JPH05214497A - High performance low carbon ferrous sintered material and its manufacture - Google Patents

High performance low carbon ferrous sintered material and its manufacture

Info

Publication number
JPH05214497A
JPH05214497A JP2107392A JP2107392A JPH05214497A JP H05214497 A JPH05214497 A JP H05214497A JP 2107392 A JP2107392 A JP 2107392A JP 2107392 A JP2107392 A JP 2107392A JP H05214497 A JPH05214497 A JP H05214497A
Authority
JP
Japan
Prior art keywords
content
sintered material
average
performance low
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2107392A
Other languages
Japanese (ja)
Inventor
Sadakimi Kiyota
田 禎 公 清
Hiroshi Otsubo
坪 宏 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2107392A priority Critical patent/JPH05214497A/en
Publication of JPH05214497A publication Critical patent/JPH05214497A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high performance low carbon ferrous sintered material improved in the deterioration in corrosion resistance and to provide its manufacturing method. CONSTITUTION:This is a high performance low carbon ferrous sintered material in which, in a sintered material having the compsn. of stainless steel having, by weight, 10 to 30% Cr content, the average C content in the whole of the sintered material is regulated to <=0.06% as well as the average O content expressed by weight % exceeds 4/3 of the said average C content and the C content in the depth of at least 10mum from the surface of the sintered material is regulated to <=0.06% as well as the O content is regulated to one less the average O content of the sintered material, and this is its manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、難還元性の元素を含む
鉄基焼結材料であって、優れた耐食性を持つ高性能低炭
素鉄基焼結材料およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance low-carbon iron-based sintered material containing a non-reducing element and having excellent corrosion resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】焼結材料の製造方法として、平均粒径の
小さい金属粉末を使用して、焼結収縮によって高密度で
高性能の材料を得る方法が開発されつつある。中でも、
金属粉末の射出成形を利用する方法(以下、金属粉末射
出成形法という)は、小型3次元複雑形状の金属部品の
量産に有利であるため有望な技術である。
2. Description of the Related Art As a method for producing a sintered material, a method of using a metal powder having a small average particle diameter to obtain a high-density and high-performance material by sintering shrinkage is being developed. Above all,
The method of utilizing injection molding of metal powder (hereinafter referred to as metal powder injection molding method) is a promising technology because it is advantageous for mass production of small and three-dimensionally complex metal parts.

【0003】これらの方法で製造される鉄基焼結材料と
しては、高性能を得るために、一般に不純物として含ま
れる酸化物を極力低減することが要求される。鉄基焼結
材料中に含有する金属元素が還元容易な酸化物のみを生
成する元素に限定される場合は、水素含有ガスなどによ
って低酸素の焼結材料が製造できる。
In order to obtain high performance, iron-based sintered materials produced by these methods are generally required to reduce oxides contained as impurities as much as possible. When the metal element contained in the iron-based sintered material is limited to an element that produces only an easily-reducible oxide, a low-oxygen sintered material can be produced by using a hydrogen-containing gas or the like.

【0004】しかし、Crなどの難還元性酸化物を生成
する元素を含有する鉄基焼結材料については、単位水素
当りで還元できる難還元性金属酸化物量が微量であるた
め、低酸素の焼結材料を得るためには、あまりに多量の
低露点の水素を必要とするため、水素を使用する方法は
工業的に成立し難い。
However, with regard to the iron-based sintered material containing an element such as Cr, which produces a hard-to-reduce oxide, the amount of the hard-to-reduce metal oxide that can be reduced per unit hydrogen is very small, so that a low-oxygen sintering is performed. To obtain a binder, an excessively large amount of hydrogen having a low dew point is required, and thus a method using hydrogen is difficult to be industrially established.

【0005】そこで、本発明者らは、減圧下での加熱を
利用して、成形体に含有する酸化物と炭素とを直接反応
させCOガスとして除去する方法の運用によって、低酸
素の焼結材料を得た(特開平2−138435号参
照)。しかし、酸化物と炭素との直接反応を利用する場
合は、その反応速度が酸化物濃度と炭素濃度の積に比例
するため、酸化物と炭素の両方を低減することは困難で
ある(反応の終盤で、酸化物濃度と炭素濃度の両方が低
くなると、それらの積に比例する反応速度は極めて小さ
くなってしまう)ため、酸化物または炭素のいずれかを
多少残留させる必要がある。
Therefore, the present inventors have employed a method of directly reacting oxides and carbon contained in a molded body with each other by using heating under reduced pressure to remove as CO gas, thereby sintering low oxygen. A material was obtained (see JP-A-2-138435). However, when a direct reaction between oxide and carbon is used, it is difficult to reduce both oxide and carbon because the reaction rate is proportional to the product of oxide concentration and carbon concentration. If both the oxide concentration and the carbon concentration decrease in the final stage, the reaction rate proportional to the product thereof becomes extremely small.) Therefore, it is necessary to slightly leave either the oxide or the carbon.

【0006】[0006]

【発明が解決しようとする課題】ステンレス鋼のよう
に、耐食性の観点から炭素の低減が酸化物の低減よりも
優先される場合(低酸素焼結金属材料)、幾分かの酸化
物の残留を許容せざるをえなかった。その結果、得られ
た焼結材料は、溶製材より、高い酸素を含有するため、
性能的に多少劣るという問題があった。特に、ステンレ
ス鋼においては、焼結材料の耐食性などの性能は、溶製
材のそれより低いものであった。
When reduction of carbon is prioritized over reduction of oxide (low oxygen sintered metal material) from the viewpoint of corrosion resistance, such as stainless steel, some oxide remains. I had to tolerate. As a result, the obtained sintered material contains higher oxygen than the ingot,
There was a problem that the performance was somewhat inferior. Particularly, in stainless steel, the performance such as corrosion resistance of the sintered material was lower than that of the ingot material.

【0007】本発明は、Cr含有量が10〜30wt%
のステンレス鋼組成の焼結材料について、残留する酸化
物に起因する焼結材料の耐食性劣化を改善した高性能低
炭素鉄基焼結材料およびその製造方法を提供することを
目的としている。
The present invention has a Cr content of 10 to 30 wt%.
It is an object of the present invention to provide a high-performance low-carbon iron-based sintered material having improved corrosion resistance deterioration of the sintered material due to residual oxide, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明によれば、Cr含有量が10〜30wt%の
ステンレス鋼組成をもつ焼結材料において、焼結材料全
体の平均含有C量が0.06wt%以下、かつ重量%で
表示される平均含有O量が前記平均含有C量の4/3を
超え、前記焼結材料の表面より少なくとも10μmの深
さにおける含有C量が0.06wt%以下、かつ含有O
量が前記焼結材料の平均含有O量未満であることを特徴
とする高性能低炭素鉄基焼結材料が提供される(以下、
含有不純物量が焼結材料または成形体のどの部位の値で
あるかを明確にするため、焼結材料または成形体全体の
含有成分には、「平均」と明記して表面部の含有成分と
区別して記載する)。
In order to achieve the above object, according to the present invention, in a sintered material having a stainless steel composition with a Cr content of 10 to 30 wt%, the average C content of the entire sintered material is C. Content is 0.06 wt% or less, and the average O content expressed in weight% exceeds 4/3 of the average C content, and the C content is 0 at a depth of at least 10 μm from the surface of the sintered material. 0.06 wt% or less and O content
Provided is a high-performance low-carbon iron-based sintered material, characterized in that the amount is less than the average O content of the sintered material (hereinafter,
In order to clarify which part of the sintered material or molded body the content of impurities is, the content of the sintered material or the whole molded body should be specified as "average" and the content of the surface portion List separately).

【0009】ここで、前記焼結材料全体の平均含有O量
が0.1wt%以上であり、前記焼結材料の表面より少
なくとも10μmの深さにおける含有O量が0.05w
t%以下であるのが好ましい。
Here, the average O content in the entire sintered material is 0.1 wt% or more, and the O content in the depth of at least 10 μm from the surface of the sintered material is 0.05 w.
It is preferably t% or less.

【0010】また、前記焼結材料の表面より少なくとも
10μmの深さにおける含有Cr量が、焼結材料全体の
平均含有Cr量の80%であり、さらに、前記焼結材料
の密度の真密度に対する比率が92%以上であるのが好
ましい。
Further, the amount of Cr contained at a depth of at least 10 μm from the surface of the sintered material is 80% of the average amount of Cr contained in the whole sintered material, and the density of the sintered material is relative to the true density. The ratio is preferably 92% or more.

【0011】また、本発明によれば、金属粉末成形体に
ついて、重量%で表示される平均含有O量が平均含有C
量の4/3を超え、前記成形体の重量%で表示される表
面近傍の含有O量が表面含有C量の4/3以下となるよ
う調整した後、少なくとも真空排気しながら1000〜
1350℃で加熱する工程を含む焼結工程で焼結するこ
とを特徴とする高性能低炭素鉄基焼結材料の製造方法が
提供される。
Further, according to the present invention, in the metal powder compact, the average O content expressed in% by weight is the average C content.
After adjusting the amount of O contained in the vicinity of the surface, which is represented by weight% of the molded body, to be 4/3 or less of the amount of C contained in the surface, the amount of 1000 to
Provided is a method for producing a high-performance low-carbon iron-based sintered material, which comprises sintering in a sintering step including a step of heating at 1350 ° C.

【0012】また、本発明によれば、前記真空排気下で
の加熱の後、さらに、非酸化性雰囲気中で加熱すること
を特徴とする高性能低炭素鉄基焼結材料の製造方法が提
供される。
Further, according to the present invention, there is provided a method for producing a high-performance low-carbon iron-based sintered material, which comprises heating in a non-oxidizing atmosphere after the heating under vacuum exhaust. To be done.

【0013】ここで、前記真空排気下での加熱を30T
orr以下、さらに、非酸化性雰囲気中での加熱を12
50〜1400℃で行うのが好ましい。
Here, the heating under vacuum exhaust is performed for 30T.
Orr or less, and heating in a non-oxidizing atmosphere is 12
It is preferable to carry out at 50 to 1400 ° C.

【0014】以下に本発明をさらに詳細に説明する。上
記目的を達成するために、焼結材料の表面より少なくと
も10μmの深さの表面部分(以下、特に断らない場
合、単に「表面部分」という)についての成分について
は、含有C量が0.06wt%以下で、含有O量が焼結
材料全体の平均含有O量より低いことが必要である。
The present invention will be described in more detail below. In order to achieve the above-mentioned object, regarding the components of the surface portion having a depth of at least 10 μm from the surface of the sintered material (hereinafter, simply referred to as “surface portion” unless otherwise specified), the C content is 0.06 wt. %, It is necessary that the O content is lower than the average O content of the entire sintered material.

【0015】表面含有C量が、0.06wt%を超える
場合は、耐食性が溶製材より劣り、使用に耐えなくな
る。従って、表面部分の含有C量は0.06wt%以下
であることが必要である。また、表面部分の含有O量が
焼結材料全体の平均含有O量以上であると、従来の単な
る焼結材料よりもむしろ低い耐食性となってしまう。そ
のため、表面部分の含有O量が焼結材料全体の含有O量
より低いことが必要である。また、通常、焼結体表面に
孔やスケールなどのあらゆる欠陥が存在するため、深さ
方向に少なくとも数μm以上の研磨などが必要である。
表面部分の深さが10μm未満の場合は研磨後の表面部
分の厚みが十分でなく、表面部分の耐食性の向上の効果
が十分に期待できない。従って、表面部分の厚さは10
μm以上であることが必要である。但し、表面部分の厚
さは、厚い方が好ましく、研削加工などを施すために
は、300μm以上であることが好ましい。
When the amount of C contained in the surface exceeds 0.06 wt%, the corrosion resistance is inferior to that of the ingot material and it cannot be used. Therefore, the C content in the surface portion needs to be 0.06 wt% or less. Further, if the content of O in the surface portion is equal to or more than the average content of O in the entire sintered material, the corrosion resistance becomes lower than that of the conventional simple sintered material. Therefore, it is necessary that the O content in the surface portion is lower than the O content in the entire sintered material. Further, usually, since any defects such as pores and scales are present on the surface of the sintered body, it is necessary to polish the depth direction to at least several μm or more.
When the depth of the surface portion is less than 10 μm, the thickness of the surface portion after polishing is not sufficient, and the effect of improving the corrosion resistance of the surface portion cannot be expected sufficiently. Therefore, the thickness of the surface part is 10
It must be at least μm. However, the thickness of the surface portion is preferably thicker, and is preferably 300 μm or more in order to perform grinding or the like.

【0016】次に、焼結材料全体については、平均含有
C量が0.06wt%以下で、平均含有O量が平均含有
C量の4/3を超えることが必要である。
Next, for the entire sintered material, it is necessary that the average C content is 0.06 wt% or less and the average O content exceeds 4/3 of the average C content.

【0017】焼結材料の平均含有C量が0.06wt%
を超えると、後工程で熱処理などを施した際に、焼結体
内部より表面部分の低C領域に炭素が拡散し、表面部分
の含有C量も0.06wt%を超えてしまう。従って、
焼結材料全体の平均含有C量は0.06wt%以下であ
ることが必要である。一方、焼結材料全体の平均含有O
量が重量%表示で焼結材料全体の平均含有C量の4/3
以下であると、CとOの直接反応の終盤の反応速度が小
さくなってしまうため、焼結材料全体の平均含有C量を
0.06wt%以下とするのに長時間を必要とする。従
って、平均含有O量が平均含有C量の4/3を超えるこ
とが必要である。
The average C content of the sintered material is 0.06 wt%
When it exceeds, the carbon diffuses from the inside of the sintered body to the low C region of the surface portion when the heat treatment or the like is performed in a later step, and the C content of the surface portion exceeds 0.06 wt%. Therefore,
The average C content of the entire sintered material needs to be 0.06 wt% or less. On the other hand, the average content O of the sintered materials as a whole
4/3 of the average C content of the sintered material
If it is below, the reaction rate in the final stage of the direct reaction of C and O becomes small, and therefore it takes a long time to set the average content of C in the entire sintered material to 0.06 wt% or less. Therefore, it is necessary that the average O content exceeds 4/3 of the average C content.

【0018】また、焼結材料の表面部分についての含有
Cr量が、焼結材料全体の平均含有Cr量の80%以上
であり、さらに、焼結材料の密度の真密度に対する比率
が92%以上であるのが好ましい。
Further, the Cr content in the surface portion of the sintered material is 80% or more of the average Cr content of the entire sintered material, and the ratio of the density of the sintered material to the true density is 92% or more. Is preferred.

【0019】ステンレス鋼などのCr含有合金の場合、
減圧下で加熱すると焼結体表面よりCrが蒸発し、その
結果、表面近傍のCr濃度が焼結体内部に比較して低く
なる。ステンレス鋼の場合、表面部分のCr濃度の低下
は、耐食性の劣化を引き起こす。従って、焼結材料の表
面より少なくとも10μmの深さの表面部分についての
含有Cr量が、焼結材料全体の含有Cr量の80%以上
であることが好ましい。また、焼結材料の特性は、密度
が高いほど優れている。特に、真密度に対する比率が9
2%以上であると焼結体中の空孔が閉空孔となるので好
ましい。
In the case of a Cr-containing alloy such as stainless steel,
When heated under reduced pressure, Cr evaporates from the surface of the sintered body, and as a result, the Cr concentration near the surface becomes lower than that in the inside of the sintered body. In the case of stainless steel, a decrease in the Cr concentration on the surface causes deterioration of corrosion resistance. Therefore, it is preferable that the content of Cr in the surface portion having a depth of at least 10 μm from the surface of the sintered material is 80% or more of the content of Cr in the entire sintered material. The characteristics of the sintered material are better as the density is higher. Especially, the ratio to the true density is 9
It is preferable that it is 2% or more because the pores in the sintered body become closed pores.

【0020】次に、本発明の高性能低炭素鉄基焼結材料
の製造方法について説明する。本発明の焼結材料を製造
する方法としては、焼結に先立って、金属粉末成形体の
含有不純物であるC,Oを制御することが必要である。
成形体全体の平均不純物については、平均含有O量を重
量%表示で平均含有C量の4/3を超え、焼結材料の表
面部分の不純物については、含有O量が含有C量の4/
3以下となるように調整することが必要である。
Next, a method for producing the high-performance low carbon iron-based sintered material of the present invention will be described. As a method for producing the sintered material of the present invention, it is necessary to control C and O, which are impurities contained in the metal powder compact, prior to sintering.
For the average impurities of the whole compact, the average O content exceeds 4/3 of the average C content in weight%, and for the impurities of the surface portion of the sintered material, the O content is 4 / of the C content.
It is necessary to adjust it so that it is 3 or less.

【0021】平均含有O量を重量%表示で平均含有C量
の4/3とすると、OとCとがモル比にして1対1で反
応しCOガスを生成する。この場合、COガス生成反応
の終盤では、焼結材料中のOとCが共に低下し、その結
果、含有O量と含有C量との積で表現できる反応速度が
低下してしまう。そのため、OとCとのモル比を1対1
よりずらすことで、COガス生成反応の終盤において
も、ある程度以上の反応速度を確保することが必要であ
る。また、含有O量と含有C量とのモル比をOリッチと
するとある程度Oの残留した極低Cの焼結体が、OとC
とのモル比をCリッチとすると、ある程度Cの残留した
極低Oの焼結体が、それぞれ短時間で得られる。
When the average content of O is 4/3 of the average content of C in weight%, O and C react in a molar ratio of 1: 1 to produce CO gas. In this case, in the final stage of the CO gas generation reaction, both O and C in the sintered material decrease, and as a result, the reaction rate that can be expressed by the product of the O content and the C content decreases. Therefore, the molar ratio of O and C is 1: 1.
By further shifting, it is necessary to secure a reaction rate above a certain level even in the final stage of the CO gas generation reaction. Further, when the molar ratio of the content of O and the content of C is made O-rich, a sintered body having an extremely low C containing a certain amount of O remains as O and C.
When the molar ratio of C and C is set to be C-rich, an extremely low-O sintered body in which C remains to some extent can be obtained in a short time.

【0022】すなわち、焼結材料の表面部分の不純物に
ついて、含有O量を含有C量の4/3未満となるように
調整するのは、短時間のCO生成反応の結果、焼結体表
面をある程度Cの残留した極低Oの焼結体とするためで
ある。また、成形体全体の平均不純物について、平均含
有O量を平均含有C量の4/3を超えるように調整する
のは、短時間のCO生成反応の結果、焼結体表面を除く
焼結体内部をある程度Oの残留した極低Cの焼結体とす
るためである。
That is, it is necessary to adjust the amount of O contained in the surface portion of the sintered material so as to be less than 4/3 of the amount of C contained in the surface of the sintered body as a result of the CO generation reaction in a short time. This is to obtain an extremely low O sintered body in which C remains to some extent. Regarding the average impurities of the entire compact, it is necessary to adjust the average O content to exceed 4/3 of the average C content as a result of a short-time CO formation reaction, as a result of excluding the surface of the sintered body. This is because the inside of the sintered body is an extremely low C, in which O remains to some extent.

【0023】焼結材料の表面部分がある程度Cの残留し
た極低Oの焼結体となり、焼結体内部がある程度Oの残
留した極低Cの焼結体となった(以下、この状態になる
までの反応を第1段階の反応という)後、さらに、CO
生成反応を継続すると、焼結体表面部分の残留Cは、焼
結体内部に速やかに拡散し、焼結体内部に残留する酸化
物のOと反応する(以下、この状態になるまでの反応を
第2段階の反応という)。この際、表面部分の残留C
は、内部の残留Oに比較して少量であるので、ある程度
以上の反応速度が確保でき、短時間の後には焼結体内部
のOが多少低下するとともに焼結体表面部分は極低Cと
なり、焼結体全体にわたって極低Cで、焼結体表面部分
では極低Oで、焼結体内部ではある程度Oの残留した本
発明の焼結材料が得られる。
The surface of the sintered material became an extremely low O sintered body in which a certain amount of C remained, and the inside of the sintered body became an extremely low C sintered body in which a certain amount of O remained (hereinafter, in this state. The reaction until the reaction is called the first stage reaction), and then CO
When the production reaction is continued, the residual C on the surface of the sintered body rapidly diffuses inside the sintered body and reacts with O of the oxide remaining inside the sintered body (hereinafter, the reaction until this state is reached). Is called the second stage reaction). At this time, residual C on the surface
Is a small amount compared to the residual O in the interior, so that a reaction rate above a certain level can be secured, and after a short time, the O inside the sintered body is slightly reduced and the surface of the sintered body becomes extremely low C. The sintered material of the present invention has an extremely low C throughout the sintered body, an extremely low O on the surface of the sintered body, and a small amount of O remaining inside the sintered body.

【0024】極低Cで極低Oの表面部分の厚さは、第1
段階の反応前の表面部のCリッチ部分の厚さおよびC濃
度によって制御でき、Cリッチ部分が厚くC濃度が高い
ほど、厚くできる。但し、成形体全体の平均含有O量が
重量%表示で平均含有C量の4/3を超える範囲でない
と、極低C焼結体とならないので注意が必要である。ま
た、第1段階の反応前の表面部のCリッチ部分の位置
は、成形体表面近傍であればよく、第2段階の反応にこ
のCリッチ部分のCが寄与できる範囲であればよい。
The thickness of the surface portion of extremely low C and extremely low O is the first
It can be controlled by the thickness and the C concentration of the C-rich portion of the surface portion before the reaction of the step, and the thicker the C-rich portion is and the higher the C concentration is, the thicker it can be. However, it should be noted that an extremely low C sintered body cannot be obtained unless the average O content of the entire compact is in the range of 4/3 of the average C content in terms of weight%. Further, the position of the C-rich portion of the surface portion before the reaction in the first step may be in the vicinity of the surface of the molded body, and may be in the range where C of the C-rich portion can contribute to the reaction in the second step.

【0025】以上のように、第1段階の反応前に金属粉
末成形体表面近傍をCリッチにするには、一旦、成形体
全体にわたりOリッチにし、その後、成形体表面のCを
高める操作を施すのが容易である。しかし、この方法に
制御するものではない。このC,Oの制御方法について
は後述する。
As described above, in order to make the vicinity of the surface of the metal powder compact C rich before the reaction of the first step, once the entire compact is made O rich, and then the C of the surface of the compact is increased. Easy to apply. However, it does not control this method. The method of controlling C and O will be described later.

【0026】本発明の焼結方法においては、焼結の少な
くとも一部において、真空排気しながら加熱することが
必要であり、その加熱保持温度は1000〜1350℃
であることが好ましい。
In the sintering method of the present invention, at least a part of the sintering needs to be heated while evacuating, and the heating and holding temperature is 1000 to 1350 ° C.
Is preferred.

【0027】含有Oと含有Cとは、加熱によって、CO
ガスを生成する。生成COガスの平衡圧力は、温度によ
って決まるが、反応はCOの平衡圧力に達するまで進行
する。すなわち、反応を継続させるためには反応が完結
するまで生成COガス圧を平衡圧より低く保つ必要があ
る。そのための方法としては、不活性ガスをキャリアと
して使用しCOガスを反応系外に搬出する方法がある
が、難還元性の金属酸化物を含む場合は、CO平衡ガス
圧は低いため、多量のキャリアガスを必要とし現実的で
ない。そのため、唯一の方法として、COガスを反応系
外に搬出するために真空排気が必要である。
The contained O and the contained C are converted into CO by heating.
Produces gas. The equilibrium pressure of the produced CO gas depends on the temperature, but the reaction proceeds until the equilibrium pressure of CO is reached. That is, in order to continue the reaction, it is necessary to keep the produced CO gas pressure lower than the equilibrium pressure until the reaction is completed. As a method therefor, there is a method in which an inert gas is used as a carrier and CO gas is carried out of the reaction system. However, when a hardly-reducing metal oxide is contained, the CO equilibrium gas pressure is low, and therefore a large amount of CO gas is generated. It requires carrier gas and is not realistic. Therefore, as the only method, evacuation is required to carry the CO gas out of the reaction system.

【0028】また、加熱温度の下限を1000℃とした
のは、CO平衡ガス圧を十分高くするとともに、反応速
度を十分に高くし、反応を短時間で、かつ効果的に行う
ためである。加熱温度が1000℃を下まわると、難還
元性の金属酸化物とCとの反応の生成CO平衡ガス圧は
低く、反応速度も十分ではないので、反応を短時間で完
結することが困難となる。したがって、加熱の下限温度
は1000℃であることが必要である。
The lower limit of the heating temperature is set to 1000 ° C. so that the CO equilibrium gas pressure is sufficiently high and the reaction rate is sufficiently high so that the reaction can be carried out effectively in a short time. When the heating temperature is lower than 1000 ° C., the CO equilibrium gas pressure of the reaction of the hardly reducing metal oxide and C is low and the reaction rate is not sufficient, so that it is difficult to complete the reaction in a short time. Become. Therefore, the lower limit temperature for heating needs to be 1000 ° C.

【0029】一方、温度が高すぎると、粉末同士の焼結
が著しく速く焼結体は緻密なものとなり、空孔は開空孔
(焼結体表面とつながった空孔)ではなくなってしま
う。その結果、反応生成物のCOガスが焼結体より抜け
るための通路が塞がってしまい、反応を短時間で完結す
ることが困難となる。加熱温度が1350℃を超えると
焼結体より蒸気圧の高い金属元素が蒸発し、組成歪みが
生じる。特に、Crを含有するステンレス鋼などの場
合、表面部のCr濃度が低下し、表面部がステンレス組
成ではなくなり、著しく耐食性が損なわれる。従って、
真空中での加熱の上限温度は1350℃であることが好
ましい。
On the other hand, if the temperature is too high, the sintering of the powders will be remarkably fast and the sintered body will become dense and the pores will not be open pores (pores connected to the surface of the sintered body). As a result, the passage for the CO gas of the reaction product to escape from the sintered body is blocked, and it becomes difficult to complete the reaction in a short time. When the heating temperature exceeds 1350 ° C., the metal element having a higher vapor pressure than that of the sintered body is vaporized and composition distortion occurs. In particular, in the case of stainless steel containing Cr, the Cr concentration in the surface portion decreases, the surface portion has no stainless composition, and the corrosion resistance is significantly impaired. Therefore,
The upper limit temperature of heating in vacuum is preferably 1350 ° C.

【0030】好ましくは、0.01Torr以下まで真
空度を増すか、真空排気と同時にH 2 ガスや不活性ガス
を導入することで反応を効率的、かつ短時間で完結でき
る。H2 ガスや不活性ガスを導入する場合は、ポプ能力
が劣化しない範囲の圧力が好ましく、加熱炉内部を30
Torr以下とするのが好ましい。ここで導入する不活
性ガスはアルゴンや窒素が入手の観点から好ましい。
Preferably, it is true up to 0.01 Torr or less.
Increase vacancy or H at the same time as evacuation 2Gas or inert gas
The reaction can be completed efficiently and in a short time by introducing
It H2When introducing gas or inert gas, pop capacity
The pressure within the range that does not deteriorate is preferable.
It is preferably set to Torr or less. Inactivity introduced here
From the viewpoint of availability, argon or nitrogen is preferable as the oxidative gas.

【0031】さらに、焼結体の密度を向上させたり、ス
テンレス鋼などのCr含有合金については、真空加熱時
に不可避的に生成する焼結体表面の低Cr部位に焼結体
内部よりCrを拡散させ内部なみのCr濃度とするため
に、真空排気に引き続き、比酸化性雰囲気中、1250
〜1400℃で加熱するのが好ましい。この際利用でき
る非酸化性雰囲気としては、アルゴンや窒素などの不活
性ガス、水素などの還元性ガスなどが使用できる。
Further, for improving the density of the sintered body, and for Cr-containing alloys such as stainless steel, Cr is diffused from the inside of the sintered body to the low Cr portion of the surface of the sintered body which is inevitably generated during vacuum heating. In order to obtain the Cr concentration equal to that of the inside, after evacuation, in a specific oxidizing atmosphere, 1250
It is preferable to heat at ˜1400 ° C. As the non-oxidizing atmosphere that can be used at this time, an inert gas such as argon or nitrogen, a reducing gas such as hydrogen, or the like can be used.

【0032】以下、本発明の好ましい形態について詳述
する。本発明に使用する原料粉末は、水アトマイズ粉、
ガスアトマイズ粉、油アトマイズ粉、カルボニル粉、還
元粉、粉砕粉などの単独または混合粉が使用できる。こ
れらの粉末は、必要に応じて、分級などによって、平均
粒径や粒度分布を調整して使用する。また、合金成分を
金属酸化物などの混合物粉末として添加してもよい。原
料粉末の平均粒径は、最終焼結体密度比を92%の好ま
しいものとするために、3〜30μmであるのが好まし
い。
The preferred embodiments of the present invention will be described in detail below. The raw material powder used in the present invention is water atomized powder,
Gas atomized powder, oil atomized powder, carbonyl powder, reduced powder, crushed powder and the like can be used alone or as a mixed powder. These powders are used by adjusting the average particle size and particle size distribution by classification or the like, if necessary. Further, the alloy component may be added as a mixed powder such as a metal oxide. The average particle size of the raw material powder is preferably 3 to 30 μm so that the final sintered body density ratio is preferably 92%.

【0033】本発明の原料粉末は、必要に応じて成形助
剤を添加して成形する。成形は一般的な粉末冶金用プレ
スや射出成形などが適用できる。
The raw material powder of the present invention is molded by adding a molding aid, if necessary. As the molding, a general powder metallurgy press, injection molding or the like can be applied.

【0034】粉末冶金用プレスを適用する場合は、公知
のように、ステアリン酸亜鉛などの金属石鹸、油脂など
の有機化合物を成形助剤として使用する。使用される成
形助剤は、原料粉末に対して、0.5〜5wt%程度で
ある。成形圧力は、通常、0.3〜10t/cm2 程度であ
る。
When a powder metallurgical press is applied, metal soap such as zinc stearate and organic compounds such as fats and oils are used as a molding aid, as is well known. The molding aid used is about 0.5 to 5 wt% with respect to the raw material powder. The molding pressure is usually about 0.3 to 10 t / cm 2 .

【0035】射出成形を適用する場合は、公知のよう
に、成形助剤として、熱可塑性樹脂、ワックス類、可塑
剤またはその混合物を主体とする有機バインダを使用す
る。この有機バインダと原料粉末の混合比は、体積換算
で30:70〜70:30程度である。射出成形圧力は
0.3〜3t/cm2 程度、成形機のシリンダ温度は80〜
300℃程度、金型温度は5〜50℃程度である。ただ
し、以上の成形方法は一例に過ぎず、成形体が得られる
限り、すべての粉末成形方法が適用できる。
When injection molding is applied, as is well known, an organic binder mainly containing a thermoplastic resin, waxes, a plasticizer or a mixture thereof is used as a molding aid. The mixing ratio of the organic binder and the raw material powder is about 30:70 to 70:30 in terms of volume. Injection molding pressure is about 0.3 to 3 t / cm 2 , cylinder temperature of the molding machine is 80 to
The mold temperature is about 300 ° C and the mold temperature is about 5 to 50 ° C. However, the above molding method is only an example, and any powder molding method can be applied as long as a molded body can be obtained.

【0036】粉末冶金用プレスや射出成形によって得ら
れた成形体は、必要に応じて、焼結に先立ち成形助剤を
除去する。成形助剤の除去には、公知のように加熱処理
を用いるのが通常であり窒素やアルゴンなどの不活性ガ
ス、水素含有ガスなどの還元性ガス、真空、加圧ガスお
よび大気などの雰囲気が適用できる。加熱条件は、公知
のように、成形助剤の量や種類によって変更する必要が
あるが、加熱の昇温速度は10℃/時間〜100℃/分
程度、最高温度は400〜800℃程度であり、必要に
応じて最高温度で保持する。成形助剤を多量には使用し
ないプレス成形体の場合は、成形助剤の除去の際に欠陥
発生の危険率が低いので、経済性を考慮して昇温速度は
1℃/分〜100℃/分程度にする。成形助剤を多量に
使用した射出成形体の場合は、成形助剤の除去の際に欠
陥発生の危険率が高いので、昇温速度を小さく10℃/
時間〜10℃/分程度にする。
If necessary, the molding aid obtained by the powder metallurgy press or the injection molding is removed from the molding aid prior to sintering. As is well known, heat treatment is usually used to remove the molding aid, and an atmosphere such as an inert gas such as nitrogen or argon, a reducing gas such as a hydrogen-containing gas, a vacuum, a pressurized gas or the atmosphere is used. Applicable. The heating conditions need to be changed depending on the amount and type of the molding aid as is known, but the heating rate is about 10 ° C / hour to 100 ° C / minute, and the maximum temperature is about 400 to 800 ° C. Yes, keep at maximum temperature as needed. In the case of a press-molded body that does not use a large amount of molding aid, the risk of defects occurring at the time of removing the molding aid is low, so the temperature increase rate is 1 ° C / min to 100 ° C in consideration of economy. / Min. In the case of an injection-molded article containing a large amount of molding aid, the risk of occurrence of defects during removal of the molding aid is high.
Time is about 10 ° C / minute.

【0037】この際、得られる脱脂体は、一旦、Oリッ
チとなるようにする。そのために、原料粉末のC,含有
O量をあらかじめ制御しておく。あるいは、加熱雰囲気
の酸素ポテンシャルを制御してOリッチとする。
At this time, the degreased body obtained is once made to be O-rich. Therefore, the amounts of C and O contained in the raw material powder are controlled in advance. Alternatively, the oxygen potential of the heating atmosphere is controlled to be O-rich.

【0038】つづいて、成形体全体にわたってOリッチ
となった脱脂体の表面部を真空加熱に先立ちCリッチと
なるようにする。このCリッチとするのは、工程的には
最後の真空加熱に先立てばよく、Oリッチのまま短時間
の真空加熱によってC,Oをある程度除去してもよい。
表面近傍をCリッチとするには、RXガスなどのCO含
有ガスやメタンガスなどによって、いわゆる浸炭性雰囲
気をつくり加熱することで可能である。この浸炭性雰囲
気については、通常の「金属材料の浸炭法」として公知
である。この加熱は表面近傍のみをCリッチにするため
に、600〜1150℃の温度範囲で、10〜180分
程度処理すればよい。また、黒鉛などのC源を含む液体
にOリッチの成形体を浸漬し、液体を蒸発させ、C源の
みを成形体表面に付着させることでも可能である。
Subsequently, the surface of the degreased body which has become O-rich over the entire compact is made C-rich prior to vacuum heating. This C-rich process may be performed prior to the final vacuum heating in terms of the process, and C and O may be removed to some extent by vacuum heating for a short time while remaining O-rich.
The vicinity of the surface can be made C-rich by heating by creating a so-called carburizing atmosphere with a CO-containing gas such as RX gas or methane gas. This carburizing atmosphere is known as a general "carburizing method for metallic materials". This heating may be performed in the temperature range of 600 to 1150 ° C. for about 10 to 180 minutes in order to make only the vicinity of the surface C-rich. It is also possible to immerse the O-rich compact in a liquid containing a C source such as graphite, evaporate the liquid, and deposit only the C source on the surface of the compact.

【0039】このようにして得られた表面近傍のみCリ
ッチにした成形体を、前述のとおり少なくとも一部で真
空排気槽で加熱することにより、本発明の焼結材料が得
られる。
The sintered material of the present invention is obtained by heating the thus obtained C-rich compact only in the vicinity of the surface in a vacuum exhaust tank as described above.

【0040】[0040]

【実施例】以下に本発明を実施例に基づき具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0041】(実施例1)原料粉末として、平均粒径
8.5μm、C含有量:0.05wt%、O含有量:
0.62wt%のSUS316組成(Cr:17.8w
t%、Ni:13.8wt%、Mo:2.6wt%、S
i:0.82wt%、Mn:0.75wt%、P:0.
011wt%、S:0.007wt%)の水アトマイズ
粉を用意した。原料粉末100gに対して9.5gの有
機バインダを添加・混練して射出成形用の原料を得た。
有機バインダは、アクリル樹脂25wt%、ポリプロピ
レン10wt%、EVA樹脂25wt%、DBP15w
t%および合成パラフィンワックス25wt%より成る
ものを用いた。
Example 1 As a raw material powder, the average particle size was 8.5 μm, the C content was 0.05 wt%, and the O content was:
0.62 wt% SUS316 composition (Cr: 17.8w
t%, Ni: 13.8 wt%, Mo: 2.6 wt%, S
i: 0.82 wt%, Mn: 0.75 wt%, P: 0.
011 wt%, S: 0.007 wt%) water atomized powder was prepared. A raw material for injection molding was obtained by adding and kneading 9.5 g of an organic binder to 100 g of the raw material powder.
The organic binder is acrylic resin 25 wt%, polypropylene 10 wt%, EVA resin 25 wt%, DBP15w
t% and 25 wt% synthetic paraffin wax were used.

【0042】この射出成形用原料を、150℃で、長さ
45×幅15×厚さ4mm直方体試験片に射出成形し
た。得られた射出成形体は、いずれも窒素中250℃ま
で2日かけて昇温し、さらに600℃まで12時間で昇
温し、1時間保持の後、冷却した。
This injection molding raw material was injection molded at 150 ° C. into a rectangular parallelepiped test piece having a length of 45 × a width of 15 × a thickness of 4 mm. Each of the obtained injection-molded articles was heated to 250 ° C. in nitrogen over 2 days, further heated to 600 ° C. in 12 hours, held for 1 hour, and then cooled.

【0043】次に、これを露点+5℃の水素中、450
〜600℃で20分間保持する(以下、水素処理と記述
する)ことで、Cおよび含有O量を調整して、脱脂体と
した。さらに、一部の脱脂体は、0.001Torrの
真空下、+5℃/分の速度で、1050℃まで昇温、
1.5時間保持した後、冷却(以下、仮焼結と記述す
る)して仮焼結体を作製した。
Then, this was heated in hydrogen at a dew point of + 5 ° C. to 450
By holding at ˜600 ° C. for 20 minutes (hereinafter referred to as hydrogen treatment), the amounts of C and O contained were adjusted to obtain a degreased body. Furthermore, a part of the degreased body is heated to 1050 ° C. at a rate of + 5 ° C./min under a vacuum of 0.001 Torr,
After holding for 1.5 hours, it was cooled (hereinafter referred to as temporary sintering) to prepare a temporary sintered body.

【0044】前記脱脂体および仮焼結体は、0.001
Torrの真空中、1030℃まで+10℃/分の速度
で昇温し、メタンガスを流入し300Torrに5分間
保持した後、メタンガスの供給を断ち、アルゴンガスを
導入して200℃まで1hで冷却した(以下、メタンガ
ス処理と記述する)。
The degreased body and the pre-sintered body are 0.001
In a vacuum of Torr, the temperature was raised to 1030 ° C. at a rate of + 10 ° C./min, methane gas was introduced and held at 300 Torr for 5 minutes, then supply of methane gas was cut off, argon gas was introduced, and cooling was performed to 200 ° C. in 1 hour. (Hereinafter, described as methane gas treatment).

【0045】焼結前の含有C量および含有O量を表1に
示す。脱脂体および仮焼結体は、試験片全体にわたって
均一でOリッチまたはCリッチであり、メタンガス処理
体は、試験片の表面近傍においてはCリッチで、残りの
内部においてはOリッチとなっている。
Table 1 shows the C content and the O content before sintering. The degreased body and the pre-sintered body are uniformly O-rich or C-rich over the entire test piece, and the methane gas treated body is C-rich near the surface of the test piece and O-rich in the remaining inside. ..

【0046】脱脂体、仮焼結体およびメタンガス処理体
を、0.001Torrの真空下、+10℃/分の速度
で、1160℃まで昇温、3時間保持した後、アルゴン
ガス雰囲気中、+10℃/分の速度で、1350℃まで
昇温、4時間保持した後、冷却して焼結を完了した。焼
結体の密度、CおよびO含有量を測定し、また孔食電位
を測定して、耐食性を評価した。特性は、表1に示す。
The degreased body, the pre-sintered body and the methane gas treated body were heated to 1160 ° C. at a rate of + 10 ° C./min under a vacuum of 0.001 Torr and held for 3 hours, and then in an argon gas atmosphere at + 10 ° C. The temperature was raised to 1350 ° C. at a rate of / min and held for 4 hours, then cooled to complete sintering. The density, C and O contents of the sintered body were measured, and the pitting corrosion potential was measured to evaluate the corrosion resistance. The characteristics are shown in Table 1.

【0047】表1より明らかなように、焼結前の全体の
分析値がCリッチ(ΔOが負のもの)の場合(比較例
1)は、真空を利用した焼結後も、平均含有C量を0.
06wt%以下にできず、その結果、孔食電位は著しく
低いものとなり、耐食性が期待できない。また、メタン
ガス処理による浸炭によって、焼結体表面近傍の含有C
量を高くせず、表面部をCリッチ(ΔOが負のもの)と
しなかった場合(比較例2)は、最終焼結体の表面を極
低Oとできないため、孔食電位を溶製材並みまで高める
ことはできない。
As is clear from Table 1, when the overall analysis value before sintering is C-rich (ΔO is negative) (Comparative Example 1), the average C content is C even after sintering using vacuum. 0.
It cannot be made less than 06 wt%, and as a result, the pitting corrosion potential becomes extremely low, and corrosion resistance cannot be expected. In addition, the content of C in the vicinity of the surface of the sintered body due to carburization by methane gas treatment
When the amount was not increased and the surface portion was not made to be C-rich (where ΔO is negative) (Comparative Example 2), the surface of the final sintered body could not be made to have an extremely low O, so that the pitting potential was similar to that of the ingot material. Cannot be raised to.

【0048】一方、焼結体全体にわたって、平均含有C
量が0.06wt%を下まわり、かつ焼結体表面から1
0μmの範囲においては、焼結体内部よりもずっと低い
表面含有含有O量を持つ本発明の焼結材料は、いずれも
焼結体表面が極低Oであり極低Cであるため、SUS3
16L溶製材(比較例3)に匹敵する孔食電位を示した
(本発明例1〜5)。また、本発明の焼結材料の製造に
おいては、一旦、成形体全体をOリッチ(ΔOが正の
数)とし、その後、成形体表面近傍の炭素量を高め表面
部をCリッチ(ΔOが負の数)とする方法で効率的に製
造できる。さらに、炭素を高くするのは、脱脂直後でも
(本発明例1および2)、ある程度、CおよびOを除去
した後でも(本発明例3〜5)さしつかえなく、真空で
加熱する前であればよいことがわかる。
On the other hand, the average C content in the entire sintered body is C.
The amount is less than 0.06 wt% and 1 from the surface of the sintered body.
In the range of 0 μm, all of the sintered materials of the present invention having a surface-containing O content much lower than the inside of the sintered body have SUS3 because the surface of the sintered body has extremely low O and extremely low C.
It showed a pitting potential comparable to that of 16 L ingot (Comparative Example 3) (Invention Examples 1 to 5). Further, in the production of the sintered material of the present invention, the entire compact is once made to be O-rich (ΔO is a positive number), and thereafter the amount of carbon in the vicinity of the surface of the compact is increased to make the surface C-rich (ΔO is negative). It can be efficiently manufactured by the method of (1). Further, it is not necessary to increase the carbon immediately after degreasing (Invention Examples 1 and 2) or to some extent after removing C and O (Invention Examples 3 to 5) and before heating in vacuum. I know it's good.

【0049】(実施例2)実施例1の本発明例1に示し
たメタンガス処理材について真空加熱保持温度のみを変
更して焼結した。保持温度は表2に評価結果とともに示
した。表2より明らかなように、加熱保持温度が100
0℃より低い場合(比較例4)、CとOとの反応は十分
進行せず、その結果、高い平均含有C量の焼結材料しか
得られない。そのため、孔食電位は著しく低いものとな
り、耐食性が全く期待できないものとなった。また、加
熱保持温度が1350℃を超えた場合(比較例5)は、
焼結体表面からのCr蒸発に起因して、焼結体表面部の
Cr濃度が低くなった。その結果、耐食性の期待できな
い孔食電位の低い焼結材料が得られた。以上より、焼結
の加熱保持温度は、1000〜1350℃であることが
必要なことが理解できる。
(Example 2) The methane gas treating material shown in Example 1 of the present invention of Example 1 was sintered by changing only the vacuum heating and holding temperature. The holding temperature is shown in Table 2 together with the evaluation results. As is clear from Table 2, the heating and holding temperature is 100.
When the temperature is lower than 0 ° C (Comparative Example 4), the reaction between C and O does not proceed sufficiently, and as a result, only a sintered material having a high average C content is obtained. Therefore, the pitting corrosion potential was extremely low, and corrosion resistance could not be expected at all. Moreover, when the heating and holding temperature exceeds 1350 ° C. (Comparative Example 5),
Due to the evaporation of Cr from the surface of the sintered body, the Cr concentration on the surface of the sintered body became low. As a result, a sintered material with a low pitting corrosion potential was obtained for which corrosion resistance cannot be expected. From the above, it can be understood that the heating and holding temperature for sintering needs to be 1000 to 1350 ° C.

【0050】(実施例3)本発明の効果をより確認する
ために、原料粉末として、平均粒径9.5μm、C含有
量:0.02wt%、O含有量:0.15wt%のSU
S316組成(Cr:17.3wt%、Ni:12.4
wt%、Mo:2.7wt%、Si:0.94wt%、
Mn:0.22wt%、P:0.020wt%、S:
0.009wt%)のガスアトマイズ粉を用意した。原
料粉末100gに対して6.5gの実施例1と同じ有機
バインダを添加・混練して射出成形用の原料を得た。以
下、実施例1と同様にして、射出成形を行った。得られ
た射出成形体は、いずれも窒素中250℃まで2日かけ
て昇温し、さらに600℃まで12時間で昇温し、1時
間保持の後、冷却することで脱脂脱脂を完了した(水素
処理は行わなかった)。また、原料粉末100gに対し
て3gの樟脳と0.5gのステアリン酸亜鉛を添加し、
2t/cm2 で、長さ25×幅25×厚さ10mmの直方体
試験片をプレス成形し、水素中、+10℃/分の速度で
650℃まで昇温、2時間保持した後、冷却して脱脂
(脱蝋)を完了した。
(Example 3) In order to further confirm the effect of the present invention, as raw material powder, SU having an average particle size of 9.5 μm, C content: 0.02 wt% and O content: 0.15 wt% is used.
S316 composition (Cr: 17.3 wt%, Ni: 12.4)
wt%, Mo: 2.7 wt%, Si: 0.94 wt%,
Mn: 0.22 wt%, P: 0.020 wt%, S:
0.009 wt%) gas atomized powder was prepared. 6.5 g of the same organic binder as in Example 1 was added and kneaded with 100 g of the raw material powder to obtain a raw material for injection molding. Thereafter, injection molding was performed in the same manner as in Example 1. All the obtained injection-molded articles were heated to 250 ° C. in nitrogen over 2 days, further heated to 600 ° C. in 12 hours, held for 1 hour, and then cooled to complete degreasing and degreasing ( No hydrogen treatment was performed). Also, add 3 g of camphor and 0.5 g of zinc stearate to 100 g of the raw material powder,
A rectangular parallelepiped test piece having a length of 25 mm, a width of 25 mm and a thickness of 10 mm was press-molded at 2 t / cm 2 , heated in hydrogen at a rate of + 10 ° C./min to 650 ° C., held for 2 hours, and then cooled. Degreasing (dewaxing) was completed.

【0051】得られた脱脂体は、0.001Torrの
真空中、920℃まで+10℃/分の速度で昇温し、
0.20%のCO2 を含むブタン分解ガスを流入し10
分間保持した後、ブタン分解ガスの供給を断ち、アルゴ
ンガスを導入し200℃まで1hで冷却することで、脱
脂体表面部のみをCリッチとした。ブタン分解ガスで処
理した脱脂体および比較のためにブタン分解ガスで処理
しなかった脱脂体を実施例1と同様に焼結し、評価した
(表3参照)。
The obtained degreased body was heated to 920 ° C. at a rate of + 10 ° C./min in a vacuum of 0.001 Torr,
A butane decomposition gas containing 0.20% of CO 2 was flowed in and 10
After holding for a minute, the supply of the butane decomposition gas was stopped, the argon gas was introduced, and the mixture was cooled to 200 ° C. for 1 hour, whereby only the degreased body surface portion was made C-rich. The degreased body treated with butane decomposition gas and the degreased body not treated with butane decomposition gas were sintered and evaluated in the same manner as in Example 1 (see Table 3).

【0052】表3より明らかなように、成形体のCおよ
びOを調整した後、真空中で加熱する限り、成形方法が
射出成形であっても(本発明例9)、プレス成形であっ
ても(本発明例10)表面部が極低Cで極低Oの優れた
表面性状をもつ焼結材料が得られる。その特性は、高い
孔食電位で示されるとおり優秀な耐食性を示すものであ
った。
As is clear from Table 3, as long as the C and O of the molded body are adjusted and then heated in vacuum, the molding method may be injection molding (Invention Example 9) or press molding. (Invention Example 10) A sintered material having an excellent surface property in which the surface portion has extremely low C and extremely low O can be obtained. The properties showed excellent corrosion resistance as indicated by the high pitting potential.

【0053】以上、本発明について好ましい例、特にス
テンレス鋼について説明した。しかし、本発明は、難還
元性酸化物を生成する金属元素を包含する低炭素の鉄基
焼結材料全般の表面性状の改良に広く適用できるもので
ある。
The preferred examples of the present invention, particularly the stainless steel, have been described above. However, the present invention can be widely applied to the improvement of the surface properties of low-carbon iron-based sintered materials including a metal element that forms a non-reducible oxide.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【発明の効果】本発明は以上説明したように構成されて
いるので、Cr含有量が10〜30wt%のステンレス
鋼組成の焼結材料について、焼結材料全体の平均不純物
については、含有C量が0.06wt%以下で、焼結材
料の表面より少なくとも10μmの深さにおける含有O
量を焼結材料全体の平均含有O量より低くすることによ
り、焼結材料の耐食性が向上するという効果を奏する。
また、重量%で表される成分量を、あらかじめ成形体全
体の平均成分について、平均含有O量が平均含有C量の
4/3倍を超え、焼結材料の表面近傍の表面成分につい
て、含有O量が含有C量の4/3倍未満となるように調
整した後、少なくとも焼結工程の一部において、真空
中、1000〜1350℃で加熱することにより、焼結
材料を効率よく製造できるという効果を奏する。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, regarding the sintered material having a stainless steel composition with a Cr content of 10 to 30 wt%, the average C content in the average impurities of the entire sintered material is Of 0.06 wt% or less and the content of O at a depth of at least 10 μm from the surface of the sintered material.
By making the amount lower than the average O content of the whole sintered material, the effect of improving the corrosion resistance of the sintered material is exhibited.
In addition, the amount of the component represented by weight% is included in advance for the average component of the entire compact, the average O content exceeds 4/3 times the average C content, and the surface component near the surface of the sintered material is included. After the O content is adjusted to be less than 4/3 times the C content, the sintered material can be efficiently produced by heating at 1000 to 1350 ° C. in vacuum at least in a part of the sintering step. Has the effect.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Cr含有量が10〜30wt%のステンレ
ス鋼組成をもつ焼結材料において、焼結材料全体の平均
含有C量が0.06wt%以下、かつ重量%で表示され
る平均含有O量が前記平均含有C量の4/3を超え、前
記焼結材料の表面より少なくとも10μmの深さにおけ
る含有C量が0.06wt%以下、かつ含有O量が前記
焼結材料の平均含有O量未満であることを特徴とする高
性能低炭素鉄基焼結材料。
1. In a sintered material having a stainless steel composition with a Cr content of 10 to 30 wt%, the average C content of the whole sintered material is 0.06 wt% or less, and the average O content expressed as a weight percentage. Content is more than 4/3 of the average C content, the C content is 0.06 wt% or less at a depth of at least 10 μm from the surface of the sintered material, and the O content is the average O content of the sintered material. High-performance low-carbon iron-based sintered material characterized by being less than the amount.
【請求項2】前記焼結材料全体の平均含有O量が0.1
wt%以上であり、前記焼結材料の表面より少なくとも
10μmの深さにおける含有O量が0.05wt%以下
である請求項1に記載の高性能低炭素鉄基焼結材料。
2. The average O content of the whole sintered material is 0.1.
The high-performance low-carbon iron-based sintered material according to claim 1, wherein the content of O is 0.05 wt% or less at a depth of at least 10 μm from the surface of the sintered material.
【請求項3】前記焼結材料の表面より少なくとも10μ
mの深さにおける含有Cr量が、焼結材料全体の平均含
有Cr量の80%以上である請求項1または2に記載の
高性能低炭素鉄基焼結材料。
3. At least 10 μ from the surface of the sintered material.
The high-performance low-carbon iron-based sintered material according to claim 1 or 2, wherein the content of Cr in the depth of m is 80% or more of the average content of Cr in the entire sintered material.
【請求項4】前記焼結材料の密度の真密度に対する比率
が92%以上である請求項1〜3のいずれかに記載の高
性能低炭素鉄基焼結材料。
4. The high-performance low-carbon iron-based sintered material according to claim 1, wherein the ratio of the density of the sintered material to the true density is 92% or more.
【請求項5】金属粉末成形体について、重量%で表示さ
れる平均含有O量が平均含有C量の4/3を超え、前記
成形体の重量%で表示される表面近傍の含有O量が表面
含有C量の4/3以下となるよう調整した後、少なくと
も真空排気しながら1000〜1350℃で加熱する工
程を含む焼結工程で焼結することを特徴とする高性能低
炭素鉄基焼結材料の製造方法。
5. The metal powder compact has an average O content expressed in wt% exceeding 4/3 of the average C content, and the O content near the surface expressed in wt% of the compact. A high-performance low-carbon iron-based firing characterized by performing a sintering step including a step of heating at 1000 to 1350 ° C. while evacuation at least after adjusting the surface content C to 4/3 or less. A method of manufacturing a binding material.
【請求項6】前記真空排気下での加熱を30Torr以
下で行う請求項5に記載の高性能低炭素材料の製造方
法。
6. The method for producing a high performance low carbon material according to claim 5, wherein the heating under vacuum exhaust is performed at 30 Torr or less.
【請求項7】請求項5または6に記載の焼結材料の製造
方法により前記真空排気下での加熱後、さらに非酸化性
雰囲気中で加熱することを特徴とする高性能低炭素鉄基
焼結材料の製造方法。
7. A high-performance low-carbon iron-based calcination characterized by heating in a non-oxidizing atmosphere after the heating under vacuum exhaust by the method for producing a sintered material according to claim 5 or 6. A method of manufacturing a binding material.
【請求項8】前記真空排気下での加熱を30Torr以
下前記非酸化性雰囲気中での加熱を1250〜1400
℃で行う請求項7に記載の高性能低炭素鉄基焼結材料の
製造方法。
8. The heating under vacuum evacuation is 30 Torr or less, and the heating in the non-oxidizing atmosphere is 1250 to 1400.
The method for producing a high-performance low-carbon iron-based sintered material according to claim 7, wherein the method is performed at ℃.
JP2107392A 1992-02-06 1992-02-06 High performance low carbon ferrous sintered material and its manufacture Withdrawn JPH05214497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107392A JPH05214497A (en) 1992-02-06 1992-02-06 High performance low carbon ferrous sintered material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107392A JPH05214497A (en) 1992-02-06 1992-02-06 High performance low carbon ferrous sintered material and its manufacture

Publications (1)

Publication Number Publication Date
JPH05214497A true JPH05214497A (en) 1993-08-24

Family

ID=12044718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107392A Withdrawn JPH05214497A (en) 1992-02-06 1992-02-06 High performance low carbon ferrous sintered material and its manufacture

Country Status (1)

Country Link
JP (1) JPH05214497A (en)

Similar Documents

Publication Publication Date Title
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
CN109794605B (en) Method for sintering austenitic stainless steel
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
JPH05214497A (en) High performance low carbon ferrous sintered material and its manufacture
JP2703939B2 (en) Method for producing Fe-Si soft magnetic sintered material
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP2743974B2 (en) Control method of carbon content and oxygen content of degreased molded body in metal powder injection molding method
JP4158015B2 (en) Method for producing sintered body and sintered body
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH0995701A (en) Production of partially alloyed steel powder
JPH07113102A (en) Production of sintered compact
JPS5839704A (en) Production of ni-base sintered hard alloy
JP2766427B2 (en) Method for producing iron-chromium sintered soft magnetic material
JPH10287901A (en) Production of stainless sintered body
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
JPH07331379A (en) Production of high density stainless steel sintered product
JPH03271302A (en) Manufacture of powder sintered product
JPH09202934A (en) Production of stainless steel sintered body
JPH1121119A (en) Production of compound carbide and cemented carbide using the same
JPH06228607A (en) Production of sintered metallic part by injection molding of metal powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518