JPH06228607A - Production of sintered metallic part by injection molding of metal powder - Google Patents

Production of sintered metallic part by injection molding of metal powder

Info

Publication number
JPH06228607A
JPH06228607A JP1845393A JP1845393A JPH06228607A JP H06228607 A JPH06228607 A JP H06228607A JP 1845393 A JP1845393 A JP 1845393A JP 1845393 A JP1845393 A JP 1845393A JP H06228607 A JPH06228607 A JP H06228607A
Authority
JP
Japan
Prior art keywords
powder
degreasing
temperature
sintered
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1845393A
Other languages
Japanese (ja)
Other versions
JP2793938B2 (en
Inventor
Kimihiro Nishimura
村 公 宏 西
Hiroshi Otsubo
坪 宏 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5018453A priority Critical patent/JP2793938B2/en
Publication of JPH06228607A publication Critical patent/JPH06228607A/en
Application granted granted Critical
Publication of JP2793938B2 publication Critical patent/JP2793938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered metallic part increased in strength, hardness, etc., and excellent in dimensional accuracy by mixing a resin in a metal powder as a binder, compacting the mixture, degreasing the compact under specified conditions and sintering the compact. CONSTITUTION:Thermoplastic resin such as PE as a binder, wax as a low-mol. wt. org. matter, etc., are added to the powder of steel copper and other metals and alloys having <=100mum grain diameter and mixed to produce an injection- molding green compound. The compound is molded into a desired shape by an injection-molding machine, and the compact is heated to about 300 deg.C in a closed furnace contg. an inert gas or hydrogen atmosphere to volatilize off the low-mol.wt. component such as wax, and then heated to 600-1000 deg.C to decompose the resin into hydrocarbons. The compact is carburized by the hydrocarbons to remove oxides and then sintered at 800-2000 deg.C, and a sintered metallic part increased in strength and hardness and excellent in dimensional accuracy is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末射出成形法に
よる焼結金属部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered metal part by a metal powder injection molding method.

【0002】[0002]

【従来の技術】金属粉末射出成形法は、小型複雑形状の
金属部品を大量生産する方法として利用される技術であ
る。この方法においては、まず原料である金属粉末とバ
インダを混練して、射出成形用原料コンパウンドとす
る。このコンパウンドは熱可塑性を有し、射出成形機に
よって所望の形状に成形される。この成形工程は、本質
的にプラスチック材料の成形と変わる所がなく、大量成
形が可能である。次に、得られた成形体から不要のバイ
ンダを除去する。この工程を脱脂という。脱脂方法に
は、加熱してバインダを成形体から蒸発、あるいは流出
させる方法、溶媒中に成形体を保持してバインダを抽出
する方法、またこの二つを組み合わせる方法などが知ら
れており、バインダの種類に応じて脱脂方法は選ばれ
る。最後に脱脂体を焼結して金属部品を得る。
2. Description of the Related Art The metal powder injection molding method is a technique used as a method for mass-producing small and complicated metal parts. In this method, first, a metal powder as a raw material and a binder are kneaded to obtain a raw material compound for injection molding. This compound has thermoplasticity and is molded into a desired shape by an injection molding machine. This molding process is essentially the same as molding of plastic materials, and mass molding is possible. Next, unnecessary binder is removed from the obtained molded body. This process is called degreasing. As the degreasing method, a method of heating to evaporate or flow out the binder from the molded body, a method of holding the molded body in a solvent to extract the binder, a method of combining the two, etc. are known. The degreasing method is selected according to the type. Finally, the degreased body is sintered to obtain a metal part.

【0003】金属粉末射出成形法は、高い焼結密度が得
られる金属微粉を成形できることに特徴がある。従来、
平均粒径が10μm以下であるような微粉は、流動性が
悪いという問題や、金型のかじりの問題からプレスによ
る成形が困難であったが、この方法によれば微粉でも容
易に成形ができ、しかも3次元的な複雑形状まで成形可
能である。このような利点を持つことから、最近ステン
レス部品の製造などにも金属粉末射出成形法が利用され
ることが多くなり、磁性材料や超硬材料にも応用が広が
りつつある。
The metal powder injection molding method is characterized in that it can mold fine metal powders having a high sintered density. Conventionally,
Fine powders having an average particle diameter of 10 μm or less were difficult to mold by a press due to problems of poor fluidity and problems of galling of molds, but this method enables easy molding of fine powders. Moreover, it is possible to form a three-dimensional complex shape. Due to these advantages, the metal powder injection molding method has recently been often used in the production of stainless parts and the like, and its application is expanding to magnetic materials and superhard materials.

【0004】ところで、焼結金属部品の特性は、その含
有炭素(C)量に大きく影響される。例えば、Fe−N
i系などの機械構造用部品の強度や硬さはC量に大きく
支配され、ステンレス鋼においては、機械的性質はもち
ろん耐食性もC量に影響される。同様なことが焼結体中
の酸素(O)量についても言える。したがって、焼結部
品の製造においてもC,O量を所望の量に制御する技術
が要求される。金属粉末射出成形法においては、最終的
な焼結体のC,O量は粉末のC,O量、バインダの種
類、脱脂方法、焼結方法、部品の形状に影響される。
C,O量の調整方法としては、粉末のC,O量によって
調整する方法はもちろん、O量の調整法として、酸化物
を添加する方法(特開平2−57607号公報)が開示
されている。C量については、C量を低減する場合に
は、脱脂時に水素ガスを導入することによって脱炭素を
する方法(特開平3−45566号公報)、Cを積極的
に含有させたい場合には、原料粉末にグラファイトを添
加する方法(特開平2−39402号公報)などが開示
されている。
By the way, the characteristics of the sintered metal part are greatly affected by the amount of carbon (C) contained therein. For example, Fe-N
The strength and hardness of parts for mechanical structures such as i-type are largely controlled by the C content, and in stainless steel, not only the mechanical properties but also the corrosion resistance are affected by the C content. The same applies to the amount of oxygen (O) in the sintered body. Therefore, also in the production of sintered parts, a technique for controlling the C and O amounts to desired amounts is required. In the metal powder injection molding method, the C and O contents of the final sintered body are influenced by the C and O contents of the powder, the type of binder, the degreasing method, the sintering method, and the shape of the parts.
As a method for adjusting the amounts of C and O, not only a method of adjusting the amount of C and O of the powder but also a method of adding an oxide (Japanese Patent Laid-Open No. 2-57607) is disclosed as a method of adjusting the O amount. . Regarding the amount of C, in the case of reducing the amount of C, a method of decarbonizing by introducing hydrogen gas during degreasing (JP-A-3-45566), and in the case of positively containing C, A method of adding graphite to the raw material powder (Japanese Patent Laid-Open No. 2-39402) is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、グラファイト
を添加する方法は、グラファイトと金属粉末が均一に混
ざりにくく偏析が起こるという問題や、グラファイト粉
末がフレーク状であるため、射出成形時には原料の流動
方法に配向しやすく、結果的に焼結体の不均一収縮の原
因となって焼結体の寸法精度が低下してしまうという問
題がある。
However, in the method of adding graphite, the problem that the graphite and the metal powder are difficult to mix uniformly and segregation occurs, and the graphite powder is in the form of flakes, the method of flowing the raw material during injection molding However, there is a problem that the dimensional accuracy of the sintered body is reduced as a result of causing uneven contraction of the sintered body.

【0006】[0006]

【課題を解決するための手段】以上の問題を鑑みて、本
発明は、金属粉末射出成形体で製造される焼結体のC量
を適切に調整し、寸法精度を向上することのできる焼結
金属部品の製造方法を見いだし、本発明に至った。
SUMMARY OF THE INVENTION In view of the above problems, the present invention is a firing method capable of appropriately adjusting the C content of a sintered body produced by a metal powder injection molding to improve the dimensional accuracy. The present invention has been completed by finding a method for manufacturing a bonded metal part.

【0007】すなわち、本発明は、焼結体のC量を調整
するために、脱脂工程の一部を600℃以上、1000
℃以下の温度で行い、かつ、その時の熱処理を密閉した
加熱炉内で行うことを特徴とする焼結金属部品の製造方
法を提供する。
That is, according to the present invention, in order to adjust the C content of the sintered body, part of the degreasing process is performed at 600 ° C.
Provided is a method for producing a sintered metal part, which is characterized in that the heat treatment is carried out at a temperature of ℃ or less and the heat treatment at that time is carried out in a closed heating furnace.

【0008】本発明によって、脱脂工程で所望のC量を
添加することができ焼結体のC量が制御可能となる。
According to the present invention, a desired amount of C can be added in the degreasing step, and the amount of C in the sintered body can be controlled.

【0009】[0009]

【作用】以下、本発明をさらに詳しく説明する。金属粉
末射出成形法では、原料金属粉末を有機バインダと混練
してなる原料コンパウンドを射出成形法によって部品形
状に成形する。バインダは、成形のための助剤であるか
ら、脱脂工程で取り除く必要がある。バインダには通
常、熱可塑性樹脂が含まれるが、この樹脂は300〜5
00℃で熱分解によって除去される。本発明の特徴は、
この樹脂分解時の脱脂工程の熱処理を、600℃以上1
000℃以下の温度範囲で、かつ、その時の熱処理を密
閉した加熱炉内で行うことにある。
The present invention will be described in more detail below. In the metal powder injection molding method, a raw material compound obtained by kneading a raw metal powder with an organic binder is molded into a component shape by the injection molding method. Since the binder is an auxiliary agent for molding, it needs to be removed in the degreasing step. The binder usually contains a thermoplastic resin, which is 300 to 5
It is removed by thermal decomposition at 00 ° C. The features of the present invention are:
The heat treatment in the degreasing process during the decomposition of the resin should be 600 ° C or higher.
It is to perform the heat treatment at a temperature range of 000 ° C. or less in a closed heating furnace.

【0010】熱可塑性樹脂などの高分子化合物は、熱に
よって分解して低分子のガス(分解ガス)となる。その
分解挙動は、樹脂の種類によって様々であるが、分解し
て生じた分解ガスは、本質的にはC1 〜C6 の炭化水素
であると考えられる。このような炭化水素は、一般に高
温下では金属に対して浸炭作用をもつ。例えば、メタン
(CH4 )においては、 CH4 →C+2H2 (式1) の反応によって金属に浸炭するか、あるいは金属表面に
フリーのカーボンとしてCを存在させる。この反応挙動
は、炭素数の多い炭化水素についても同様である。した
がって、脱脂時に、浸炭反応が起こるに充分な温度に昇
温してやれば、脱脂体にCを残すことが可能である。一
方、従来の射出成形体の脱脂工程では、樹脂が分解する
のに必要な温度域で脱脂を行い、分解ガスをすみやかに
除去するように窒素等の不活性ガスを流すのが普通であ
った。しかし、本発明では、分解ガスを積極的にC源と
して利用することを目的としているので、脱脂時には炉
を密閉することが肝要である。
A polymer compound such as a thermoplastic resin is decomposed by heat into a low-molecular gas (decomposition gas). The decomposition behavior varies depending on the type of resin, but the decomposition gas generated by decomposition is considered to be essentially C 1 to C 6 hydrocarbons. Such hydrocarbons generally have a carburizing effect on metals at high temperatures. For example, in methane (CH 4 ), the metal is carburized by the reaction of CH 4 → C + 2H 2 (formula 1), or C is present as free carbon on the metal surface. This reaction behavior is the same for hydrocarbons having a large number of carbons. Therefore, at the time of degreasing, it is possible to leave C in the degreased body if the temperature is raised to a temperature sufficient for the carburization reaction to occur. On the other hand, in the conventional degreasing process for injection-molded articles, it was usual to degrease in the temperature range required for the resin to decompose, and to flow an inert gas such as nitrogen so as to promptly remove the decomposed gas. . However, in the present invention, the purpose is to positively utilize the decomposed gas as the C source, so it is essential to seal the furnace during degreasing.

【0011】本発明によって、処理後の脱脂体のC量を
原料粉末よりも多くすることができるが、その増加量
は、熱処理時の加熱温度と処理時間によって制御可能で
ある。すなわち、加熱温度が高いほど、また、処理時間
が長いほど、脱脂体のC量は多くなる。C量の増加量の
絶対値は、粉末の鋼種や粉末特性およびバインダの種類
に依存するが、温度と処理時間によって制御できること
には変わりがない。
According to the present invention, the C content of the degreased body after the treatment can be made larger than that of the raw material powder, but the increase amount can be controlled by the heating temperature and the treatment time during the heat treatment. That is, the higher the heating temperature and the longer the treatment time, the greater the amount of C in the degreased body. The absolute value of the amount of increase in the amount of C depends on the steel type of the powder, the characteristics of the powder, and the type of binder, but it can be controlled by the temperature and the processing time.

【0012】さらに、本発明によれば、脱脂体に均一に
Cを分布させることができる。したがって、グラファイ
トを添加する方法の問題点であった、Cの偏析や、前述
した不均一収縮も起こらない。
Further, according to the present invention, C can be uniformly distributed in the degreased body. Therefore, segregation of C and the above-mentioned non-uniform shrinkage, which are problems of the method of adding graphite, do not occur.

【0013】以上に述べたように、脱脂工程の一部を6
00℃以上1000℃以下の温度で行い、かつ、その時
の熱処理を密閉した加熱炉内で行うことによって、脱脂
体に所望のC量を均一に増加させることができ、その
上、歪のない寸法精度に優れる焼結体を製造することが
できる。
As described above, part of the degreasing process is
By performing the heat treatment at a temperature of 00 ° C. or more and 1000 ° C. or less and performing the heat treatment at that time in a closed heating furnace, it is possible to uniformly increase the desired amount of C in the degreased body, and moreover, a dimension without distortion. It is possible to manufacture a sintered body with excellent accuracy.

【0014】本発明に用いる射出成形体は、金属粉末と
有機バインダを含有する。
The injection-molded article used in the present invention contains a metal powder and an organic binder.

【0015】本発明に利用できる金属粉末は、鉄、銅、
チタン、タングステン、ニッケル、モリブデン、クロム
の粉末、あるいはステンレス鋼、Fe−Ni系合金など
の合金粉末が挙げられる。また、粉末の製造法別に挙げ
ると、カルボニル粉、水アトマイズ粉、ガスアトマイズ
粉、粉砕粉などを挙げることができる。さらに、これら
のうちの2種以上の混合粉を用いることも可能である。
粉末の粒度は0.01〜1000μmの範囲が使用可能
であるが、コンパウンドの流動性、あるいは粉末の焼結
性から100μm以下の粉末を使用するのが好ましい。
さらに好ましい粒径の範囲は0.1〜50μmである。
Metal powders usable in the present invention include iron, copper,
Examples thereof include powders of titanium, tungsten, nickel, molybdenum and chromium, or alloy powders such as stainless steel and Fe—Ni based alloys. Moreover, when it mentions according to the manufacturing method of powder, carbonyl powder, water atomized powder, gas atomized powder, pulverized powder, etc. can be mentioned. Furthermore, it is also possible to use a mixed powder of two or more of these.
The particle size of the powder can be in the range of 0.01 to 1000 μm, but it is preferable to use the powder of 100 μm or less in view of the fluidity of the compound or the sinterability of the powder.
A more preferable range of particle size is 0.1 to 50 μm.

【0016】本発明に利用できる有機バインダの成分と
しては、熱可塑性樹脂、ワックス、可塑剤、滑剤などが
挙げられる。樹脂は、バインダの主成分として原料コン
パウンドに可塑性を与え、また常温での成形体強度を持
たせる。樹脂成分としては、ポリエチレン、ポリプロピ
レン、ポリスチレン、エチレン−酢酸ビニル共重合体
(EVA)、エチレン−エチルアクリレート共重合体
(EEA)、ポリメタクリル酸アルキルエステル、ポリ
アミドなどが公知であって、これらのうち1種または2
種以上を組み合わせて用いられる。
Examples of components of the organic binder that can be used in the present invention include thermoplastic resins, waxes, plasticizers and lubricants. The resin, as a main component of the binder, imparts plasticity to the raw material compound and also has strength of the molded body at room temperature. As the resin component, polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), polymethacrylic acid alkyl ester, polyamide and the like are known. 1 or 2
Used in combination of two or more species.

【0017】さらに、脱脂性、流動性の改善のために、
樹脂よりも低分子の有機物であるワックスや可塑剤など
を添加する。樹脂よりも低分子の成分としては、パラフ
ィンワックス、高級脂肪酸、高級アルコール、高級脂肪
酸エステル、高級脂肪酸アミド、フタル酸ジエチル、フ
タル酸ジブチル等のフタル酸エステルなどの1種または
2種以上を組み合わせて用いられる。このように金属粉
末射出成形用原料コンパウンドは、金属粉末と樹脂、ワ
ックス、可塑剤など数種の有機物の混合物であるのが一
般的である。
Further, in order to improve degreasing property and fluidity,
Wax or plasticizer, which is an organic substance having a lower molecular weight than the resin, is added. As the component having a lower molecular weight than the resin, one kind or a combination of two or more kinds of paraffin wax, higher fatty acid, higher alcohol, higher fatty acid ester, higher fatty acid amide, phthalic acid ester such as diethyl phthalate, dibutyl phthalate and the like can be used. Used. As described above, the raw material compound for metal powder injection molding is generally a mixture of metal powder and several kinds of organic substances such as resin, wax and plasticizer.

【0018】有機バインダと金属粉末との配合比は、金
属粉末100重量部に対して、有機バインダ3〜20重
量部が好ましい。3重量部未満ではバインダが金属粉末
に対して不足し、コンパウンドの流動性が悪く射出成形
が困難となる。また、20重量部を超えると、射出成形
はできるものの、脱脂時の形状保持ができなくなるので
好ましくない。
The compounding ratio of the organic binder and the metal powder is preferably 3 to 20 parts by weight of the organic binder with respect to 100 parts by weight of the metal powder. If the amount is less than 3 parts by weight, the amount of the binder is insufficient with respect to the metal powder, the fluidity of the compound is poor, and injection molding becomes difficult. On the other hand, if it exceeds 20 parts by weight, injection molding is possible, but shape retention during degreasing cannot be maintained, which is not preferable.

【0019】これらの金属粉末と有機バインダを混練し
て、射出成形用コンパウンドを製造する。混練機として
は、ヘンシェルミキサー、プラストミル、加圧ニーダ
ー、バンバリーミキサー、ロールミル、単軸スクリュー
混練機、2軸スクリュー混練機などが使用でき、これら
の2種以上を組み合わせて混練してもよい。
An injection molding compound is manufactured by kneading these metal powders and an organic binder. As the kneader, a Henschel mixer, a plastomill, a pressure kneader, a Banbury mixer, a roll mill, a single screw kneader, a twin screw kneader, or the like can be used, and two or more kinds of these may be combined and kneaded.

【0020】混練したコンパウンドは、粉砕あるいは造
粒して成形材料とする。射出成形機は、一般的な熱可塑
性プラスチック用射出成形機を用いることができる。射
出成形は、射出温度100℃〜250℃の範囲で行う
が、射出温度が高すぎるとバインダ成分の変質が顕著に
なり、再生材の成形性、脱脂性の変化をきたすので、好
ましくは射出温度は100℃〜180℃の範囲がよい。
脱脂は、脱脂炉中、加熱によって行う。
The kneaded compound is ground or granulated to obtain a molding material. A general injection molding machine for thermoplastics can be used as the injection molding machine. The injection molding is performed at an injection temperature in the range of 100 ° C to 250 ° C. However, if the injection temperature is too high, the deterioration of the binder component becomes remarkable and the moldability and degreasing property of the recycled material are changed. Is preferably in the range of 100 ° C to 180 ° C.
Degreasing is performed by heating in a degreasing furnace.

【0021】本発明で行なう脱脂の工程は、樹脂以外の
低分子成分を除去する前処理の工程と、成形体のC量を
調節する工程とからなる。
The degreasing process carried out in the present invention comprises a pretreatment process for removing low-molecular components other than the resin, and a process for adjusting the C content of the molded product.

【0022】前処理の工程として、欠陥や形状変形のな
い脱脂体を得るためには、樹脂以外の低分子成分を樹脂
分解温度以下で徐々に除去することが必要である。これ
は大気、窒素やアルゴンなどの不活性ガス、水素などの
還元性ガスでの雰囲気下で、昇温速度10℃/h〜10
0℃/hの範囲で昇温することによって行われる。ま
た、雰囲気として真空も利用できる。この前処理は、3
00℃以下で行うのが好ましい。また、バインダ成分の
一部を溶媒で抽出する方法を用いてもよい。
As a pretreatment step, in order to obtain a degreased body free from defects and shape deformation, it is necessary to gradually remove low-molecular components other than the resin at a resin decomposition temperature or lower. This is performed under the atmosphere of an atmosphere, an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, and a temperature rising rate of 10 ° C / h to 10 ° C.
It is performed by raising the temperature in the range of 0 ° C./h. Also, a vacuum can be used as the atmosphere. This pretreatment is 3
It is preferably carried out at a temperature of 00 ° C or lower. Moreover, you may use the method of extracting a part of binder component with a solvent.

【0023】本発明においては、成形体のC量を調節す
るために、前処理後の脱脂工程の一部を600℃以上1
000℃以下で行い、さらに、その時には密閉した加熱
炉内で行う。
In the present invention, a part of the degreasing step after the pretreatment is carried out at 600 ° C. or higher in order to control the C content of the molded product.
It is carried out at a temperature of 000 ° C. or lower, and at that time, it is carried out in a closed heating furnace.

【0024】具体的には、低分子成分を除去した後に、
還元性または不活性ガスを導入していた場合には、ガス
の導入を停止した後、排気のための導管のバルブも閉じ
加熱炉内を密閉する。好ましくは、還元性または不活性
ガスの導入を停止した後は、加熱炉内の圧力を10To
rr以下にしてから加熱炉内を密閉するのがよい。これ
は、その後の昇温のときの圧力の上昇を抑えるためであ
る。加熱炉を密閉した後、昇温を行い、樹脂を分解させ
る。生じた分解ガスによって脱脂体のC量を増加させ
る。
Specifically, after removing low-molecular components,
When the reducing or inert gas has been introduced, after the introduction of the gas is stopped, the valve of the conduit for exhausting gas is also closed to close the inside of the heating furnace. Preferably, after stopping the introduction of the reducing or inert gas, the pressure in the heating furnace is set to 10 To.
It is advisable to seal the inside of the heating furnace after adjusting the temperature to rr or less. This is to suppress an increase in pressure during the subsequent temperature rise. After sealing the heating furnace, the temperature is raised to decompose the resin. The amount of C in the degreased body is increased by the generated decomposition gas.

【0025】また、低分子成分を除去した後に、600
〜1000℃に昇温後、同様の方法で加熱炉内を密閉し
ても本発明と同じ効果が得られる。
After removing the low-molecular component, 600
Even after the temperature is raised to ˜1000 ° C. and the inside of the heating furnace is closed by the same method, the same effect as the present invention can be obtained.

【0026】処理温度と処理時間は、金属粉末の組成や
粉末特性、バインダ種および増加させたいC量によって
選択する。しかし、処理温度は、600〜1000℃の
範囲であるのが好ましい。処理温度が600℃未満で
は、効率的にC量の増加が起こらず、また、1000℃
を超えると、粉末の焼結が進行し脱脂体内に均一にガス
がいきわたらずC量の不均一分布が発生するので好まし
くない。さらに、焼結が進行すると分解ガスが脱脂体内
にトラップされ焼結体の特性に悪影響を及ぼすこともあ
る。したがって、処理温度は600℃以上、1000℃
以下、好ましくは700〜900℃の範囲で行うのがよ
い。
The treatment temperature and treatment time are selected according to the composition and powder characteristics of the metal powder, the binder species and the amount of C to be increased. However, the processing temperature is preferably in the range of 600 to 1000 ° C. If the treatment temperature is less than 600 ° C, the amount of C does not increase efficiently, and 1000 ° C
If it exceeds, the sintering of the powder proceeds, the gas is not evenly distributed in the degreased body, and a non-uniform distribution of the C content is generated, which is not preferable. Further, as the sintering progresses, the decomposed gas may be trapped in the degreased body, which may adversely affect the characteristics of the sintered body. Therefore, the processing temperature is 600 ℃ or more, 1000 ℃
Hereafter, it is preferably carried out in the range of 700 to 900 ° C.

【0027】焼結工程は、脱脂工程終了後、引き続き同
一炉内で行ってもよいし、脱脂体を脱脂炉から取り出し
後、異なる炉で行ってもよい。同一炉内で行うときは、
炉内を排気してから昇温を行うのが好ましい。焼結は、
800℃〜2000℃の温度で、10分〜6時間保持し
て行うが、これら焼結条件、焼結雰囲気は用いる金属粉
末の材質、粉末特性に応じて適宜選択して決める。
The sintering step may be carried out subsequently in the same furnace after the degreasing step is completed, or may be carried out in a different furnace after taking out the degreased body from the degreasing furnace. When performing in the same furnace,
It is preferable to raise the temperature after exhausting the inside of the furnace. Sintering is
The sintering is performed at a temperature of 800 ° C. to 2000 ° C. for 10 minutes to 6 hours, and the sintering conditions and the sintering atmosphere are appropriately selected and determined according to the material of the metal powder used and the powder characteristics.

【0028】[0028]

【実施例】【Example】

(実施例1)平均粒径8.5μm、C含有量:0.03
wt%、O含有量:0.70wt%のSUS316組成
の水アトマイズ粉を用意した。これに、ポリエチレン4
0wt%、ポリブチルメタクリレート10wt%、パラ
フィンワックス30wt%、ジブチルフタレート20w
t%からなるバインダを、金属粉末100重量部に対し
10重量部添加し、加圧ニーダを用いて混練して射出成
形用コンパウンドを製造した。このコンパウンドを射出
成形機によって、4mm×10mm×50mmの直方体
の試験片に成形した。
(Example 1) Average particle size 8.5 μm, C content: 0.03
A water atomized powder of SUS316 composition of wt% and O content: 0.70 wt% was prepared. Add this to polyethylene 4
0 wt%, polybutyl methacrylate 10 wt%, paraffin wax 30 wt%, dibutyl phthalate 20 w
A binder of t% was added in an amount of 10 parts by weight to 100 parts by weight of the metal powder, and the mixture was kneaded using a pressure kneader to produce an injection molding compound. This compound was molded into a rectangular parallelepiped test piece of 4 mm × 10 mm × 50 mm by an injection molding machine.

【0029】この試験片(成形体)を、下記のとおり脱
脂焼結した。脱脂の前処理の工程として、窒素気流中、
常温から250℃まで40時間で昇温し、パラフィンワ
ックスとジブチルフタレートの大部分を除去した。その
後、窒素の導入を停止し、さらに排気側のバルブを閉じ
て、別系統の配管によってロータリーポンプで炉内を1
Torrまで減圧し、炉を密閉した。その後、脱脂処理
の最高温度を550℃〜1050℃まで変化させて脱脂
体を作製し、発明例1〜6の脱脂体を得た。具体的に
は、最高温度まで1時間で昇温し、各発明例の最高温度
で1時間保持後、炉内を排気するとともに冷却して脱脂
体を得た。最高温度を550℃〜1050℃と変化させ
たときの脱脂体のC量を分析した結果を表1に示す。加
熱温度が高くなるほど有機バインダから発生した分解ガ
スの浸炭作用によって脱脂体のC量が増加している。焼
結時にCによる還元反応によって、粉末の酸素を除くの
にはC量として0.30〜0.45%の範囲が適切であ
り、焼結体も好ましい特性(C:0〜0.05%、O:
0〜0.30%)が得られる。ここでは、最高加熱温度
850℃の脱脂条件のもの(発明例4)を実施例1とし
て、焼結体の評価を行った。
This test piece (molded body) was degreased and sintered as follows. As a pretreatment step for degreasing, in a nitrogen stream,
The temperature was raised from room temperature to 250 ° C. in 40 hours to remove most of the paraffin wax and dibutyl phthalate. After that, the introduction of nitrogen was stopped, the valve on the exhaust side was closed, and the inside of the furnace was set to 1
The pressure was reduced to Torr and the furnace was closed. Then, the maximum temperature of the degreasing treatment was changed from 550 ° C to 1050 ° C to produce degreased bodies, and the degreased bodies of Invention Examples 1 to 6 were obtained. Specifically, the degreased body was obtained by raising the temperature to the maximum temperature in 1 hour, holding at the maximum temperature of each invention example for 1 hour, and then exhausting and cooling the inside of the furnace. Table 1 shows the results of analyzing the C content of the degreased body when the maximum temperature was changed from 550 ° C to 1050 ° C. As the heating temperature becomes higher, the carbon content of the degreased body increases due to the carburizing action of the decomposition gas generated from the organic binder. A range of 0.30 to 0.45% as a C amount is suitable for removing oxygen in the powder by a reduction reaction with C during sintering, and a sintered body also has preferable characteristics (C: 0 to 0.05%). , O:
0 to 0.30%) is obtained. Here, the sintered body was evaluated under Example 1 in which the maximum heating temperature was 850 ° C. under degreasing conditions (Invention Example 4).

【0030】焼結は、真空下で、1320℃まで10℃
/分で昇温し、2時間保持後冷却して行った。この焼結
体を、実施例1の焼結体とする。焼結体の評価として、
幅方向と長さ方向の寸法を測定するとともに、C,Oの
化学分析を行った。結果を表2に付記する。脱脂の最高
温度が1000℃を越える脱脂体を焼結したところ、焼
結体のC量が高くなり好ましい焼結体が得られなかっ
た。また、脱脂温度が600℃未満では、焼結体のO量
が低減されておらず、やはり好ましい焼結体が得られな
い。
Sintering is carried out under vacuum at 10 ° C. up to 1320 ° C.
The temperature was raised at a rate of 1 minute / minute, the temperature was maintained for 2 hours, and then cooled. This sintered body is referred to as the sintered body of Example 1. As an evaluation of the sintered body,
The dimensions in the width direction and the length direction were measured, and C and O were chemically analyzed. The results are shown in Table 2. When a degreased body having a maximum degreasing temperature exceeding 1000 ° C. was sintered, the C content of the sintered body increased, and a preferable sintered body could not be obtained. Further, if the degreasing temperature is lower than 600 ° C., the O content of the sintered body is not reduced, and a preferable sintered body cannot be obtained.

【0031】(比較例1)実施例1で使用したSUS3
16組成の水アトマイズ粉に、グラファイト粉末0.3
5wt%を混合した粉末を原料粉末として用いる以外
は、実施例1と同様に混練、成形を行った。脱脂は、窒
素気流中、常温から250℃まで40時間で昇温した後
に、1時間かけて500℃まで昇温し、500℃で1時
間保持した。脱脂工程は、すべて窒素を流しながら窒素
気流中で行った。焼結は、実施例1と同様に行い、評価
した。
(Comparative Example 1) SUS3 used in Example 1
16 atomized water atomized powder and 0.3 graphite powder
Kneading and molding were performed in the same manner as in Example 1 except that a powder obtained by mixing 5 wt% was used as the raw material powder. In the degreasing, the temperature was raised from normal temperature to 250 ° C. in 40 hours in a nitrogen stream, then raised to 500 ° C. over 1 hour, and kept at 500 ° C. for 1 hour. The degreasing process was performed in a nitrogen stream while flowing nitrogen. Sintering was performed and evaluated in the same manner as in Example 1.

【0032】(比較例2)比較例1で使用したグラファ
イトを混合したSUS316組成の水アトマイズ粉を用
いて、実施例1と同じ工程で焼結体を製造して、その評
価を行った。
Comparative Example 2 Using water atomized powder of SUS316 composition mixed with graphite used in Comparative Example 1, a sintered body was manufactured in the same process as in Example 1 and evaluated.

【0033】(比較例3)脱脂をすべて窒素を流しなが
ら窒素気流中で行う以外は、実施例1と全く同じ射出成
形用コンパウンドを用い、同じ工程で焼結体を製造し
て、その評価を行った。
(Comparative Example 3) A sintered body was produced in the same process as in Example 1 except that degreasing was carried out in a nitrogen stream while flowing nitrogen, and the evaluation was made. went.

【0034】実施例1と比較例1,2での焼結体の評価
結果を表2に示す。
Table 2 shows the evaluation results of the sintered bodies of Example 1 and Comparative Examples 1 and 2.

【0035】実施例1では、本発明による脱脂処理を行
っているので、脱脂後にCが増加しており、焼結体の特
性は好ましいものであった。比較例1では、同じ目的で
原料粉末にグラファイト粉末を添加して焼結体を製造し
たものである。特性的には実施例1と変わらず好ましい
ものであるが、長さ方向と幅方向の収縮率の差は2.5
%と実施例1の0.5%にくらべて大きく、寸法精度に
劣っていた。比較例2では、脱脂体のC量が過剰であ
り、特性の好ましい焼結体が得られなかった。さらに長
さ方向と幅方向の収縮率の差は3.2%と寸法精度が良
くなかった。比較例3は、実施例1の脱脂工程をすべて
窒素気流中で行ったので脱脂工程でのCの増加が少な
く、焼結体のO量が多くなり好ましい焼結体が得られな
かった。
In Example 1, since the degreasing treatment according to the present invention was carried out, C increased after degreasing, and the characteristics of the sintered body were favorable. In Comparative Example 1, a graphite powder was added to the raw material powder for the same purpose to produce a sintered body. Although the characteristics are preferable as in Example 1, the difference in shrinkage ratio between the length direction and the width direction is 2.5.
% And 0.5% in Example 1, and the dimensional accuracy was poor. In Comparative Example 2, the C content of the degreased body was excessive, and a sintered body having favorable characteristics could not be obtained. Furthermore, the difference in shrinkage between the length direction and the width direction was 3.2%, which was not good in dimensional accuracy. In Comparative Example 3, since the degreasing step of Example 1 was all performed in a nitrogen stream, the increase of C in the degreasing step was small, the O content of the sintered body was large, and a preferable sintered body could not be obtained.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】(実施例2)カルボニル鉄粉とカルボニル
ニッケル粉を原料として、Fe−4%Ni組成の混合粉
末を用意した。混合粉末の平均粒径は、5.5μm、C
含有量:0.05wt%、O含有量:0.25wt%で
あった。この混合粉末に実施例1と同じ配合の有機バイ
ンダを9重量部添加して、実施例1と同様に混練、成
形、脱脂、焼結を行い、焼結体を評価した。
Example 2 A mixed powder of Fe-4% Ni composition was prepared from carbonyl iron powder and carbonyl nickel powder as raw materials. The average particle size of the mixed powder is 5.5 μm, C
The content was 0.05 wt% and the O content was 0.25 wt%. To this mixed powder, 9 parts by weight of an organic binder having the same composition as in Example 1 was added, and kneading, molding, degreasing and sintering were carried out in the same manner as in Example 1 to evaluate the sintered body.

【0039】(比較例4)実施例2のFe−4%Ni組
成の混合粉末に、グラファイト粉末を0.5wt%添加
する以外は、実施例2と同様にして混練、成形を行っ
た。脱脂は、窒素気流中、常温から250℃まで40時
間で昇温した後、1時間で500℃まで昇温し、500
℃で1時間保持した。脱脂工程は、すべて窒素を流しな
がら窒素気流中で行った。焼結は、実施例1と同様に行
い、脱脂体および焼結体を評価した。
(Comparative Example 4) Kneading and molding were carried out in the same manner as in Example 2 except that 0.5 wt% of graphite powder was added to the mixed powder of Fe-4% Ni composition of Example 2. Degreasing is performed by raising the temperature from room temperature to 250 ° C. in 40 hours in a nitrogen stream in 40 hours, and then raising the temperature to 500 ° C. in 1 hour.
Hold at 1 ° C for 1 hour. The degreasing process was performed in a nitrogen stream while flowing nitrogen. Sintering was performed in the same manner as in Example 1, and the degreased body and the sintered body were evaluated.

【0040】実施例2と比較例3での焼結体の評価結果
を表3に示す。
Table 3 shows the evaluation results of the sintered bodies of Example 2 and Comparative Example 3.

【0041】本発明による方法でもグラファイトを添加
する方法でも高密度でC量を制御した焼結体を得ること
ができた。しかし、グラファイトを添加する方法では長
さ方向と幅方向の収縮率の差が大きく、本発明による焼
結体のほうが、寸法精度に優れていることがわかる。
By the method according to the present invention and the method in which graphite is added, a sintered body having a high density and controlled C content could be obtained. However, in the method of adding graphite, the difference in shrinkage between the length direction and the width direction is large, and it is understood that the sintered body according to the present invention is superior in dimensional accuracy.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】本発明の製造方法によれば、金属粉末射
出成形法の脱脂工程の一部を600℃以上、1000℃
以下の温度で行い、かつ、その時の熱処理を密閉した加
熱炉内で行うことによって、脱脂後のC量を適切に調整
することを可能にし、焼結体の寸法精度も向上した。
According to the manufacturing method of the present invention, a part of the degreasing step of the metal powder injection molding method is performed at 600 ° C. or higher and 1000 ° C.
By performing the heat treatment at the following temperature and performing the heat treatment at that time in a closed heating furnace, it was possible to appropriately adjust the C content after degreasing and improve the dimensional accuracy of the sintered body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属粉末射出成形法により金属焼結部品を
製造する工程において、脱脂工程の少なくとも一部を6
00℃以上、1000℃以下の温度で行い、かつ、その
時の熱処理を密閉した加熱炉内で行うことを特徴とする
焼結金属部品の製造方法。
1. In the step of producing a sintered metal part by a metal powder injection molding method, at least part of the degreasing step is
A method for manufacturing a sintered metal component, which is performed at a temperature of 00 ° C. or higher and 1000 ° C. or lower, and the heat treatment at that time is performed in a closed heating furnace.
JP5018453A 1993-02-05 1993-02-05 Manufacturing method of sintered metal parts by metal powder injection molding method Expired - Fee Related JP2793938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018453A JP2793938B2 (en) 1993-02-05 1993-02-05 Manufacturing method of sintered metal parts by metal powder injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018453A JP2793938B2 (en) 1993-02-05 1993-02-05 Manufacturing method of sintered metal parts by metal powder injection molding method

Publications (2)

Publication Number Publication Date
JPH06228607A true JPH06228607A (en) 1994-08-16
JP2793938B2 JP2793938B2 (en) 1998-09-03

Family

ID=11972054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018453A Expired - Fee Related JP2793938B2 (en) 1993-02-05 1993-02-05 Manufacturing method of sintered metal parts by metal powder injection molding method

Country Status (1)

Country Link
JP (1) JP2793938B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531387A (en) * 2007-06-15 2010-09-24 セタテック,インク Manufacturing method of refrigerant distribution pipe for air conditioner and refrigerant distribution pipe manufactured by the method
CN115138844A (en) * 2022-07-18 2022-10-04 江苏精研科技股份有限公司 Method for preparing ultrahigh-strength wear-resistant steel complex part by adopting powder metallurgy
CN117139615A (en) * 2023-09-07 2023-12-01 海安县通用粉末冶金厂 Preparation process of copper-based alloy plastic-based feed by metal powder injection molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270004A (en) * 1988-09-02 1990-03-08 Mitsubishi Metal Corp Method for degreasing injection molded body
JPH0270006A (en) * 1988-09-06 1990-03-08 Seiko Instr Inc Method for removing binder for injection-molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270004A (en) * 1988-09-02 1990-03-08 Mitsubishi Metal Corp Method for degreasing injection molded body
JPH0270006A (en) * 1988-09-06 1990-03-08 Seiko Instr Inc Method for removing binder for injection-molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531387A (en) * 2007-06-15 2010-09-24 セタテック,インク Manufacturing method of refrigerant distribution pipe for air conditioner and refrigerant distribution pipe manufactured by the method
CN115138844A (en) * 2022-07-18 2022-10-04 江苏精研科技股份有限公司 Method for preparing ultrahigh-strength wear-resistant steel complex part by adopting powder metallurgy
CN117139615A (en) * 2023-09-07 2023-12-01 海安县通用粉末冶金厂 Preparation process of copper-based alloy plastic-based feed by metal powder injection molding

Also Published As

Publication number Publication date
JP2793938B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JPS6237302A (en) Production of metallic or alloy article
KR20140017607A (en) Process for producing metallic or ceramic moulded bodies
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JP2743090B2 (en) How to control the carbon content of metal injection products
JPH02107703A (en) Composition for injection molding
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH03173702A (en) Production of sintered body
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
JP2004107772A (en) Sintering method using tungsten-copper composite powder, sintered compact and heat sink
JPH03271302A (en) Manufacture of powder sintered product
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH03257101A (en) Method for degreasing powder green compact
JP2758569B2 (en) Method for producing iron-based sintered body by metal powder injection molding method
JPH0565501A (en) Raw material for injection molding of metallic powder and production of sintered metallic material
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH06346168A (en) Ti or ti-fe injection-molded and sintered alloy and its production
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH04254502A (en) Injection-molding composition and production of metallic sintered body
JPH0823042B2 (en) Metal injection molding method
JPH0339402A (en) Manufacture of metal powder sintered body
JPH11181501A (en) Production of metal powder and sintered body
JPH10287901A (en) Production of stainless sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees