JP4023774B2 - Heat-resistant jig - Google Patents

Heat-resistant jig Download PDF

Info

Publication number
JP4023774B2
JP4023774B2 JP2001312340A JP2001312340A JP4023774B2 JP 4023774 B2 JP4023774 B2 JP 4023774B2 JP 2001312340 A JP2001312340 A JP 2001312340A JP 2001312340 A JP2001312340 A JP 2001312340A JP 4023774 B2 JP4023774 B2 JP 4023774B2
Authority
JP
Japan
Prior art keywords
rare earth
sintered body
heat
oxide sintered
containing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001312340A
Other languages
Japanese (ja)
Other versions
JP2003119083A (en
Inventor
康 高井
典明 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001312340A priority Critical patent/JP4023774B2/en
Publication of JP2003119083A publication Critical patent/JP2003119083A/en
Application granted granted Critical
Publication of JP4023774B2 publication Critical patent/JP4023774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属又はセラミックスの焼結又は熱処理を行う際に使用する耐熱性治具に関するものである。
【0002】
【従来の技術】
従来、金属又はセラミックスの焼結又は熱処理を行う際に、製品と焼結用治具との反応を抑えるために、化学的に安定な希土類含有酸化物焼結体のひとつである希土類−アルミナ複合酸化物焼結体を用いることが提案されている(特開平5−85821号公報参照)。しかし、これらの希土類含有酸化物焼結体(希土類−アルミナ複合酸化物焼結体)は、機械的強度が弱く、特に靭性が弱く、使用時に頻繁に割れる問題があり、実用化されていない。
【0003】
この欠点を補うために、溶射等の薄層化技術を用いて、Y23等を被覆することが検討されている。例えば、1300〜1500℃でサーメットを焼結する場合のトレーとしてグラファイトからなる基材にZrO2を20重量%以下含むY23で被覆されていることを特徴とするトレーが提案されている(特表2000−509102号公報参照)。しかしながら、上記公報に記載されたトレーは機械的強度が強くなるが、酸化イットリウムとグラファイトが1400℃以上で反応して炭化イットリウムに変化したり、酸化物層と基板の熱膨張係数が一致していないと剥離するという問題がある。
【0004】
そこで、酸化イットリウムとグラファイトの中間に、Mo、W、Nb、Zr、Ta等の金属層を設けることにより、酸化イットリウムとグラファイトとの反応を抑え、熱膨張係数の違いを緩和することも提案されている。しかし、中間層を設けることは工程が増え、コストアップにつながるだけでなく、中間層と酸化イットリウムとの熱膨張係数の違いは残っており、根本的な解決策ではない。
【0005】
【発明が解決しようとする課題】
本発明は、上記事情を改善するためになされたもので、金属又はセラミックス又はサーメットを焼結又は熱処理を行う際に、機械的強度が強く、耐熱性、耐蝕性、非反応性に優れ、しかも安価な治具を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意検討を行った結果、製品と接触する部分が希土類元素含有酸化物焼結体であり、残りの部分が別材料であり、二つ以上の材料と重ね合わせた構造である耐熱性治具が、金属又はセラミックス又はサーメットの焼結又は熱処理を行う際に、機械的強度があり、優れた耐熱性、耐蝕性、非反応性を与えることを見出し、本発明に到達した。
【0007】
従って、本発明は、金属又はセラミックス又はサーメットの焼結又は熱処理に用いる耐熱性治具において、厚さ0.5mm以上、10mm以下の希土類元素含有酸化物焼結体部材と、カーボンとAl23 BNとSiO2 ZrO2とムライトとコージェライトとからなる一群から選ばれる一以上を含んでなる部材とを含んでなり、該希土類元素含有酸化物焼結体部材が該金属又はセラミックス又はサーメットと接触することを特徴とする耐熱性治具を提供する。
【0008】
【発明の実施の形態】
以下、本発明を更に詳しく説明する。
本発明の耐熱性治具は、製品となる金属又はセラミックス又はサーメットの焼結又は熱処理を行う際に使用される道具であり、製品を保持したり、固定したりする目的で使用されるものを示し、例えばセッター、サヤ、トレー、こう鉢、ルツボ等が挙げられる。特に、真空、不活性雰囲気又は還元雰囲気下で製品を焼結処理する時に有効であるが、大気または酸化雰囲気下でも使用できる。製品や使用温度や使用ガスの種類によって、希土類含有酸化物焼結体と基材の種類を変えて、最適化する必要がある。
【0009】
本発明で用いる希土類含有酸化物焼結体は、原子番号39、57〜71までの希土類元素から選ばれる希土類元素を含む酸化物の焼結体であり、例えば希土類酸化物の焼結体である。希土類酸化物焼結体の場合、希土類は、Y、Gd、Er、Tm、Ln等の中・重希土が耐食性の点から好ましい。また、希土類のほかに、50重量%以下の割合で3A族〜8族から選ばれる金属の酸化物を混合しても構わない。更に好ましくは、希土類元素を含む酸化物に加えて、AlとMnとSiとZrとVとからなる一群から選ばれる1種類以上の金属の酸化物を用いてもよい。上記の複合酸化物の場合は、Y、La、Ce、Nd、Sm等 の軽・中希土が経済的に好ましい。
【0010】
本発明の耐熱性治具は、希土類元素含有酸化物焼結体の部材と、カーボン、Al23、AlN( 参考例 )、BN、SiO2、SiC( 参考例 )、Si34 ( 参考例 )、ZrO2とムライトとコージェライトから選ばれる材質を有する部材とを重ねた構造を有する。これにより、希土類元素含有酸化物焼結体の部材が製品と耐蝕性、非反応性を示し、カーボン、Al23、AlN( 参考例 )、BN、SiO2、SiC( 参考例 )、Si34 ( 参考例 )、ZrO2から選ばれる材質を有する部材が機械的強度、熱衝撃性を補う。特に真空、不活性雰囲気又は還元雰囲気下で製品を焼結処理する時には、カーボン、AlN( 参考例 )、BN、SiC( 参考例 )、Si34 ( 参考例 )の非酸化物系材料が有効である。大気または酸化雰囲気下で製品を焼結処理する時には、Al23、SiO2、ZrO2等の酸化物系材料が有効であり、使用温度が低い場合には、AlN( 参考例 )、BN、SiC( 参考例 )、Si34 ( 参考例 )の非酸化物系材料が使用できる。
【0011】
本発明で用いる希土類元素含有酸化物焼結体の厚さは、好ましくは0.5mm以上、10mm以下、より好ましくは1mm以上、5mm以下である。厚さが0.5mm未満であると、薄すぎて、強度が問題であり、また、製造しにくい。一方、10mm以上に厚いと経済的に材料の無駄である。
【0012】
本発明で用いる希土類元素含有酸化物焼結体部材の相対密度は、好ましくは50%以上である。より好ましくは、80%以上、95%以下である。相対密度とは、真密度に対する焼結体の密度を百分率で表したものであり、真密度は、真密度計(アルチピクノメータ)を用いて測定でき、焼結体の密度はアルキメデス法を用いて測定できる。相対密度が50%未満であると、機械的強度が弱く、気孔率が高いため、真空又は不活性雰囲気下で製品を処理する時に吸着ガス・水分を放出する場合があり、問題となる。
【0013】
希土類元素含有酸化物焼結体部材の表面積が1000cm2以下になるように分割してあることがよい。更に好ましくは、50cm2以上、600cm2以下である。表面積は、焼結体の総表面積であり、形状を測定し算出できる。希土類元素含有酸化物焼結体部材は形状が大きくなるほど、機械的強度、熱衝撃性が弱くなる。表面積が1,000cm2越えると、熱衝撃により割れが多くなり、使用に問題である。
【0014】
製品を焼結する際に製品が収縮しやくするために、希土類元素含有酸化物焼結体部材の表面に凹凸があることがよい。好ましくは、深さ0.1mm以上、5mm以下での規則的な凹凸が望ましい。凹凸のピッチ幅は上に乗せる製品の形状によって決まる。例えば、製品が長方体・直方体の場合、製品の一辺の約1/3以下の長さが好ましい。凹凸のピッチは、好ましくは1mm以上である。凸の形状は、四角が好ましい。また、製品が円筒の場合、円筒が転がらないような凹凸が望ましく、凸の形状は、三角がよい。
【0015】
希土類含有酸化物焼結体部材の製造方法としては、一般的なセラミックスの製造方法でよく、希土類含有酸化物を融点以下の温度、特に大気、真空又は不活性雰囲気中で800〜1800℃で焼結、すなわち粒子同士が成長してくっ付き合い、粒成長を施し、密度を上げて、製造させるものである。
平板の場合、スリップキャストによる成形が好ましい。スリップキャストの場合は、凹凸を有する鋳型に鋳込むことにより、凹凸の付いた成形体を得る。また、円筒形状の場合は、CIP(冷間静水圧プレス)による成形が好ましい。CIPは、焼結後に研磨、切削加工するのがよい。できた成形体を焼結して、希土類含有酸化物焼結体部材を得る。
【0016】
図1は、希土類含有酸化物焼結体部材2と、カーボン、Al23、AlN、BN、SiO2、SiC、Si34、ZrO2、ムライト、コージェライトから選ばれる一以上を含んでなる部材1との重ね合わせ方として、トレー等の平板形状の場合、下地材料1を凹形状にし、凹部分に希土類含有酸化物焼結体2を載せるのが、希土類含有酸化物焼結体のすべりを防止できて好ましい。希土類含有酸化物焼結体2の上に製品3を載せ、焼結又は熱処理する。コウ鉢・ルツボ等の円筒・長方体形状では、希土類含有酸化物焼結体部材は、底板、側面、蓋を分割することが望ましい。これは、底板と側面の接点に応力がかかり割れの原因となりやすく分割することにより割れを防止できるからである。図1は、焼結体2を2aと2bに二分割し、製品3aと製品3bの二つの製品を載せた例を示す。
【0017】
図2は、カーボン、Al23、AlN、BN、SiO2、SiC、Si34、ZrO2、ムライト、コージェライトから選ばれる一以上を含んでなる部材4に波板形状(凸状)の焼結体部材5を配置させ、その上に円筒状の製品6、直方体の製品7を搭載させたものである。
【0018】
カーボンを用いる場合には、カーボンの密度を1.5g/cm3以上とすることが好ましい。なお、カーボンの真密度は2.26g/cm3である。基材の密度が1.5g/cm3未満では、密度が小さいので熱衝撃には強いが、気孔率が高くなり、大気中の水分・炭酸ガスを吸着しやすく、真空下では吸着した水分・炭酸ガスを放出する場合がある。1600℃以上の高温で真空または還元雰囲気ではカーボンがイットリウムと反応し、部分的に炭化イットリウムになり、機械的強度が弱くなることがある。1600℃以上の高温で真空また還元雰囲気下で使用する場合は、中間層として、カーボンにMoやW等の高融点金属を溶射等でコートするのが好ましい。
【0019】
金属、セラミックス、サーメットとしては、焼結又は熱処理して得られるものであればよい。サーメットは、金属とセラミックスとの複合材料であり、多くは両者の粉末を混合して成形、焼結してつくるものである。
金属としては、反応性金属の粉末焼結時の治具として有効であり、具体的には、焼結体部材上に載せる物としては、Cr合金、Ni合金、チタン合金、希土類−遷移金属合金等があり、特に焼結磁石に用いるSm−Co系合金、Nd−Fe−B系合金、Sm−Fe−N系合金の製造や焼結磁歪材に用いるTb−Dy−Fe合金や焼結蓄冷材に用いるEr−Ni合金の製造において、本発明の治具等の部材は有効である。
また、セラミックス又はサーメットとしては、炭化タングステン−Co−Ni、炭化珪素、窒化珪素、ホウ化チタン、酸化アルミニウム、希土類酸化物、リチウムマンガン複合酸化物、希土類複合酸化物(希土類−アルミニウム複合酸化物、希土類−チタニウム複合酸化物、希土類−マンガン複合酸化物)等が挙げられ、特に希土類−アルミニウム複合酸化物(YAG)等の透光性セラミックスや炭化タングステン等の超硬材の製造において本発明の治具等の部材は有効である。
【0020】
特に、YAG等の透光性セラミックスを焼結する場合、1600〜1800℃で、真空、不活性雰囲気又は弱い還元雰囲気下で処理するが、このように高温の場合に、製品との反応が起こさないものは、希土類酸化物焼結体である。希土類酸化物はカーボンと1500℃以上になると、炭化物になりやすい場合がある。カーボンにMo、Ta、Wをコートした材料の上に、希土類酸化物焼結体を組み合わせた治具を用いることが好ましい。
【0021】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
実施例1
純水200gに解こう剤(松本油脂社製RA−20A)3gを溶き、酸化イットリウム(信越化学工業社製RU−PB品)500gを徐々に加え、スラリーにする。このスラリーを石膏型(3mmピッチで2mmの凹凸を表面に設ける型)に流し、成形体を作る。成形体を乾燥後、大気中、1500℃×2時間で焼結する。できた凹凸のある酸化イットリウム焼結体を100×50×2mmに加工する。焼結体の密度をアルキメデス法で測定し、相対密度を算出した。真密度に対する相対密度は55%であった。120×120×5mmの形状のカーボン(日本カーボン社製ER−53)を図1に示すような100×100×3mmの凹形状にし、加工した。その凹部に、100×50×2mm酸化イットリウム焼結体を2つ乗せて、焼結用トレーを作製した。該トレーの上にTi焼結体を乗せて、真空中で300℃/hrで昇温し、1500℃、2時間で焼結し、ヒータを切り、炉冷した。これを3回繰り返した後の製品と部材の外観を観察した。製品にトレーからの汚染も検出されず、割れもなかった。汚染状態はEPMA分析(電子マイクロアナライザ)で測定した。
【0022】
実施例2
純水200gに解こう剤(松本油脂社製RA−20A)3gを溶き、酸化ランタン−酸化アルミニウム複合酸化物(信越化学工業社製LAM)500gを徐々に加え、スラリーにする。このスラリーを実施例1と同様な石膏型に流し、成形体を作る。成形体を乾燥後、大気中、1500℃×2時間で焼結する。できた焼結体を100×50×2mmに加工する。焼結体の密度をアルキメデス法で測定し、相対密度を算出した。相対密度は65%であった。実施例1と同じように120×120×5mmの形状のカーボン(日本カーボン社製ER−53)を100×100×3mmの凹形状にし、加工した。その上に、100×50×2mm酸化イットリウム−酸化アルミニウム複合酸化物焼結体を2つ乗せて、焼結用トレーとして作製した。該トレーにTb−Dy−Fe合金焼結体を乗せて、真空中で300℃/時で昇温し、1200℃、2時間で焼結し、ヒータを切り、炉冷した。これを3回繰り返した後の製品と部材の外観を観察した。製品にトレーからの汚染も検出されず、割れもなかった。
【0023】
比較例1
純水400gに解こう剤(松本油脂社製RA−20A)6gを溶き、酸化イットリウム(信越化学工業社製RU−PB品)1kgを徐々に加え、スラリーにする。このスラリーを石膏型(凹凸なしの型)に流し、成形体を作る。成形体を乾燥後、大気中、1800℃×2時間で焼結する。できた焼結体を120×120×8mmに加工する。焼結体の密度をアルキメデス法で測定し、相対密度を算出した。相対密度は99%であった。できた焼結体を焼結用トレーとして使用する。該トレー上に炭化タングステン−Co焼結体を乗せて、真空中で300℃/時で昇温し、1500℃、2時間で焼結し、ヒータを切り、炉冷した。製品と部材の外観を観察した。製品にトレーからの汚染は検出されなかったが、2回目に割れた。
【0024】
比較例2
120×120×5mmのカーボン(日本カーボン社製ER−53)を焼結用トレーとして使用する。該トレー上にTi焼結体を乗せて、真空中で300℃/時で昇温し、1500℃、2時間で焼結し、ヒータを切り、炉冷した。これを3回繰り返した後の製品と部材の外観を観察した。焼結用トレーの割れはなかったが、カーボンが製品から検出された。
【0025】
実施例1〜2の部材は、焼結前後で変化はなく、製品への部材から汚染もなかった。一方、比較例1の部材は、製品への部材から汚染はないものの、熱衝撃と考えられる応力により、割れた。また、比較例2の部材は割れないものの、製品への部材から汚染があった。
【0026】
【発明の効果】
本発明部材は、製品との非反応性が良好で、耐熱性、機械的強度、熱衝撃に優れ、金属又はセラミックス又はサーメットを焼結又は熱処理するのに有効に用いられるものである。
【図面の簡単な説明】
【図1】本発明の耐熱性治具と製品を示す斜視図である。
【図2】本発明の耐熱性治具と製品を示す断面図である。
【符号の説明】
1 カーボン、Al23、AlN、BN、SiO2、SiC、Si34、ZrO2、ムライト、コージェライトから選ばれる一以上を含んでなる部材
2 希土類元素含有酸化物焼結体部材
2a 希土類元素含有酸化物焼結体部材
2b 希土類元素含有酸化物焼結体部材
3 製品
3a 製品
3b 製品
4 カーボン、Al23、AlN、BN、SiO2、SiC、Si34、ZrO2、ムライト、コージェライトから選ばれる一以上を含んでなる部材
5 希土類元素含有酸化物焼結体部材
6 製品
7 製品
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant jig used when performing sintering or heat treatment of metal or ceramics.
[0002]
[Prior art]
Conventionally, a rare earth-alumina composite, which is one of chemically stable rare earth-containing oxide sintered bodies, is used to suppress the reaction between the product and the sintering jig during sintering or heat treatment of metal or ceramics. It has been proposed to use an oxide sintered body (see JP-A-5-85821). However, these rare earth-containing oxide sintered bodies (rare earth-alumina composite oxide sintered bodies) have low mechanical strength, particularly low toughness, and have a problem of frequent cracking during use, and have not been put into practical use.
[0003]
In order to compensate for this drawback, it has been studied to coat Y 2 O 3 or the like by using a thinning technique such as thermal spraying. For example, as a tray for sintering cermet at 1300 to 1500 ° C., a tray characterized in that a base material made of graphite is coated with Y 2 O 3 containing 20% by weight or less of ZrO 2 has been proposed. (See Special Table 2000-509102). However, although the tray described in the above publication has a high mechanical strength, yttrium oxide and graphite react at 1400 ° C. or higher to change to yttrium carbide, or the thermal expansion coefficients of the oxide layer and the substrate match. Otherwise, there is a problem of peeling.
[0004]
Therefore, by providing a metal layer of Mo, W, Nb, Zr, Ta, etc. in the middle between yttrium oxide and graphite, it has been proposed to suppress the reaction between yttrium oxide and graphite and alleviate the difference in thermal expansion coefficient. ing. However, providing an intermediate layer increases the number of processes and leads to an increase in cost, and the difference in thermal expansion coefficient between the intermediate layer and yttrium oxide remains, which is not a fundamental solution.
[0005]
[Problems to be solved by the invention]
The present invention was made to improve the above circumstances, and has a high mechanical strength, excellent heat resistance, corrosion resistance, and non-reactivity when sintering or heat-treating metal, ceramics, or cermets. An object is to provide an inexpensive jig.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found that the part in contact with the product is a rare earth element-containing oxide sintered body, the remaining part is a separate material, two or more materials and It has been found that the heat-resistant jig having a superposed structure has mechanical strength when performing sintering or heat treatment of metal or ceramics or cermet, and provides excellent heat resistance, corrosion resistance, and non-reactivity, The present invention has been reached.
[0007]
Therefore, the present invention provides a rare earth element-containing oxide sintered body member having a thickness of 0.5 mm or more and 10 mm or less, carbon and Al 2 O in a heat resistant jig used for sintering or heat treatment of metal, ceramics or cermet. 3 , BN, SiO 2 , ZrO 2 , a member comprising one or more selected from the group consisting of mullite and cordierite, and the rare earth element-containing oxide sintered member is the metal or ceramic or Provided is a heat-resistant jig characterized by contacting with a cermet.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The heat-resistant jig of the present invention is a tool used when sintering or heat-treating a metal, ceramics or cermet to be a product, and is used for the purpose of holding or fixing the product. Examples include setters, sheaths, trays, mortars, crucibles and the like. In particular, it is effective when the product is sintered in a vacuum, an inert atmosphere or a reducing atmosphere, but it can also be used in the atmosphere or an oxidizing atmosphere. It is necessary to optimize by changing the rare earth-containing oxide sintered body and the base material depending on the product, the operating temperature, and the type of gas used.
[0009]
The rare earth-containing oxide sintered body used in the present invention is an oxide sintered body containing a rare earth element selected from rare earth elements having atomic numbers 39 and 57 to 71, for example, a rare earth oxide sintered body. . In the case of the rare earth oxide sintered body, the rare earth is preferably medium or heavy rare earth such as Y, Gd, Er, Tm, Ln from the viewpoint of corrosion resistance. In addition to the rare earth, a metal oxide selected from 3A group to 8 group may be mixed at a ratio of 50% by weight or less. More preferably, in addition to the oxide containing a rare earth element, an oxide of one or more metals selected from the group consisting of Al, Mn, Si, Zr, and V may be used. In the case of the above complex oxide, light / medium rare earths such as Y, La, Ce, Nd, and Sm are economically preferable.
[0010]
The heat-resistant jig of the present invention comprises a rare earth element-containing oxide sintered body, carbon, Al 2 O 3 , AlN ( reference example ) , BN, SiO 2 , SiC ( reference example ) , Si 3 N 4 ( Reference Example ) has a structure in which ZrO 2 , a member having a material selected from mullite and cordierite are stacked. As a result, the rare earth element-containing oxide sintered body exhibits corrosion resistance and non-reactivity with the product. Carbon, Al 2 O 3 , AlN ( reference example ) , BN, SiO 2 , SiC ( reference example ) , Si 3 N 4 (reference example), a member having a material selected from ZrO 2 is compensated mechanical strength, resistance to thermal shock resistance. Especially when products are sintered under vacuum, inert atmosphere or reducing atmosphere, non-oxide materials such as carbon, AlN ( reference example ) , BN, SiC ( reference example ) , Si 3 N 4 ( reference example ) are used. It is valid. When sintering products in air or in an oxidizing atmosphere, oxide-based materials such as Al 2 O 3 , SiO 2 , ZrO 2 are effective. When the operating temperature is low, AlN ( reference example ) , BN Non-oxide materials such as SiC ( reference example ) and Si 3 N 4 ( reference example ) can be used.
[0011]
The thickness of the rare earth element-containing oxide sintered body used in the present invention is preferably 0.5 mm or more and 10 mm or less, more preferably 1 mm or more and 5 mm or less. If the thickness is less than 0.5 mm, it is too thin, the strength is a problem, and it is difficult to produce. On the other hand, if it is thicker than 10 mm, the material is wasted economically.
[0012]
The relative density of the rare earth element-containing oxide sintered body member used in the present invention is preferably 50% or more. More preferably, it is 80% or more and 95% or less. Relative density is a percentage of the density of the sintered body with respect to the true density. The true density can be measured using a true density meter (ulti-pycnometer), and the density of the sintered body is determined using the Archimedes method. Can be measured. If the relative density is less than 50%, the mechanical strength is weak and the porosity is high, which may cause a problem in that adsorbed gas / moisture may be released when the product is processed under vacuum or inert atmosphere.
[0013]
It is preferable that the rare earth element-containing oxide sintered member is divided so that the surface area is 1000 cm 2 or less. More preferably, 50 cm 2 or more and 600 cm 2 or less. The surface area is the total surface area of the sintered body and can be calculated by measuring the shape. The larger the shape of the rare earth element-containing oxide sintered body member, the lower the mechanical strength and thermal shock resistance. When the surface area exceeds 1,000 cm 2 , cracks increase due to thermal shock, which is a problem in use.
[0014]
In order to make the product easily shrink when the product is sintered, the surface of the rare earth element-containing oxide sintered member is preferably uneven. Preferably, regular irregularities with a depth of 0.1 mm or more and 5 mm or less are desirable. The pitch width of the unevenness is determined by the shape of the product placed on top. For example, when the product is a rectangular parallelepiped, a length of about 1/3 or less of one side of the product is preferable. The pitch of the unevenness is preferably 1 mm or more. The convex shape is preferably a square. In addition, when the product is a cylinder, it is desirable to have irregularities so that the cylinder does not roll, and the convex shape is preferably a triangle.
[0015]
As a method for producing the rare earth-containing oxide sintered member, a general ceramic production method may be used. The rare earth-containing oxide is sintered at a temperature below the melting point, particularly at 800 to 1800 ° C. in the atmosphere, vacuum or inert atmosphere. In other words, particles are grown and attached to each other, grain growth is performed, density is increased, and production is performed.
In the case of a flat plate, molding by slip casting is preferable. In the case of slip casting, a molded article with irregularities is obtained by casting into a mold having irregularities. In the case of a cylindrical shape, molding by CIP (cold isostatic pressing) is preferable. CIP is preferably polished and cut after sintering. The formed body is sintered to obtain a rare earth-containing oxide sintered body member.
[0016]
FIG. 1 includes a rare earth-containing oxide sintered body member 2 and one or more selected from carbon, Al 2 O 3 , AlN, BN, SiO 2 , SiC, Si 3 N 4 , ZrO 2 , mullite, and cordierite. In the case of a flat plate shape such as a tray, the rare earth-containing oxide sintered body is formed by making the base material 1 concave and placing the rare earth-containing oxide sintered body 2 on the concave portion. This is preferable because it prevents slipping. The product 3 is placed on the rare earth-containing oxide sintered body 2 and sintered or heat-treated. In the shape of a cylinder or a rectangular parallelepiped such as a mortar or crucible, the rare earth-containing oxide sintered body member is desirably divided into a bottom plate, a side surface, and a lid. This is because stress is applied to the contact point between the bottom plate and the side surface, and it is easy to cause cracking, so that cracking can be prevented by dividing. FIG. 1 shows an example in which a sintered body 2 is divided into two parts 2a and 2b and two products 3a and 3b are placed thereon.
[0017]
FIG. 2 shows a corrugated plate (convex shape) formed on a member 4 including one or more selected from carbon, Al 2 O 3 , AlN, BN, SiO 2 , SiC, Si 3 N 4 , ZrO 2 , mullite, and cordierite. ) And a cylindrical product 6 and a rectangular parallelepiped product 7 are mounted thereon.
[0018]
When carbon is used, the density of carbon is preferably 1.5 g / cm 3 or more. The true density of carbon is 2.26 g / cm 3 . If the density of the substrate is less than 1.5 g / cm 3 , the density is small and strong against thermal shock, but the porosity is high and it is easy to adsorb moisture and carbon dioxide in the atmosphere. Carbon dioxide may be released. In a vacuum or reducing atmosphere at a high temperature of 1600 ° C. or higher, carbon may react with yttrium to partially become yttrium carbide, resulting in weak mechanical strength. When used in a vacuum or a reducing atmosphere at a high temperature of 1600 ° C. or higher, it is preferable to coat the high-melting point metal such as Mo or W on the intermediate layer by thermal spraying as an intermediate layer.
[0019]
Any metal, ceramic, or cermet may be used as long as it is obtained by sintering or heat treatment. Cermet is a composite material of metal and ceramics, and many are made by mixing, molding and sintering powders of both.
As a metal, it is effective as a jig for powder sintering of a reactive metal. Specifically, as a material to be placed on a sintered member, a Cr alloy, a Ni alloy, a titanium alloy, a rare earth-transition metal alloy In particular, Sb-Dy-Fe alloys used in the manufacture of Sm-Co alloys, Nd-Fe-B alloys, Sm-Fe-N alloys used in sintered magnets and sintered magnetostrictive materials, and sintered regenerative heat storage In manufacturing an Er—Ni alloy used as a material, a member such as a jig of the present invention is effective.
Further, as the ceramic or cermet, tungsten carbide-Co-Ni, silicon carbide, silicon nitride, titanium boride, aluminum oxide, rare earth oxide, lithium manganese composite oxide, rare earth composite oxide (rare earth-aluminum composite oxide, Rare earth-titanium composite oxide, rare earth-manganese composite oxide), and the like. In particular, in the production of translucent ceramics such as rare earth-aluminum composite oxide (YAG) and cemented carbide such as tungsten carbide, the treatment of the present invention. A member such as a tool is effective.
[0020]
In particular, when a light-transmitting ceramic such as YAG is sintered, it is processed at 1600 to 1800 ° C. in a vacuum, an inert atmosphere, or a weak reducing atmosphere. What is not is a rare earth oxide sintered body. When the rare earth oxide is heated to 1500 ° C. or higher with carbon, it may easily become a carbide. It is preferable to use a jig in which a rare earth oxide sintered body is combined on a material obtained by coating carbon with Mo, Ta, or W.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
Example 1
3 g of peptizer (RA-20A manufactured by Matsumoto Yushi Co., Ltd.) is dissolved in 200 g of pure water, and 500 g of yttrium oxide (RU-PB product manufactured by Shin-Etsu Chemical Co., Ltd.) is gradually added to form a slurry. This slurry is poured into a gypsum mold (a mold in which 2 mm irregularities are provided on the surface at a pitch of 3 mm) to form a molded body. The molded body is dried and then sintered in the atmosphere at 1500 ° C. for 2 hours. The resulting concavo-convex yttrium oxide sintered body is processed to 100 × 50 × 2 mm. The density of the sintered body was measured by the Archimedes method, and the relative density was calculated. The relative density to the true density was 55%. Carbon having a shape of 120 × 120 × 5 mm (ER-53 manufactured by Nippon Carbon Co., Ltd.) was processed into a concave shape of 100 × 100 × 3 mm as shown in FIG. Two 100 × 50 × 2 mm yttrium oxide sintered bodies were placed in the recesses to produce a sintering tray. A Ti sintered body was placed on the tray, heated at 300 ° C./hr in vacuum, sintered at 1500 ° C. for 2 hours, the heater was turned off, and the furnace was cooled. The appearance of the product and the member after repeating this three times was observed. No contamination from the tray was detected in the product, and there were no cracks. The contamination state was measured by EPMA analysis (electronic microanalyzer).
[0022]
Example 2
3 g of peptizer (RA-20A manufactured by Matsumoto Yushi Co., Ltd.) is dissolved in 200 g of pure water, and 500 g of lanthanum oxide-aluminum oxide composite oxide (LAM manufactured by Shin-Etsu Chemical Co., Ltd.) is gradually added to form a slurry. This slurry is poured into a gypsum mold similar to that in Example 1 to produce a molded body. The molded body is dried and then sintered in the atmosphere at 1500 ° C. for 2 hours. The resulting sintered body is processed to 100 × 50 × 2 mm. The density of the sintered body was measured by the Archimedes method, and the relative density was calculated. The relative density was 65%. Similarly to Example 1, 120 × 120 × 5 mm-shaped carbon (ER-53 manufactured by Nippon Carbon Co., Ltd.) was formed into a concave shape of 100 × 100 × 3 mm and processed. Two 100 × 50 × 2 mm yttrium oxide-aluminum oxide composite oxide sintered bodies were placed thereon to produce a sintering tray. The Tb—Dy—Fe alloy sintered body was placed on the tray, heated at 300 ° C./hour in vacuum, sintered at 1200 ° C. for 2 hours, the heater was turned off, and the furnace was cooled. The appearance of the product and the member after repeating this three times was observed. No contamination from the tray was detected in the product, and there were no cracks.
[0023]
Comparative Example 1
6 g of peptizer (RA-20A manufactured by Matsumoto Yushi Co., Ltd.) is dissolved in 400 g of pure water, and 1 kg of yttrium oxide (RU-PB product manufactured by Shin-Etsu Chemical Co., Ltd.) is gradually added to form a slurry. This slurry is poured into a gypsum mold (a mold without unevenness) to form a molded body. The molded body is dried and then sintered at 1800 ° C. for 2 hours in the air. The resulting sintered body is processed to 120 × 120 × 8 mm. The density of the sintered body was measured by the Archimedes method, and the relative density was calculated. The relative density was 99%. The resulting sintered body is used as a sintering tray. A tungsten carbide-Co sintered body was placed on the tray, heated at 300 ° C./hour in vacuum, sintered at 1500 ° C. for 2 hours, the heater was turned off, and the furnace was cooled. The appearance of the product and member was observed. No contamination from the tray was detected on the product, but it cracked a second time.
[0024]
Comparative Example 2
120 × 120 × 5 mm carbon (ER-53 manufactured by Nippon Carbon Co., Ltd.) is used as a sintering tray. A Ti sintered body was placed on the tray, heated in vacuum at 300 ° C./hour, sintered at 1500 ° C. for 2 hours, the heater was turned off, and the furnace was cooled. The appearance of the product and the member after repeating this three times was observed. There was no cracking of the sintering tray, but carbon was detected in the product.
[0025]
The members of Examples 1 and 2 were not changed before and after sintering, and there was no contamination from the members to the product. On the other hand, the member of Comparative Example 1 was cracked by the stress considered to be a thermal shock, although there was no contamination from the member to the product. Moreover, although the member of the comparative example 2 was not broken, there was contamination from the member to the product.
[0026]
【The invention's effect】
The member of the present invention has good non-reactivity with a product, is excellent in heat resistance, mechanical strength, and thermal shock, and is effectively used for sintering or heat-treating metal, ceramics or cermet.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a heat-resistant jig and a product of the present invention.
FIG. 2 is a cross-sectional view showing a heat-resistant jig and product of the present invention.
[Explanation of symbols]
1 A member comprising one or more selected from carbon, Al 2 O 3 , AlN, BN, SiO 2 , SiC, Si 3 N 4 , ZrO 2 , mullite, cordierite 2 Rare earth element-containing oxide sintered member 2a Rare earth element-containing oxide sintered body member 2b Rare earth element-containing oxide sintered body member 3 Product 3a Product 3b Product 4 Carbon, Al 2 O 3 , AlN, BN, SiO 2 , SiC, Si 3 N 4 , ZrO 2 , Member comprising at least one selected from mullite and cordierite 5 Rare earth element-containing oxide sintered member 6 Product 7 Product

Claims (5)

金属又はセラミックス又はサーメットの焼結又は熱処理に用いる耐熱性治具において、厚さ0.5mm以上、10mm以下の希土類元素含有酸化物焼結体部材と、カーボンとAl23 BNとSiO2 ZrO2とムライトとコージェライトとからなる一群から選ばれる一以上を含んでなる部材とを含んでなり、該希土類元素含有酸化物焼結体部材が該金属又はセラミックス又はサーメットと接触することを特徴とする耐熱性治具。In a heat-resistant jig used for sintering or heat treatment of metal, ceramics or cermet, a rare earth element-containing oxide sintered body member having a thickness of 0.5 mm or more and 10 mm or less, carbon, Al 2 O 3 , BN and SiO 2 And a member comprising one or more selected from the group consisting of ZrO 2 , mullite and cordierite, and the rare earth element-containing oxide sintered body member is in contact with the metal, ceramics or cermet Features a heat-resistant jig. 上記カーボンを含んでなるカーボン部材の上に上記希土類元素含有酸化物焼結体部材を載せている請求項1に記載の耐熱性治具。 The heat-resistant jig according to claim 1, wherein the rare earth element-containing oxide sintered body member is placed on the carbon member containing carbon . 上記希土類元素含有酸化物焼結体部材が、50%以上の相対密度を有する請求項1又は請求項2に記載の耐熱性治具。The rare earth-containing oxide sintered body member, the heat resistance jig according to Motomeko 1 or claim 2 that have a relative density of 50% or more. 上記希土類元素含有酸化物焼結体部材が、1,000cm 2 以下の表面積を有するように分割されている請求項1〜3のいずれかに記載の耐熱性治具。The heat-resistant jig according to any one of claims 1 to 3, wherein the rare earth element-containing oxide sintered body member is divided so as to have a surface area of 1,000 cm 2 or less . 上記希土類元素含有酸化物焼結体部材が、該希土類元素含有酸化物焼結体の表面にピッチ1mm以上の凹凸を有する請求項1〜4のいずれかに記載の耐熱性治具。The heat-resistant jig according to any one of claims 1 to 4, wherein the rare earth element-containing oxide sintered body member has irregularities having a pitch of 1 mm or more on the surface of the rare earth element-containing oxide sintered body.
JP2001312340A 2001-10-10 2001-10-10 Heat-resistant jig Expired - Fee Related JP4023774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312340A JP4023774B2 (en) 2001-10-10 2001-10-10 Heat-resistant jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312340A JP4023774B2 (en) 2001-10-10 2001-10-10 Heat-resistant jig

Publications (2)

Publication Number Publication Date
JP2003119083A JP2003119083A (en) 2003-04-23
JP4023774B2 true JP4023774B2 (en) 2007-12-19

Family

ID=19131016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312340A Expired - Fee Related JP4023774B2 (en) 2001-10-10 2001-10-10 Heat-resistant jig

Country Status (1)

Country Link
JP (1) JP4023774B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332012A (en) * 2003-05-01 2004-11-25 Shin Etsu Chem Co Ltd Heat-resistant holder and heat-treating/sintering method
KR101355640B1 (en) 2007-01-09 2014-01-28 주식회사 칸세라 Sintering jig for preventing product from bending
JP2010090005A (en) * 2008-10-09 2010-04-22 Tokyo Yogyo Co Ltd Setter for firing
JP2013121917A (en) * 2013-02-14 2013-06-20 Tokyo Yogyo Co Ltd Burning setter
JP6842369B2 (en) * 2017-05-19 2021-03-17 三井金属鉱業株式会社 Manufacturing method of cylindrical ceramic sintered body
CN110540433B (en) * 2019-10-17 2023-05-09 山东钢铁股份有限公司 Castable for integral brick cup of coke oven coal charging port and preparation and use methods thereof

Also Published As

Publication number Publication date
JP2003119083A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
KR101313470B1 (en) Heat Resistant Coated Member, Making Method, and Treatment Using the Same
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JPH0686333U (en) Diffusion furnace components
KR100706064B1 (en) Ceramic member and method for producing the same
JP4023774B2 (en) Heat-resistant jig
US4952535A (en) Aluminum nitride bodies and method
JP4446611B2 (en) Black low thermal expansion ceramics and exposure apparatus components
JPH01115870A (en) Slip or seal member pair and its production
JP2005008483A (en) Coating member and its manufacturing process
US6878438B2 (en) Heat resistant coated member
JP4171916B2 (en) Heat-resistant covering material
US5352643A (en) High strength alumina and process for producing same
JP4601136B2 (en) Corrosion resistant material
JP2000119079A (en) Si-sic-made material for heat treatment of semiconductor and its production
JP3830302B2 (en) Nitride ceramic firing jig
JP2004190056A (en) Heat-resistant coated member
JP4991093B2 (en) Firing member and method for producing sintered body using the same
JP2588554B2 (en) Member for molten aluminum and method for producing the same
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JPH02212365A (en) Aluminum nitride substrate and its production
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JP2004315352A (en) Heat-resistant coating member
EP1357098A1 (en) Joining methode for high-purity ceramic parts
JP3677360B2 (en) Method for producing silicon nitride sintered body
JP2002012961A (en) Member for molten iron metal and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees