JPH0521361A - Growing method for compound semiconductor crystal - Google Patents

Growing method for compound semiconductor crystal

Info

Publication number
JPH0521361A
JPH0521361A JP17490891A JP17490891A JPH0521361A JP H0521361 A JPH0521361 A JP H0521361A JP 17490891 A JP17490891 A JP 17490891A JP 17490891 A JP17490891 A JP 17490891A JP H0521361 A JPH0521361 A JP H0521361A
Authority
JP
Japan
Prior art keywords
compound semiconductor
growing
semiconductor crystal
porous
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17490891A
Other languages
Japanese (ja)
Inventor
Hiroya Kimura
浩也 木村
Mitsuru Shimazu
充 嶋津
Kouichi Koukado
浩一 香門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17490891A priority Critical patent/JPH0521361A/en
Publication of JPH0521361A publication Critical patent/JPH0521361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for growing a compound semiconductor crystal having excellent crystallinity on a porous silicon substrate. CONSTITUTION:A method for growing a compound semiconductor crystal comprises the steps of making a surface of a silicon single crystalline substrate inclined at an angle of 4 deg. or more from a plane (100) in a direction <011> porous by an anodizing method, etc., in a fluoric acid solution, and then crystalline growing it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質シリコン基板上
に化合物半導体結晶を成長する方法に関する。シリコン
基板上に成長させる化合物半導体としては、例えば、G
aAs、GaP、InP等の2元系のIII-V族化合物半
導体や、AlGaAs、AlGaP、InAlAs、I
nAlP、GaAsP、GaInP等の3元系のIII-V
族化合物半導体、さらには、ZnS、ZnSe等のII-V
I 族化合物半導体などから選択される。また、これらの
化合物半導体を積層することもできる。
FIELD OF THE INVENTION The present invention relates to a method for growing a compound semiconductor crystal on a porous silicon substrate. As a compound semiconductor grown on a silicon substrate, for example, G
Binary III-V group compound semiconductors such as aAs, GaP, InP, AlGaAs, AlGaP, InAlAs, I
III-V of ternary system such as nAlP, GaAsP, GaInP
Group compound semiconductors, and II-V such as ZnS and ZnSe
It is selected from Group I compound semiconductors. Further, these compound semiconductors can be stacked.

【0002】[0002]

【従来の技術】一般に、GaAs等の化合物半導体を単
結晶基板上に成長させる試みは、低コスト化、ハイブリ
ッド化等の観点から、多数行われてきた。しかし、化合
物半導体とシリコンの間には物性上の差異(格子不整
合、熱膨張係数の差、無極性物質上に有極性物質を成長
する問題等)があるため、通常の成長方法とは異なる手
法が必要となる。例えば、2段階成長、熱サイクルアニ
ール、歪超格子等の方法が用いられ、シリコン基板上に
異種材料である化合物半導体の単結晶薄膜の成長を行っ
てきた。
2. Description of the Related Art Generally, many attempts have been made to grow a compound semiconductor such as GaAs on a single crystal substrate from the viewpoint of cost reduction and hybridization. However, there is a difference in the physical properties between the compound semiconductor and silicon (lattice mismatch, difference in thermal expansion coefficient, the problem of growing a polar substance on a non-polar substance, etc.), so it differs from the normal growth method. A method is needed. For example, methods such as two-step growth, thermal cycle annealing and strained superlattice have been used to grow a single crystal thin film of a compound semiconductor, which is a different material, on a silicon substrate.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のシリコ
ン基板を用いる方法では、化合物半導体単結晶基板の上
に成長させる場合と比較して成長薄膜の結晶性が劣ると
いう問題があった。即ち、上記の物性上の差異により発
生する転位、残留応力、反り等の問題点が完全に解決さ
れず、転位密度を例にすると、LEC法で得たGaAs
基板の転位密度が104 cm-2程度であるのに対し、シ
リコン基板上に成長したGaAs結晶薄膜は106 cm
-2とかなり高い値を示している。
However, the above-mentioned method using a silicon substrate has a problem that the crystallinity of the grown thin film is inferior to that in the case of growing it on a compound semiconductor single crystal substrate. That is, the problems such as dislocations, residual stress, and warpage that occur due to the differences in physical properties described above cannot be completely solved. Taking dislocation density as an example, GaAs obtained by the LEC method is used.
The dislocation density of the substrate is about 10 4 cm -2 , whereas the GaAs crystal thin film grown on the silicon substrate is 10 6 cm.
It shows a fairly high value of -2 .

【0004】多孔質化されたシリコン基板の上に化合物
半導体を成長させると、格子不整合による歪を緩和しな
がら成長させることができ、ミスフィット転位の導入を
防止することができる。また、多孔質化されたシリコン
は通常のシリコンに比べてヤング率が約10分の1とい
うように柔軟性に富んでおり、かつ、薄膜と基板の間の
接触面積を減少させることができる。そのため、例えば
III-V族化合物半導体とシリコンという熱膨張係数が大
きく異なる組み合わせであっても、2つの物質間の歪を
多孔質の部分で吸収させることができ、化合物半導体層
の転位や残留応力を大幅に低減させることができる。
When a compound semiconductor is grown on a porous silicon substrate, strain due to lattice mismatch can be relaxed and grown, and the introduction of misfit dislocations can be prevented. In addition, porous silicon has a Young's modulus of about 1/10 of that of ordinary silicon, which is highly flexible, and the contact area between the thin film and the substrate can be reduced. So, for example,
Even in a combination of III-V group compound semiconductor and silicon, which have greatly different thermal expansion coefficients, the strain between the two substances can be absorbed in the porous portion, and the dislocation and residual stress of the compound semiconductor layer can be significantly increased. Can be reduced.

【0005】そこで、本発明は、上記の欠点を解消し、
多孔質シリコン基板上に転位や残留応力の少ない化合物
半導体結晶を成長する方法を提供しようとするものであ
る。
Therefore, the present invention solves the above-mentioned drawbacks,
An object of the present invention is to provide a method for growing a compound semiconductor crystal having less dislocations and residual stress on a porous silicon substrate.

【0006】[0006]

【課題を解決するためき手段】本発明は、多孔質シリコ
ン基板上に化合物半導体結晶を成長する方法において、
(100)面から<011>方向に40 以上の角度に傾
けたシリコン単結晶基板の表面を多孔質化して結晶成長
に使用することを特徴とする化合物半導体結晶の成長方
法である。
The present invention provides a method for growing a compound semiconductor crystal on a porous silicon substrate,
Is a method of growing a compound semiconductor crystal, characterized by using the surface of the silicon single crystal substrate is inclined to 4 0 or more angles <011> direction from a (100) plane in porous to crystal growth.

【0007】シリコン基板表面を多孔質化する方法とし
ては、弗酸溶液中での陽極化成法が好ましい。多孔質層
の厚みは、特に限定されるものではないが、例えば、
0.数μmから数百μmの厚みで形成させることができ
る。また、多孔質層の孔径は、例えば20〜300Å程
度の大きさとなる。
As a method for making the surface of the silicon substrate porous, an anodization method in a hydrofluoric acid solution is preferable. The thickness of the porous layer is not particularly limited, for example,
0. It can be formed with a thickness of several μm to several hundred μm. The pore diameter of the porous layer is, for example, about 20 to 300Å.

【0008】[0008]

【作用】本発明は、(100)面から<011>方向に
0 以上の角度に傾けたシリコン単結晶基板を用い、該
基板の表面を多孔質化してから化合物半導体結晶の成長
を行うことにより、結晶性の向上を図るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention, by performing the growth of a compound semiconductor crystal from the porous and <011> of a silicon single crystal substrate is inclined to 4 0 or more angles to the direction, the surface of the substrate from (100) plane This improves the crystallinity.

【0009】T.Ueda,et al.Jpn.J.Appl.Phys.25(1986)L
789 には、シリコン基板の(100)面から<011>
方向に3〜40 傾けた面上に結晶成長することにより、
結晶性を向上させることが記載されている。この方法
は、面方位を傾けることにより、化合物半導体薄膜の2
種類のドメインのうち一方が優勢となり、結晶性が向上
する。
T. Ueda, et al. Jpn. J. Appl. Phys. 25 (1986) L
For 789, <011> from the (100) plane of the silicon substrate.
By crystal growth 3-4 0 tilted on the plane in the direction,
It is described that the crystallinity is improved. In this method, by tilting the plane orientation,
One of the types of domains becomes dominant and the crystallinity is improved.

【0010】しかし、多孔質化したシリコン基板を使用
する場合は、表面形状や成長機構が異なる。本発明者等
の研究によると、3〜40 の傾け角では結晶性の十分な
向上を望むことはできなかった。しかし、傾け角を40
以上にした多孔質シリコン基板を用いることにより、結
晶性を向上させることを見いだした。
However, when a porous silicon substrate is used, the surface shape and growth mechanism are different. According to the study by the present inventors, the tilt angle of 3-4 0 could not wishing to sufficiently improve the crystallinity. However, the tilt angle of 4 0
It was found that the crystallinity is improved by using the above porous silicon substrate.

【0011】[0011]

【実施例】(実施例)シリコン単結晶基板の(100)
面から<011>方向に60 傾けた面を弗酸溶液中で陽
極化成法により厚み30μmの多孔質層を形成し、その
後、成長炉に移して図1の成長プロファイルに沿ってま
ず420℃に昇温し、OMVPE法により厚み150Å
のGaAs薄膜を成長させた、次いで、550℃に昇温
し、OMVPE法により厚み2.5μmのGaAs薄膜
を成長させ、さらに、650℃に昇温し、OMVPE法
により厚み2.5μmのGaAs薄膜を成長させた。
(Example) (100) of a silicon single crystal substrate
6 0 inclined surface in the <011> direction from the surface to form a porous layer having a thickness of 30μm by anodization in hydrofluoric acid solution, then, along the growth profile of FIG transferred to the reactor initially 420 ° C. To 150 Å by OMVPE method
GaAs thin film was grown, then heated to 550 ° C., a GaAs thin film with a thickness of 2.5 μm was grown by the OMVPE method, and further heated to 650 ° C., a GaAs thin film with a thickness of 2.5 μm by the OMVPE method. Has grown up.

【0012】(比較例1)シリコン単結晶基板の(10
0)面から<011>方向に30 傾けた面を有する以外
は実施例と同じ条件でGaAs薄膜を成長させた。
(Comparative Example 1) (10) of a silicon single crystal substrate
0) except having 3 0 inclined surface in the <011> direction from a plane were grown GaAs thin film under the same conditions as in Example.

【0013】(比較例2)シリコン単結晶基板の(10
0)面から<011>方向に30 傾けた基板表面を10
00℃でクリーニングしてから、420℃に降温し、O
MVPE法により厚み150ÅのGaAs薄膜を成長さ
せ、さらに、650℃に昇温して、OMVPE法により
厚み5.0μmのGaAs薄膜を成長させた。
(Comparative Example 2) (10) of a silicon single crystal substrate
0) 3 0 tilted substrate surface <011> direction from a plane 10
After cleaning at 00 ℃, cool down to 420 ℃, and
A GaAs thin film having a thickness of 150 Å was grown by the MVPE method, further heated to 650 ° C., and a GaAs thin film having a thickness of 5.0 μm was grown by the OMVPE method.

【0014】(フォトルミネッセンス評価)上記実施例
及び比較例で得たGaAs薄膜について、フォトルミネ
ッセンスのピーク強度を比較すると、実施例で得たGa
As薄膜は、比較例1の薄膜に対して4倍、比較例2の
薄膜に対して約2倍であり、結晶性の改善がなされてい
た。
(Evaluation of Photoluminescence) With respect to the GaAs thin films obtained in the above Examples and Comparative Examples, the peak intensity of photoluminescence was compared, and the Ga obtained in the Examples was compared.
The As thin film was 4 times as thick as the thin film of Comparative Example 1 and about 2 times as thick as the thin film of Comparative Example 2, and the crystallinity was improved.

【0015】[0015]

【発明の効果】本発明は、上記の構成を採用することに
より、多孔質シリコン基板を用いて、結晶性の優れた化
合物半導体結晶を成長させることができるようになっ
た。
According to the present invention, by adopting the above structure, it becomes possible to grow a compound semiconductor crystal having excellent crystallinity using a porous silicon substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で採用した成長温度プロファイ
ルを示した図である。
FIG. 1 is a diagram showing a growth temperature profile adopted in an example of the present invention.

【図2】比較例2で採用した成長温度プロファイルを示
した図である。
FIG. 2 is a diagram showing a growth temperature profile adopted in Comparative Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質シリコン基板上に化合物半導体結
晶を成長する方法において、(100)面から<011
>方向に40 以上の角度に傾けたシリコン単結晶基板の
表面を多孔質化して結晶成長に使用することを特徴とす
る化合物半導体結晶の成長方法。
1. A method for growing a compound semiconductor crystal on a porous silicon substrate, wherein <011 is obtained from the (100) plane.
> Method of growing a compound semiconductor crystal, characterized by the use of 4 0 or more angles inclined surface of the silicon single crystal substrate in a direction in porous to crystal growth.
【請求項2】 請求項1記載の成長方法において、弗酸
溶液中での陽極化成法によりシリコン単結晶基板表面を
多孔質化することを特徴とする化合物半導体結晶の成長
方法。
2. The method for growing a compound semiconductor crystal according to claim 1, wherein the surface of the silicon single crystal substrate is made porous by an anodization method in a hydrofluoric acid solution.
JP17490891A 1991-07-16 1991-07-16 Growing method for compound semiconductor crystal Pending JPH0521361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17490891A JPH0521361A (en) 1991-07-16 1991-07-16 Growing method for compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17490891A JPH0521361A (en) 1991-07-16 1991-07-16 Growing method for compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH0521361A true JPH0521361A (en) 1993-01-29

Family

ID=15986803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17490891A Pending JPH0521361A (en) 1991-07-16 1991-07-16 Growing method for compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH0521361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344375B1 (en) 1998-07-28 2002-02-05 Matsushita Electric Industrial Co., Ltd Substrate containing compound semiconductor, method for manufacturing the same and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344375B1 (en) 1998-07-28 2002-02-05 Matsushita Electric Industrial Co., Ltd Substrate containing compound semiconductor, method for manufacturing the same and semiconductor device using the same

Similar Documents

Publication Publication Date Title
KR920006262B1 (en) Thin film forming method of semiconductor
US7323764B2 (en) Buffer structure for modifying a silicon substrate
US7687293B2 (en) Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
JP3114809B2 (en) Semiconductor device
JPH01289108A (en) Heteroepitaxy
JP2009508336A (en) Method for promoting growth of semipolar (Al, In, Ga, B) N by metalorganic chemical vapor deposition
JP4396010B2 (en) Semiconductor crystal growth method
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
JPH11298039A (en) Method of growing gan layer ad buffer layer and structure thereof
JPH0521361A (en) Growing method for compound semiconductor crystal
JP3169057B2 (en) Method for growing compound semiconductor layer
JPS61222993A (en) Production of heterostructure
JPH0412092A (en) Compound semiconductor and method for growing the same
JPH05275332A (en) Manufacture of hetero-epitaxial film
JP2001126985A (en) Compound semiconductor substrate
JPH04186824A (en) Semiconductor substrate and manufacture thereof
Grundmann et al. Antiphase-domain-free InP on Si (001): Optimization of MOCVD process
JPH05213693A (en) Formation of crystalline layer of compound semiconductor
JPH05283336A (en) Formation of compound semiconductor layer
JPH04258181A (en) Manufacture of optical element
JPH0555153A (en) Method for growing compound semiconductor crystal
KR19990049361A (en) GAN single crystal manufacturing method
JPH01184815A (en) Semiconductor wafer and manufacture thereof
JPH0536605A (en) Manufacture of compound semiconductor substrate
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof