JPH0521045A - Sealed battery - Google Patents

Sealed battery

Info

Publication number
JPH0521045A
JPH0521045A JP3192494A JP19249491A JPH0521045A JP H0521045 A JPH0521045 A JP H0521045A JP 3192494 A JP3192494 A JP 3192494A JP 19249491 A JP19249491 A JP 19249491A JP H0521045 A JPH0521045 A JP H0521045A
Authority
JP
Japan
Prior art keywords
battery
hydrogen
synthetic resin
battery container
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3192494A
Other languages
Japanese (ja)
Other versions
JP3049854B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3192494A priority Critical patent/JP3049854B2/en
Publication of JPH0521045A publication Critical patent/JPH0521045A/en
Application granted granted Critical
Publication of JP3049854B2 publication Critical patent/JP3049854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To suppress a self discharge when a battery being left in a charged state by providing a non-porous metal layer on a surface of a battery container made of a synthetic resin. CONSTITUTION:A closed type battery comprises a battery container A made of a synthetic resin, a non-porous metal layer B, a metal hydride electrode C, a separator D, and a nickel hydroxide electrode E. In the sealed battery of this constitution, the non-porous metal layer B is provided on the external or internal surface of the battery container A made of a synthetic resin. Thereby, hydrogens permeating the battery container A made of a synthetic resin are blocked by the metal layer B, the hydrogen penetration speed of which being small. As the result, the self discharging speed of a negative electrode accompanying hydrogen generation, is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を主体と
する負極と合成樹脂製の電池容器とを備える密閉形電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed battery having a negative electrode mainly composed of a hydrogen storage alloy and a battery container made of synthetic resin.

【0002】[0002]

【従来の技術】水素吸蔵合金を主体とする水素吸蔵電極
を負極とする密閉形電池には、正極に水酸化ニッケル電
極や2酸化マンガン電極などを用いるアルカリ電池や、
正極に鉛電極などを用いる酸電池がある。
2. Description of the Related Art A sealed battery having a hydrogen storage electrode mainly composed of a hydrogen storage alloy as a negative electrode includes an alkaline battery using a nickel hydroxide electrode or a manganese dioxide electrode as a positive electrode,
There is an acid battery using a lead electrode or the like for the positive electrode.

【0003】この水素吸蔵電極は、水素の可逆的な吸蔵
および放出が可能な水素吸蔵合金を電極に用いるもの
で、その水素の電気化学的な酸化還元反応を電池の負極
の起電反応に利用する。水素吸蔵電極に用いられる水素
吸蔵合金には、TiNi、Ti2 Ni、LaNi5 およびTiMn2など
の金属間化合物や、これらの金属間化合物の構成元素を
他の元素で置換したものが用いられている。これらの水
素吸蔵合金は、その組成が異なると、水素吸蔵量、平衡
水素圧力、電解液中で充放電を繰り返す場合の保持容量
特性などの性質が変化するので、合金の組成を変えて、
水素吸蔵電極の性能の改良が試みられている。この電極
には、常温において平衡圧が約0.01−1気圧程度の
水素吸蔵合金が用いられる場合が多い。
This hydrogen storage electrode uses a hydrogen storage alloy capable of reversibly storing and releasing hydrogen as an electrode, and the electrochemical redox reaction of the hydrogen is used for the electromotive reaction of the negative electrode of the battery. To do. The hydrogen storage alloy used for the hydrogen storage electrode is an intermetallic compound such as TiNi, Ti 2 Ni, LaNi 5 and TiMn 2 or a material obtained by substituting the constituent elements of these intermetallic compounds with other elements. There is. These hydrogen storage alloys, when the composition is different, the hydrogen storage amount, the equilibrium hydrogen pressure, and the properties such as the retention capacity characteristics when charging and discharging are repeated in the electrolytic solution, so the composition of the alloy is changed,
Attempts have been made to improve the performance of hydrogen storage electrodes. A hydrogen storage alloy having an equilibrium pressure of about 0.01-1 atm at room temperature is often used for this electrode.

【0004】この水素吸蔵電極は、これらの水素吸蔵合
金の粉末を耐電解液性高分子で結合したり、高温で焼結
したり、発泡メタルに充填する方法などで、多孔質のも
のを製作していた。
The hydrogen storage electrode is made of a porous material by bonding the powder of the hydrogen storage alloy with an electrolytic solution resistant polymer, sintering at a high temperature, or filling a foam metal. Was.

【0005】この種の密閉形電池で、特に放電容量が数
Ah以上の大形電池の容器には、金属製のものを用いる場
合と、アクリル−スチレン共重合物やポリプロピレン等
の耐電解液性の合成樹脂製のものが用いる場合とがあ
る。そして、金属製の容器を用いる場合には、電池の封
止を溶接によって行う必要があるので、電池の組立作業
の能率に劣る。しかし、合成樹脂製の電池容器を用いる
場合には、接着剤による接合や、金属の溶接よりもはる
かに低温での加熱融着によって電池を封止できるので、
電池の組立作業の能率にすぐれる。また、合成樹脂製の
電池容器を用いる場合には、複数の電池からなる組電池
用に、複数の電池容器の一体成型物を容易に製造できる
ので、電池容器が安価になるという点でも有利である。
This type of sealed battery has a discharge capacity of several
As a container for a large battery of Ah or more, a container made of metal may be used, or a container made of an electrolytic solution resistant synthetic resin such as an acrylic-styrene copolymer or polypropylene may be used. When a metal container is used, it is necessary to seal the battery by welding, so that the efficiency of the battery assembling work is poor. However, when using a battery container made of synthetic resin, the battery can be sealed by bonding with an adhesive or by heat fusion at a much lower temperature than welding of metal,
Excellent in battery assembly work. In addition, when a battery container made of synthetic resin is used, an integrally molded product of a plurality of battery containers can be easily manufactured for an assembled battery composed of a plurality of batteries, which is also advantageous in that the battery container becomes inexpensive. is there.

【0006】[0006]

【発明が解決しようとする課題】上述のように、水素吸
蔵合金を主体とする負極を備える密閉形電池の電池容器
に合成樹脂製のものを用いると、金属製の電池容器を用
いる場合と比較して、電池を充電状態で放置した場合の
自己放電速度が大きくなるという問題点を見いだした。
As described above, when a synthetic resin battery container is used as a battery container of a sealed battery having a negative electrode mainly composed of a hydrogen storage alloy, it is compared with the case where a metal battery container is used. Then, they found a problem that the self-discharge rate increased when the battery was left in a charged state.

【0007】そこで、水素吸蔵合金を主体とする負極と
合成樹脂製の電池容器とを備える密閉形電池において
も、金属製の電池容器を用いる場合と同様に自己放電速
度が小さいものが望まれていた。
Therefore, even in a sealed battery including a negative electrode mainly composed of a hydrogen storage alloy and a battery container made of synthetic resin, one having a low self-discharge rate is desired as in the case of using a metal battery container. It was

【0008】[0008]

【課題を解決するための手段】本発明は、上述の課題を
解決するために、水素吸蔵合金を主体とする負極と合成
樹脂製の電池容器とを備える密閉形電池において、該電
池容器の表面に無孔質の金属層を設けてなる密閉形電池
を提供する。
In order to solve the above problems, the present invention provides a hermetically sealed battery comprising a negative electrode mainly composed of a hydrogen storage alloy and a battery container made of synthetic resin, the surface of the battery container being Provided is a sealed battery having a non-porous metal layer provided on the.

【0009】[0009]

【作用】水素吸蔵合金を主体とする負極を備える密閉形
電池において、合成樹脂製の電池容器を用いる場合に、
電池の自己放電速度が大きくなる原因を調べた結果、次
のことがわかった。
When a synthetic resin battery container is used in a sealed battery having a negative electrode mainly composed of a hydrogen storage alloy,
As a result of investigating the cause of the increase in the self-discharge rate of the battery, the following was found.

【0010】すなわち、電池容器の内外の間で物質の移
動が起こらない場合には、電池の内部の水素分圧は、水
素吸蔵合金の平衡水素圧に等しく、水素吸蔵合金の水素
の吸蔵反応の速度と放出反応の速度が等しくなって、平
衡状態にあり、水素の発生を伴う負極の自己放電は起こ
らない。実際の電池では、正極において水素を酸化する
反応が小さい速度で起こるので、これによって、電池内
の水素が消費されて水素分圧が平衡水素圧よりも低下
し、その結果、水素吸蔵合金から水素が放出される方向
に平衡がずれて、水素の発生を伴う負極の自己放電が起
こる。この自己放電は、電池の内部で起こる現象である
から、電池容器の種類に関係なく起こるものである。そ
して、電池容器に金属製のものを用いる場合には、水素
が電池容器の壁を透過する速度は著しく小さいので、こ
の場合の水素発生を伴う負極の自己放電は、主として、
正極で水素が酸化される反応に起因するものである。
That is, when the mass transfer does not occur between the inside and outside of the battery container, the hydrogen partial pressure inside the battery is equal to the equilibrium hydrogen pressure of the hydrogen storage alloy, and the hydrogen storage reaction of the hydrogen storage alloy is suppressed. Since the rate and the rate of the release reaction are equal, they are in an equilibrium state, and self-discharge of the negative electrode accompanied by generation of hydrogen does not occur. In an actual battery, the reaction that oxidizes hydrogen at the positive electrode occurs at a low rate, which consumes hydrogen in the battery and lowers the hydrogen partial pressure below the equilibrium hydrogen pressure. The equilibrium shifts in the direction in which hydrogen is released, causing self-discharge of the negative electrode with the generation of hydrogen. Since this self-discharge is a phenomenon that occurs inside the battery, it occurs regardless of the type of battery container. When a metal battery container is used, the rate at which hydrogen permeates the wall of the battery container is extremely low, so in this case, the self-discharge of the negative electrode accompanied by hydrogen generation is mainly
This is due to the reaction of hydrogen oxidation at the positive electrode.

【0011】一方、合成樹脂中の水素の透過速度が金属
中の透過速度よりも著しく大きい。そして、電池容器の
外部である大気中の水素分圧は、負極に用いる水素吸蔵
合金の平衡水素圧よりも著しく小さい。従って、合成樹
脂製の電池容器を用いると、電池内の水素が電池容器の
壁面を透過して電池の外部に失われる速度が、金属製の
電池容器を用いる場合と比較して著しく大きくなる。そ
の結果、電池内の水素分圧が低下し、水素の発生を伴う
負極の自己放電速度が大きくなる。
On the other hand, the permeation rate of hydrogen in the synthetic resin is significantly higher than that in metal. The hydrogen partial pressure in the atmosphere outside the battery container is significantly smaller than the equilibrium hydrogen pressure of the hydrogen storage alloy used for the negative electrode. Therefore, when a synthetic resin battery container is used, the rate at which hydrogen in the battery permeates through the wall surface of the battery container and is lost to the outside of the battery is significantly higher than when a metal battery container is used. As a result, the hydrogen partial pressure in the battery is lowered, and the self-discharge rate of the negative electrode accompanied by the generation of hydrogen is increased.

【0012】本発明では、合成樹脂製の電池容器の外部
または内部の表面に無孔質の金属層を設けているので、
合成樹脂製の電池容器を透過する水素が、水素透過速度
の小さい該金属層によって阻止され、その結果、水素発
生を伴う負極の自己放電速度が小さくなるという作用が
ある。
In the present invention, since the non-porous metal layer is provided on the outer or inner surface of the synthetic resin battery container,
Hydrogen that permeates the battery container made of synthetic resin is blocked by the metal layer having a low hydrogen permeation rate, and as a result, the self-discharge rate of the negative electrode accompanied by hydrogen generation is reduced.

【0013】[0013]

【実施例】本発明を好適な実施例によって図面を用いな
がら説明する。 [本発明の電池(ア)]図1は、外形が矩形で、正極板
と負極板とを、セパレータを介して交互に積層した本発
明の密閉形ニッケル・金属水素化物蓄電池(ア)の横断
面の模式図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the accompanying drawings with reference to the preferred embodiments. [Battery (A) of the present invention] Fig. 1 is a cross-section of a sealed nickel metal hydride storage battery (A) of the present invention, which has a rectangular outer shape and in which positive electrode plates and negative electrode plates are alternately laminated with separators in between. The schematic diagram of a surface is shown.

【0014】図1において、Aは、アクリル−スチレン
共重合物製の電池ケースである。Bは、電池ケースAの
外部の表面に無電解メッキ法によって施した無孔質の金
属ニッケル層である。Cは、負極の水素吸蔵電極であ
る。Dは、ポリエチレンとスルフォン化して親水性を賦
与したポリスチレンとの混合物の繊維の不織布からなる
セパレータである。Eは、正極の焼結式の水酸化ニッケ
ル電極である。
In FIG. 1, A is a battery case made of an acrylic-styrene copolymer. B is a non-porous metal nickel layer applied to the outer surface of the battery case A by electroless plating. C is a negative electrode hydrogen storage electrode. D is a separator made of a non-woven fabric of fibers of a mixture of polyethylene and sulfonated polystyrene to impart hydrophilicity. E is a sintered nickel hydroxide electrode having a positive electrode.

【0015】電池容器Aの厚さは約2mmであり、金属
ニッケルのメッキ層Bの厚さは約100μm である。
The battery container A has a thickness of about 2 mm, and the metallic nickel plating layer B has a thickness of about 100 μm.

【0016】正極の水酸化ニッケル電極Eの4枚に含ま
れる水酸化ニッケルの合計の重量は、1セル当たり39
gである。従って、水酸化ニッケルが1電子反応に従う
ことを仮定すると、電池1個の正極の理論容量は約11
Ahである。この電極には、水酸化ニッケル1グラム当
たり水酸化コバルト0.04グラムを添加してある。
The total weight of nickel hydroxide contained in the four positive electrode nickel hydroxide electrodes E is 39 per cell.
It is g. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of the positive electrode of one battery is about 11
It is Ah. To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide.

【0017】負極板Cは次のようにして製作した。The negative electrode plate C was manufactured as follows.

【0018】水素吸蔵合金は、その組成が原子比でLmNi
3.8 Co0.7 Al0.5 になるように、その構成元素を金属の
状態で真空にした高周波誘導炉中で溶解し、鋳造してか
ら粉砕した。ここでLmは、Laを約90重量% 含有する稀土
類金属の混合物であるランタンリッチミッシュメタルで
ある。この合金粉末を、増粘剤かつ結着剤の機能を果た
すポリビニルアルコールの水溶液に分散してペースト状
にした。そしてニッケルメッキを施した鉄製のパンチン
グメタルの両面にこのペーストを塗着し、乾燥し、プレ
スし、切断して水素吸蔵電極を製作した。
The hydrogen storage alloy has a composition of LmNi in atomic ratio.
The constituent elements were melted in a metallic state in a high-frequency induction furnace in a vacuum so as to be 3.8 Co 0.7 Al 0.5 , cast, and then pulverized. Here, Lm is a lanthanum rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La. This alloy powder was dispersed in an aqueous solution of polyvinyl alcohol that functions as a thickener and a binder to form a paste. Then, this paste was applied to both sides of a nickel-plated iron punching metal, dried, pressed, and cut to manufacture a hydrogen storage electrode.

【0019】この電池1個の負極板5枚に含まれる水素
吸蔵合金の重量は、約53gである。 [本発明の電池(イ)]本発明の電池(イ)は、本発明
の電池(ア)における無孔質の金属ニッケルのメッキ層
Bの代わりに、同じ厚さの無孔質のアルミ箔をポリプロ
ピレンおよび塩化ビニリデン樹脂フィルムでラミネート
した膜を熱溶着し、そのほかの構成は電池(ア)と同じ
にして製作した。 [従来の電池(ウ)]従来の電池(ウ)は、本発明の電
池(ア)における金属ニッケルのメッキ層Bを設けるこ
となく、そのほかの構成は電池(ア)と同じにして製作
した。 [実験]これらの密閉形ニッケル・金属水素化物蓄電池
には、0.4MのZnO と10g/l のLiOHとを溶解した6Mの濃度
のKOH 水溶液からなる電解液を同量ずつ注入してある。
The weight of the hydrogen storage alloy contained in the five negative plates of one battery was about 53 g. [Battery (a) of the present invention] A battery (a) of the present invention is a non-porous aluminum foil of the same thickness, instead of the non-porous metal nickel plating layer B in the battery (a) of the present invention. Was laminated with a polypropylene and vinylidene chloride resin film by heat welding, and the other structure was the same as the battery (a). [Conventional Battery (C)] The conventional battery (C) was manufactured in the same manner as the battery (A) except that the metal nickel plating layer B of the battery (A) of the present invention was not provided. [Experiment] To these sealed nickel-metal hydride storage batteries, an equal amount of an electrolytic solution of 0.4 M ZnO and 10 g / l LiOH in a 6 M KOH aqueous solution was injected.

【0020】以上の密閉形ニッケル・金属水素化物蓄電
池を、正極の理論容量を基準として10時間率の電流で16
時間充電したあと、5時間率の電流で放電するという化
成充放電を2回おこなった。
The sealed nickel-metal hydride storage battery described above was used at a current of 10 hour rate based on the theoretical capacity of the positive electrode.
After performing the charge for an hour, the battery was charged and discharged twice at a rate of 5 hours.

【0021】次に、10時間率の電流で15時間充電
し、5時間率の電流で端子電圧が1Vになるまで放電す
るという条件で、放置の前の放電容量を測定した。そし
て、10時間率の電流で15時間充電し、20日間放置
してから、5時間率の電流で端子電圧が1Vになるまで
放電するという条件で放置後の放電容量を測定した。こ
れらの充放電は、25℃の周囲温度においておこない、
充電した電池は40℃で放置した。
Next, the discharge capacity before standing was measured under the condition that the battery was charged at a current of 10 hours for 15 hours and discharged at a current of 5 hours until the terminal voltage became 1V. Then, the discharge capacity after standing was measured under the condition that the battery was charged at a current of 10 hours for 15 hours, left for 20 days, and then discharged at a current of 5 hours until the terminal voltage became 1V. These charging and discharging are performed at an ambient temperature of 25 ° C,
The charged battery was left at 40 ° C.

【0022】この試験において、放置による容量保持率
を、放置の前の放電容量に対する放置の後の放電容量と
定義し、上記の試験で得られた各電池の容量保持率の値
を表1に示す。
In this test, the capacity retention rate after standing was defined as the discharge capacity after standing with respect to the discharge capacity before standing, and the value of the capacity retention rate of each battery obtained in the above test is shown in Table 1. Show.

【0023】[0023]

【表1】 表1から、本発明の電池(ア)および(イ)の容量保持
率は、従来の電池(ウ)と比較して著しく高く、従っ
て、自己放電速度が著しく小さいことが明かである。
[Table 1] From Table 1, it is clear that the capacity retention rates of the batteries (a) and (b) of the present invention are remarkably high as compared with the conventional battery (c), and therefore the self-discharge rate is remarkably low.

【0024】なお、上記の実施例では、正極に焼結式の
水酸化ニッケル電極を用いるアルカリ蓄電池の場合につ
いて述べたが、電解液がアルカリ水溶液で正極がニッケ
ル繊維焼結体や発泡ニッケルに水酸化ニッケルを充填し
た電極や、正極活物質が2酸化マンガン、酸化銀、過酸
化銀の場合や、電解液が酸性水溶液で正極活物質が過酸
化鉛の場合にも、上記の実施例と同様の作用効果を奏す
る。ただし、電解液が酸性の場合には、上記の実施例の
水素吸蔵合金は耐食性が低いので、たとえば特開昭61
−269854号に記載されるような組成の無定形合金
を使用することが望ましい。
In the above embodiment, the alkaline storage battery using the sintered nickel hydroxide electrode as the positive electrode is described. However, the electrolytic solution is an alkaline aqueous solution, and the positive electrode is a nickel fiber sintered body or foamed nickel. The same as in the above-mentioned examples when the electrode is filled with nickel oxide, the positive electrode active material is manganese dioxide, silver oxide, or silver peroxide, or when the electrolytic solution is an acidic aqueous solution and the positive electrode active material is lead peroxide. Produces the effect of. However, when the electrolytic solution is acidic, the hydrogen storage alloys of the above examples have low corrosion resistance.
It is desirable to use amorphous alloys with compositions such as those described in US Pat.

【0025】また、上記の実施例では、負極の水素吸蔵
合金として、特定の組成のものを用いた場合について説
明したが、本発明の作用効果は、水素吸蔵合金と平衡状
態にある電池内の水素が合成樹脂製の電池容器を透過し
て、水素分圧の低い電池外へ失われることを、水素の移
動速度が遅い金属層によって抑制するものであるから、
本発明の手段がその作用効果を奏する電池の負極の水素
吸蔵合金の組成は、上記の実施例のものに限定されな
い。
Further, in the above-mentioned embodiments, the case where the hydrogen storage alloy of the negative electrode has a specific composition is explained, but the effect of the present invention is that the hydrogen storage alloy in the battery is in equilibrium with the hydrogen storage alloy. Since hydrogen permeates the synthetic resin battery container and is lost to the outside of the battery with a low hydrogen partial pressure, it is suppressed by the metal layer having a slow hydrogen moving speed.
The composition of the hydrogen storage alloy of the negative electrode of the battery, in which the means of the present invention exerts its function and effect, is not limited to that of the above-mentioned embodiment.

【0026】さらに、上記の実施例では、無孔質の金属
層として、ニッケルの無電解メッキ層またはアルミニウ
ムのラミネートフィルムを用いる場合について説明し
た。しかし、金属層の材質としては、そのほかにたとえ
ばクロムや銅などを用いる場合にも同様の作用効果を奏
するので、本発明における金属層の材質は、実施例に記
載するものに限定されない。また、無孔質の金属層を設
ける手段として、真空蒸着、電気メッキ、溶射等の方法
を適用することもできる。
Further, in the above embodiment, the case where the nickel electroless plating layer or the aluminum laminating film is used as the non-porous metal layer has been described. However, as the material of the metal layer, similar effects can be obtained when other materials such as chromium and copper are used, and therefore, the material of the metal layer in the present invention is not limited to those described in the embodiments. Further, as a means for providing a non-porous metal layer, a method such as vacuum vapor deposition, electroplating or thermal spraying can be applied.

【0027】そして、無孔質の金属層を設ける部位は、
電池容器の外部表面だけではなく、内部表面であって
も、上記の実施例と同様の作用効果を得ることができ
る。ただし、この場合には、電池内の正極と負極とが、
該金属層を通じて短絡しないように絶縁手段を講ずる必
要がある。また、電池容器の内部表面に設ける該金属層
が電解液に接する場合には、アルミニウムのように酸や
アルカリ電解液に対する耐食性に劣る金属ではなく、ア
ルカリ電解液中ではたとえばニッケルが好適であり、酸
電解液中ではたとえば鉛が好適である。
The site where the non-porous metal layer is provided is
Not only on the outer surface of the battery container, but also on the inner surface, it is possible to obtain the same effects as those of the above-described embodiment. However, in this case, the positive electrode and the negative electrode in the battery,
Insulating means must be provided to prevent short circuits through the metal layer. When the metal layer provided on the inner surface of the battery container is in contact with the electrolytic solution, it is not a metal having poor corrosion resistance to an acid or alkaline electrolytic solution such as aluminum, but nickel is suitable in the alkaline electrolytic solution, for example. Lead is suitable in the acid electrolyte, for example.

【0028】[0028]

【発明の効果】本発明によれば、充電状態の電池を放置
する際の自己放電が抑制されるという効果を奏する。
According to the present invention, there is an effect that self-discharge when a battery in a charged state is left is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】外形が矩形で、正極板と負極板とを、セパレー
タを介して交互に積層した本発明の密閉形ニッケル・金
属水素化物蓄電池(ア)の横断面の模式図。
FIG. 1 is a schematic cross-sectional view of a sealed nickel-metal hydride storage battery (a) of the present invention, which has a rectangular outer shape and in which positive electrode plates and negative electrode plates are alternately laminated with separators in between.

【符号の簡単な説明】[Simple explanation of symbols]

A 合成樹脂製の電池容器 B 無孔質金属層 C 水素吸蔵電極 D セパレータ E 水酸化ニッケル電極 A battery container made of synthetic resin B non-porous metal layer C hydrogen storage electrode D separator E nickel hydroxide electrode

Claims (1)

【特許請求の範囲】 【請求項1】水素吸蔵合金を主体とする負極と、合成樹
脂製の電池容器とを備える密閉形電池において、該電池
容器の表面に無孔質の金属層を設けてなることを特徴と
する密閉形電池。
Claim: What is claimed is: 1. A sealed battery comprising a negative electrode mainly composed of a hydrogen storage alloy and a battery container made of synthetic resin, wherein a non-porous metal layer is provided on the surface of the battery container. A sealed battery characterized in that.
JP3192494A 1991-07-05 1991-07-05 Sealed battery Expired - Lifetime JP3049854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3192494A JP3049854B2 (en) 1991-07-05 1991-07-05 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3192494A JP3049854B2 (en) 1991-07-05 1991-07-05 Sealed battery

Publications (2)

Publication Number Publication Date
JPH0521045A true JPH0521045A (en) 1993-01-29
JP3049854B2 JP3049854B2 (en) 2000-06-05

Family

ID=16292243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3192494A Expired - Lifetime JP3049854B2 (en) 1991-07-05 1991-07-05 Sealed battery

Country Status (1)

Country Link
JP (1) JP3049854B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251512A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2006019171A (en) * 2004-07-02 2006-01-19 Toyota Motor Corp Nickel-hydrogen storage battery
US7452629B2 (en) 2003-03-14 2008-11-18 Panasonic Corporation Nickel metal hydride storage battery
US7666549B2 (en) 2002-06-26 2010-02-23 Panasonic Corporation Enclosed nickel-metal hydride storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666549B2 (en) 2002-06-26 2010-02-23 Panasonic Corporation Enclosed nickel-metal hydride storage battery
US7452629B2 (en) 2003-03-14 2008-11-18 Panasonic Corporation Nickel metal hydride storage battery
JP2005251512A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2006019171A (en) * 2004-07-02 2006-01-19 Toyota Motor Corp Nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP3049854B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
JP3805876B2 (en) Nickel metal hydride battery
US4621034A (en) Sealed metal oxide-hydrogen storage cell
US4702978A (en) Electrochemical cell
JP2965475B2 (en) Hydrogen storage alloy
JP3049854B2 (en) Sealed battery
JP3825548B2 (en) Nickel metal hydride secondary battery
JP2001118597A (en) Alkaline secondary cell
JP3418721B2 (en) Sealed nickel / metal hydride storage battery
JP3168623B2 (en) Prismatic metal hydride storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH11162460A (en) Nickel-hydrogen secondary battery
JP2002025548A (en) Square alkaline storage battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH0517659B2 (en)
JP2000030702A (en) Nickel-hydrogen secondary battery
JPS63175348A (en) Lithium cell
JPH06145849A (en) Hydrogen storage alloy electrode
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH11214028A (en) Rectangular alkaline secondary battery
JPH0541210A (en) Enclosed type alkaline storage battery negative electrode
JPH10334941A (en) Alkaline secondary battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12