみ新しいものと交換可能となるの
で、それ以外の部分について過剰エッチングをすること
がなく、長寿命化を図ることができる。更に、高純度石
英ガラス板の微小気泡の平均径、散乱係数及び密度を特
定することにより、遮熱効率を向上させることができ
る。又、第2の半導体熱処理装置によれば、遮熱体の熱
処理領域側で強度を担保する一方、非熱処理領域側でダ
スト発生を低減しつつ遮熱効率を担保するので、従来に
比べて十分な強度を有する遮熱体とすることができ、か
つダスト発生を低減しつつその遮熱効率を高めることが
できる。
As described above, according to the first semiconductor heat treatment apparatus of the present invention, it is possible to remove a portion having a strong adhesion and replace it with a new one, so that the heat shield during the operation of the apparatus can be prevented. The heat-treated side of the body can be etched to improve the availability of the device. or,
Since only the part where the adhesion is strong can be replaced with a new one, it is possible to prolong the life without overetching the other parts. Further, the heat shield efficiency can be improved by specifying the average diameter, the scattering coefficient and the density of the fine bubbles of the high purity quartz glass plate. Further, according to the second semiconductor heat treatment apparatus, the strength is secured on the heat treatment region side of the heat shield, while the heat shield efficiency is secured on the non-heat treatment region side while reducing the generation of dust. A heat shield having strength can be obtained, and the heat shield efficiency can be improved while reducing dust generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体熱処理装置に係る実施の一形態
を示す縦型熱処理炉の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a vertical heat treatment furnace showing an embodiment of a semiconductor heat treatment apparatus of the present invention.

【図2】図1の縦型熱処理炉の要部の分解斜視図であ
る。
FIG. 2 is an exploded perspective view of essential parts of the vertical heat treatment furnace of FIG.

【図3】本発明の半導体熱処理装置に係る実施の他の形
態を示す縦型熱処理炉の要部の斜視図である。
FIG. 3 is a perspective view of a main part of a vertical heat treatment furnace showing another embodiment of the semiconductor heat treatment apparatus of the present invention.

【符号の説明】[Explanation of symbols]

5 遮熱体 5a 熱処理側部 5b 非熱処理側部 8 高純度石英ガラス板 9 高純度石英ガラス支柱 10 高純度石英ガラス板 11 高純度石英ガラス支柱 12 ダボ穴 13 ダボ 14 遮熱体 15 高純度石英ガラス板 16 高純度石英ガラス支柱 5 Heat Shield 5a Heat Treatment Side 5b Non-heat Treatment Side 8 High Purity Quartz Glass Plate 9 High Purity Quartz Glass Column 10 High Purity Quartz Glass Plate 11 High Purity Quartz Glass Column 12 Dowel Hole 13 Dowel 14 Heat Shield 15 High Purity Quartz Glass plate 16 High-purity quartz glass column

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 H01L 21/324 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 21/324 H01L 21/324 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱処理領域と非熱処理領域との間に、微
小気泡を内包した複数の高純度石英ガラス板が、間隔を
あけて並置され、かつ少なくとも2群に分離可能に結合
されていることを特徴とする半導体熱処理装置。
1. A plurality of high-purity silica glass plates containing microbubbles are juxtaposed at intervals between the heat-treated region and the non-heat-treated region and are separably coupled to at least two groups. A semiconductor heat treatment apparatus characterized by:
【請求項2】 前記複数の高純度石英ガラス板は、微小
気泡の平均径が200μm以下、散乱係数が200〜1
200m-1、密度ρが1.7≦ρ≦2.2g/cm3 であ
ることを特徴とする請求項1記載の半導体熱処理装置。
2. The plurality of high-purity quartz glass plates have an average diameter of fine bubbles of 200 μm or less and a scattering coefficient of 200 to 1
2. The semiconductor heat treatment apparatus according to claim 1 , wherein the density is 200 m −1 and the density ρ is 1.7 ≦ ρ ≦ 2.2 g / cm 3 .
【請求項3】 前記複数の高純度石英ガラス板は、全枚
数が4〜12枚、1枚当りの厚さが4〜10mmであるこ
とを特徴とする請求項1又は2記載の半導体熱処理装
置。
3. The semiconductor heat treatment apparatus according to claim 1, wherein the plurality of high-purity quartz glass plates have a total number of 4 to 12 and a thickness of 4 to 10 mm. .
【請求項4】 熱処理領域と非熱処理領域との間に、微
小気泡を内包した複数の高純度石英ガラス板が、間隔を
あけて並置され、かつこの密度を熱処理領域側から非熱
処理領域側にかけて小さくした少なくとも2段階に異な
らせていることを特徴とする半導体熱処理装置。
4. A plurality of high-purity silica glass plates containing micro-bubbles are arranged side by side with a space between the heat-treated region and the non-heat-treated region, and the density is increased from the heat-treated region side to the non-heat-treated region side. A semiconductor heat treatment apparatus characterized in that it is made different in at least two stages that are made smaller.
【請求項5】 前記複数の高純度石英ガラス板は、密度
ρが熱処理領域側1.9<ρ≦2.2g/cm3 、非熱処
理領域側1.7≦ρ≦2.1g/cm3 の範囲で2段階に
異ならせていることを特徴とする請求項4記載の半導体
熱処理装置。
Wherein said plurality of high-purity quartz glass plate, the density [rho heat treatment region side 1.9 <ρ ≦ 2.2g / cm 3 , the non-heat-treated region side 1.7 ≦ ρ ≦ 2.1g / cm 3 5. The semiconductor heat treatment apparatus according to claim 4, wherein the heat treatment apparatus is different in two stages within the range.
【請求項6】 前記複数の高純度石英ガラス板は、密度
ρが1.7≦ρ≦2.2g/cm3 の範囲で熱処理領域側
から非熱処理領域側にかけて小さくなるように多段階に
異ならせていることを特徴とする請求項4記載の半導体
熱処理装置。
6. The plurality of high-purity quartz glass plates are different in multiple steps so that the density ρ decreases in the range of 1.7 ≦ ρ ≦ 2.2 g / cm 3 from the heat treatment region side to the non-heat treatment region side. The semiconductor heat treatment apparatus according to claim 4, wherein the heat treatment apparatus is a semiconductor heat treatment apparatus.
JP24373895A 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment Expired - Fee Related JP3865419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24373895A JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24373895A JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH0963977A true JPH0963977A (en) 1997-03-07
JP3865419B2 JP3865419B2 (en) 2007-01-10

Family

ID=17108257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24373895A Expired - Fee Related JP3865419B2 (en) 1995-08-29 1995-08-29 Heat shield used in semiconductor heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3865419B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085349A (en) * 1999-09-17 2001-03-30 Toshiba Ceramics Co Ltd Vertical heat treatment device
JP2002343789A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Auxiliary heat-retention jig, its manufacturing method, wafer boat with heat insulator in plate form, vertical heat treatment equipment, method for modifying the same and method for manufacturing semiconductor device
JP2019502262A (en) * 2015-12-18 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Achieving uniform wafer temperature in an asymmetric chamber environment
CN113957540A (en) * 2021-11-01 2022-01-21 中国电子科技集团公司第四十八研究所 Heat treatment device suitable for mercury cadmium telluride material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085349A (en) * 1999-09-17 2001-03-30 Toshiba Ceramics Co Ltd Vertical heat treatment device
JP2002343789A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Auxiliary heat-retention jig, its manufacturing method, wafer boat with heat insulator in plate form, vertical heat treatment equipment, method for modifying the same and method for manufacturing semiconductor device
JP2019502262A (en) * 2015-12-18 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Achieving uniform wafer temperature in an asymmetric chamber environment
CN113957540A (en) * 2021-11-01 2022-01-21 中国电子科技集团公司第四十八研究所 Heat treatment device suitable for mercury cadmium telluride material

Also Published As

Publication number Publication date
JP3865419B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP3473715B2 (en) Quartz glass wafer boat
US6357604B1 (en) Long tooth rails for semiconductor wafer carriers
US5516283A (en) Apparatus for processing a plurality of circular wafers
JP3909242B2 (en) Apparatus for depositing semiconductor material, method for producing polycrystalline silicon rods, use of carbon electrodes for said production method
US8323411B2 (en) Semiconductor workpiece apparatus
JP2005191585A (en) Semiconductor wafer boat
CN1733966A (en) Apparatus for heating substrate and method for controlling temperature of susceptor for heated substrate
JP3317781B2 (en) Method of manufacturing susceptor for heat treatment of semiconductor wafer
JPH0963977A (en) Semiconductor heat treatment device
EP1391542B1 (en) Reforming process of quartz glass crucible
US4613305A (en) Horizontal furnace with a suspension cantilever loading system
US4598665A (en) Silicon carbide process tube for semiconductor wafers
JP2002033284A (en) Wafer holder for vertical cvd
JPS6250970B2 (en)
JP2007059606A (en) Vertical wafer boat and vertical heat treatment furnace
JP3942317B2 (en) Semiconductor wafer heat treatment holder and heat treatment method
JP2001358086A (en) Thermal treatment method and device of wafer
JP5642755B2 (en) Apparatus and method for depositing polycrystalline silicon
JP2005166823A (en) Semiconductor substrate heat treatment apparatus, wafer boat therefor, and heat treatment method of semiconductor substrate
KR102105367B1 (en) Heat treatment method
JPH1131639A (en) Semiconductor manufacturing apparatus
JP3205488B2 (en) Jig for heat treatment
JP5527902B2 (en) Heat treatment method for silicon wafer
JP2578567Y2 (en) Heat treatment equipment
JPH08288232A (en) Gas control jig of semiconductor heat treatment furnace

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees