JPH05205258A - Magnetic recording medium and magnetic recording device - Google Patents

Magnetic recording medium and magnetic recording device

Info

Publication number
JPH05205258A
JPH05205258A JP1281092A JP1281092A JPH05205258A JP H05205258 A JPH05205258 A JP H05205258A JP 1281092 A JP1281092 A JP 1281092A JP 1281092 A JP1281092 A JP 1281092A JP H05205258 A JPH05205258 A JP H05205258A
Authority
JP
Japan
Prior art keywords
magnetic
texture
recording medium
magnetic recording
disk substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1281092A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
石川  晃
Yoshihiro Shiroishi
芳博 城石
Sadao Hishiyama
定夫 菱山
Tsuguyuki Oono
徒之 大野
Shinan Yaku
四男 屋久
Yukio Kato
幸男 加藤
Tomoo Yamamoto
朋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1281092A priority Critical patent/JPH05205258A/en
Priority to US08/007,969 priority patent/US5605733A/en
Publication of JPH05205258A publication Critical patent/JPH05205258A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium achieving a high-density recording by forming, in one direction, each of a texture in circumferential direction and that in radius direction on the surface of a non-magnetic disk substrate. CONSTITUTION:Non-magnetic plating layers 12 and 12' made of NiP, etc., are formed on both surfaces of a magnetic disk substrate 11 which is made of Al-Mg alloy, ceramic, etc., and then metal ground films 13 and 13' of metals such as Cr and Mo or their alloys are formed on the surface. Furthermore, metal magnetic layers 14 and 14' made of CoNi, CoCr, etc., are formed on the ground films 13 and 13' and then non-magnetic protective films 15 and 15' made of carbon, boron, etc., are formed on them. Then, an abrasive 24 is supplied by pressing an abrasion tape 22 of a tape polishing magazine with a contact roll 24 while rotating a disk substrate 21 and a texture 25 in radius direction and a texture 26 in circumferential direction are formed on the surface of the substrate 21, thus obtaining a magnetic recording medium which has uniform magnetic recording characteristics and achieves high-density recording.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体および磁気
記録装置に係り,特に高密度磁気記録に好適な薄膜型記
録媒体およびこれを用いた磁気記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a magnetic recording device, and more particularly to a thin film type recording medium suitable for high density magnetic recording and a magnetic recording device using the same.

【0002】[0002]

【従来の技術】近年における電子計算機の小型化・高速
化に伴い,磁気ディスク装置その他の外部記憶装置の大
容量化・高速アクセス化が強く求められるようになっ
た。特に磁気ディスク記録装置は,高密度高速記録に適
した記憶装置であり,その需要が一段と強まりつつあ
る。
2. Description of the Related Art With the recent trend toward miniaturization and high speed of electronic computers, there has been a strong demand for large capacity and high speed access of magnetic disk devices and other external storage devices. Particularly, the magnetic disk recording device is a storage device suitable for high-density and high-speed recording, and the demand thereof is further increasing.

【0003】磁気ディスク装置に用いられる磁気記録媒
体としては,酸化物磁性体の粉末をディスク基板上に塗
布した塗布型の記録媒体と,金属磁性体の薄膜を基板上
に蒸着した薄膜型の記録媒体とが知られている。この薄
膜型記録媒体は,塗布型記録媒体に比較して記録膜中の
磁性体の密度が高いため,より高密度の記録に適してい
る。
As a magnetic recording medium used in a magnetic disk device, a coating type recording medium in which a powder of an oxide magnetic material is coated on a disk substrate and a thin film type recording medium in which a thin film of a metal magnetic material is deposited on a substrate are used. The medium is known. This thin film type recording medium is suitable for higher density recording because the density of the magnetic substance in the recording film is higher than that of the coating type recording medium.

【0004】薄膜型記録媒体のディスク基板材料として
は,一般にアルミ合金あるいはガラス,有機樹脂,セラ
ミックス等が用いられる。さらにディスク基板の表面硬
度や磁気特性向上のため,例えば陽極酸化膜や,厚さ約
15μm程のNi−P層がメッキ法などにより形成され
る場合がある。このような基板表面に、米国特許第47
35840号,特開昭61−29418号,特開昭62
−146434号,特開昭63−121123号等に記
載されているような、微細な溝が略円周方向に加工形成
される場合がある。この微細な溝は一般にテクスチャと
称され,粒径1〜数μmの砥粒を用いてディスク表面を
略円周方向に切削して形成される。このテクスチャによ
り、回転停止時の磁気ヘッド−媒体間の実効接触面積が
減少し,ヘッド−媒体間の摩擦係数が低下する。また、
このテクスチャの形状,大きさによっては、回転始動時
のヘッド粘着が抑制されるという効果が認められてい
た。また、このテクスチャを設けた場合、テクスチャの
大きさ,下地膜の膜厚,成膜条件を適正化することによ
り、磁性膜の略円周方向の磁気特性,例えば保磁力Hc
あるいは角形比S,残留磁化量Mrの値が、テクスチャ
のない媒体に比べ向上し、その結果記録再生時の分解能
やS/Nが向上する効果が認められることもあった。さ
らに媒体製造時の条件、例えば加熱温度や搬送方法によ
っては媒体の略円周方向の磁気異方性が不均一となり再
生出力が変動する場合があるが、テクスチャの大きさ,
下地膜や磁性膜の組成,成膜条件等を適正化すると、テ
クスチャにより略円周方向の磁気異方性が均一化され、
その結果記録再生出力の揺らぎ(以後モジュレーション
と略記する)が抑制される効果も認められていた。
Aluminum alloy, glass, organic resin, ceramics, etc. are generally used as the disk substrate material of the thin film type recording medium. Further, in order to improve the surface hardness and magnetic characteristics of the disk substrate, for example, an anodic oxide film or a Ni—P layer having a thickness of about 15 μm may be formed by a plating method or the like. On such a substrate surface, US Pat.
35840, JP-A-61-29418, JP-A-62.
There are cases where fine grooves are formed in the substantially circumferential direction as described in JP-A-146434 and JP-A-63-121123. This fine groove is generally called a texture and is formed by cutting the disk surface in a substantially circumferential direction using abrasive grains having a grain size of 1 to several μm. This texture reduces the effective contact area between the magnetic head and the medium when the rotation is stopped, and reduces the coefficient of friction between the head and the medium. Also,
Depending on the shape and size of this texture, the effect of suppressing head adhesion at the start of rotation has been recognized. Further, when this texture is provided, by optimizing the size of the texture, the film thickness of the underlayer film, and the film forming conditions, the magnetic characteristics of the magnetic film in the substantially circumferential direction, for example, the coercive force Hc.
Alternatively, the values of the squareness ratio S and the residual magnetization amount Mr are improved as compared with a medium having no texture, and as a result, the effect of improving the resolution and S / N during recording / reproduction may be recognized. Furthermore, the magnetic anisotropy in the substantially circumferential direction of the medium may become non-uniform and the reproduction output may fluctuate depending on the conditions at the time of manufacturing the medium, for example, the heating temperature and the transportation method.
By optimizing the composition of the underlayer film and the magnetic film, the film forming conditions, etc., the magnetic anisotropy in the substantially circumferential direction is made uniform by the texture,
As a result, the effect of suppressing fluctuations in the recording / reproducing output (hereinafter abbreviated as modulation) was also recognized.

【0005】[0005]

【発明が解決しようとする課題】上記従来の略円周方向
テクスチャは、薄膜型記録媒体の耐摺動信頼性,記録再
生特性向上に効果があるが、その効果はテクスチャ表面
の微視的な形状により大きく変化する。このため、磁気
特性が面内で均一な媒体を再現性よく形成するために
は、テクスチャの微視的な形状を媒体面内で均一に再現
性よく形成する必要がある。しかし、金属基板上のテク
スチャは通常、粒径1〜数μmの砥粒を用いて形成され
るため、1μm未満の大きさの微細な表面粗さやピッチ
を均一に制御することは困難である。その結果、回転始
動時のヘッド−媒体間の摩擦係数や記録再生特性が、デ
ィスク面内や,ロット間で変動するという問題があっ
た。
The above-mentioned conventional substantially circumferential texture is effective for improving the sliding resistance and recording / reproducing characteristics of the thin film type recording medium, but the effect is microscopic on the texture surface. It varies greatly depending on the shape. Therefore, in order to form a medium having a uniform magnetic property in the surface with good reproducibility, it is necessary to form a microscopic shape of the texture uniformly in the surface of the medium with good reproducibility. However, since the texture on the metal substrate is usually formed by using abrasive grains having a grain size of 1 to several μm, it is difficult to uniformly control the fine surface roughness and pitch of less than 1 μm. As a result, there has been a problem that the coefficient of friction between the head and the medium at the time of rotation start and the recording / reproducing characteristics fluctuate within the disk surface or between lots.

【0006】また将来、より高密度な記録再生を行なう
ためには、記録トラックの幅を現在よりさらに小さくす
る必要がある。その際には、ディスク半径方向のテクス
チャ形状の不均一性は記録再生信号の変動について従来
より大きな影響を及ぼすようになる。特に、位置決め用
サーボ信号のように、ディスク半径方向の記録再生特性
の均一性が厳密に要求される場合には、従来のテクスチ
ャを採用できないという問題がある。
In order to perform higher density recording / reproducing in the future, it is necessary to make the width of the recording track smaller than that of the present. In that case, the non-uniformity of the texture shape in the radial direction of the disc has a greater effect on the fluctuation of the recording / reproducing signal than in the past. In particular, there is a problem that the conventional texture cannot be adopted when the uniformity of the recording / reproducing characteristics in the radial direction of the disk is strictly required like the positioning servo signal.

【0007】一方、記録密度を向上させるためには、記
録再生時の磁気ヘッドと記録媒体との間隙(以後,スペ
ーシングと略記する)をできる限り狭くし、媒体内に急
峻な磁界分布を形成することが重要である。しかし、略
円周方向テクスチャ加工を施したディスク基板では、狭
いスペーシングで基板を回転した場合に、テクスチャの
ないディスク基板に比べて、磁気ヘッドと媒体が接触す
る頻度が多いことが見出された。これは、テクスチャ加
工によりディスク表面上に微細な突起が不可避的に形成
され、これがスペーシングを下げた際に磁気ヘッドと接
触するためであることがわかった。ヘッドと媒体の接触
頻度を低減し、磁気ディスク装置の信頼性を向上するた
めには、ディスク基板表面の突起を研磨工程により除去
するか(特開平1−162229号に記載)、あるいは
テクスチャそのものの凹凸の大きさが小さくなるように
テクスチャ形成条件を制御すればよいが、この場合には
磁気ヘッド−媒体間の接触面積が増加し、回転始動時の
ヘッド粘着が避けられない。また、特開平1−2732
18号には、互いに交差する略円周方向のテクスチャを
形成することにより動摩擦係数を低減する方法が示され
ているが、この場合には磁性膜の略円周方向の磁気特性
を従来のテクスチャを形成した媒体に比べ十分に高くす
ることができず、またモジュレーションの抑制も不充分
であった。
On the other hand, in order to improve the recording density, the gap between the magnetic head and the recording medium at the time of recording / reproducing (hereinafter abbreviated as spacing) is made as narrow as possible to form a steep magnetic field distribution in the medium. It is important to. However, it has been found that in a disk substrate that has been subjected to a texture treatment in a substantially circumferential direction, when the substrate is rotated with a narrow spacing, the magnetic head and the medium come into contact with each other more frequently than a disk substrate without a texture. It was It was found that this is because a fine protrusion is inevitably formed on the surface of the disk by the texturing, and this comes into contact with the magnetic head when the spacing is lowered. In order to reduce the frequency of contact between the head and the medium and improve the reliability of the magnetic disk device, the protrusions on the disk substrate surface should be removed by a polishing process (described in JP-A-1-162229) or the texture itself. The texture forming conditions may be controlled so as to reduce the size of the irregularities, but in this case, the contact area between the magnetic head and the medium increases, and head adhesion at the start of rotation cannot be avoided. Also, Japanese Patent Laid-Open No. 1-2732
No. 18 discloses a method of reducing the dynamic friction coefficient by forming textures in the substantially circumferential direction intersecting with each other. In this case, the magnetic properties of the magnetic film in the substantially circumferential direction are compared with the conventional texture. It could not be made sufficiently higher than that of the medium in which was formed, and the suppression of modulation was insufficient.

【0008】さらに、従来の薄膜型記録媒体では、記録
再生時の分解能,S/Nが未だ不十分であり,磁気ディ
スク装置の性能を現在より向上するため,より優れた特
性を有する媒体を開発することが強く求められている。
Further, in the conventional thin film type recording medium, the resolution and S / N at the time of recording / reproducing are still insufficient, and in order to improve the performance of the magnetic disk device from the present, a medium having more excellent characteristics was developed. There is a strong demand to do it.

【0009】本発明の第1の目的は、媒体面内の磁気記
録特性が均一で、高密度記録が可能な磁気記録媒体を提
供することであ。第2の目的は、このような媒体を用い
た大容量で高い信頼性を有する磁気記録装置を提供する
ことである。
A first object of the present invention is to provide a magnetic recording medium having uniform magnetic recording characteristics in the medium surface and capable of high density recording. The second object is to provide a large capacity and highly reliable magnetic recording device using such a medium.

【0010】[0010]

【課題を解決するための手段】上記目的は、ディスク基
板表面に円周方向と半径方向のテクスチャを混在させて
形成することにより達成できる。ここで、テクスチャ上
の点とディスクの中心を結んだ半径方向の直線とテクス
チャとの角度が±45度未満のテクスチャを、半径方向
のテクスチャと定義する。また、上記半径方向の直線に
対し垂直な直線とテクスチャとの角度が±45度以下の
テクスチャを、円周方向のテクスチャと定義する。角度
の測定は、上記直線を始線として反時計方向に測るもの
とする。
The above object can be achieved by forming textures in the circumferential direction and the radial direction in a mixed manner on the surface of the disk substrate. Here, a texture in which the angle between the texture and a radial straight line connecting the center of the disc and the texture is less than ± 45 degrees is defined as a texture in the radial direction. A texture in which the angle between the straight line perpendicular to the radial straight line and the texture is ± 45 degrees or less is defined as the circumferential texture. The angle is measured counterclockwise with the straight line as the starting line.

【0011】ディスク基板表面に上記テクスチャを混在
させて形成するためには,ディスクの円周方向に研磨す
る工程と,ディスクの半径方向に研磨する工程の両方を
必要とする。また、前段の工程で形成したテクスチャを
後段のテクスチャ形成工程により消失することのないよ
うに、テクスチャ形成時の砥粒の種類,粒径,研磨圧
力,研磨時間,研磨液などの条件を最適な値に制御する
必要がある。すなわち、砥粒径,研磨圧力などを小さく
すると共に,研磨時間も短くするなど,ディスク表面を
研磨する量を小さく制御する必要がある。
In order to form the above-mentioned texture in a mixed manner on the surface of the disk substrate, both a step of polishing in the circumferential direction of the disk and a step of polishing in the radial direction of the disk are required. Also, in order to prevent the texture formed in the former stage from being lost in the latter stage texture forming process, the conditions such as the type of abrasive grains, grain size, polishing pressure, polishing time and polishing liquid should be optimized during texture formation. You need to control the value. That is, it is necessary to control the amount of polishing the disk surface to be small, for example, by shortening the polishing particle size and the polishing pressure and shortening the polishing time.

【0012】略円周方向のテクスチャは、従来と同様,
研磨剤の存在下でディスクの両側から研磨用テープやバ
フを押しつけながらディスクを高速で回転することによ
り形成することができる。この時、研磨用テープ等を、
回転周速度よりも低速でディスクの半径方向に振動させ
ると、テクスチャの方向が円周方向から半径方向に向か
って変化する。本発明の円周方向のテクスチャは、従来
の略円周方向のテクスチャとこの低速振動させて形成し
たテクスチャから成る。研磨用テープ等の移動速度が大
きくなる程、テクスチャの方向はより半径方向に向く。
また、研磨用テープ等の振動の振幅と振動数を変えるこ
とにより、テクスチャの形態を変えることができる。一
方、半径方向テクスチャは、上記研磨用テープ等の移動
速度を回転周速度よりも大きくすることにより形成する
ことができる。
The texture in the substantially circumferential direction is similar to the conventional one.
It can be formed by rotating the disc at a high speed while pressing a polishing tape or buff from both sides of the disc in the presence of an abrasive. At this time, polishing tape, etc.
When the disk is vibrated at a speed lower than the rotational peripheral speed in the radial direction, the direction of the texture changes from the circumferential direction to the radial direction. The texture in the circumferential direction of the present invention includes a conventional texture in the substantially circumferential direction and a texture formed by vibrating at a low speed. As the moving speed of the polishing tape or the like increases, the direction of the texture becomes more radial.
In addition, the form of the texture can be changed by changing the amplitude and frequency of vibration of the polishing tape or the like. On the other hand, the radial texture can be formed by making the moving speed of the polishing tape or the like higher than the peripheral speed of rotation.

【0013】また、円周方向テクスチャの凹凸の大きさ
を、半径方向テクスチャの凹凸の大きさに比べ、実質的
に大きくなるようにテクスチャを形成すると、記録再生
特性が向上しモジュレーションが低減するので好まし
い。
If the texture is formed such that the size of the unevenness of the texture in the circumferential direction is substantially larger than the size of the unevenness of the texture in the radial direction, the recording / reproducing characteristics are improved and the modulation is reduced. preferable.

【0014】ここで、テクスチャの凹凸の大きさを表わ
す指標として、中心線平均粗さRaおよび最大高さRmax
を用いる。記録再生特性の変動やヘッド媒体間のスペー
シング,起動時のヘッド粘着の点で良好な結果を得るた
めには、Ra値の範囲として0.5nm以上10nm未
満,Rmax値の範囲として5nm以上100nm未満が
好ましい。また、高密度で記録するために、例えば0.
15μm以下の極めて狭いスペーシングでヘッド,媒体
を動作させる際には、特に耐摺動信頼性の高い媒体が必
要であり、この場合には媒体のRa値の範囲として0.
5nm以上5nm未満,Rmax値の範囲として5nm以
上50nm未満であることが好ましい。なお,本明細書
における「中心線平均粗さ」,「最大高さ」の使用は,
日本工業規格(JIS−B0601)に規定された定義
に準拠する。
Here, the center line average roughness Ra and the maximum height Rmax are used as an index showing the size of the unevenness of the texture.
To use. In order to obtain good results in terms of fluctuations in recording / reproducing characteristics, spacing between head media, and head adhesion at startup, the Ra value range is 0.5 nm or more and less than 10 nm, and the Rmax value range is 5 nm or more and 100 nm. Less than is preferred. Further, in order to record at high density, for example, 0.
When operating the head and the medium with an extremely narrow spacing of 15 μm or less, a medium with particularly high sliding resistance is required. In this case, the Ra value range of the medium is 0.
The range of 5 nm or more and less than 5 nm and the Rmax value is preferably 5 nm or more and less than 50 nm. Note that the use of "center line average roughness" and "maximum height" in this specification is as follows.
It conforms to the definition stipulated in Japanese Industrial Standards (JIS-B0601).

【0015】また、上記ディスク基板上にCr,Mo,
Wもしくはこれらを主たる成分とする合金を含む下地層
を膜厚10〜500nm形成することにより磁気特性を
向上できる。さらに、CoもしくはFe,もしくはNi
を主たる成分とする磁性層を膜厚10〜100nm形成
し,保護層としてカーボンを膜厚10〜50nm形成
し、さらに吸着性のパーフルオロアルキルポリエーテル
等の潤滑層を1〜20nm設けることにより媒体面内に
おいて高密度記録が可能な磁気記録媒体が得られる。ま
た、下地層としてCr,Mo,WにTi,Ta,Pt,
Pd,Si,Fe,Vのいずれかを添加した合金を用
い、磁性層としてさらにCr,Mo,W,Zr,Ta,
Nb,Al,Si,Ptのいずれか少なくとも1種を添
加した合金を用いると媒体の記録再生特性および耐食性
がさらに向上するので好ましい。特に、磁性層を構成す
る磁性体がCoNi,CoCr,CoFe,CoMo,
CoW,CoPt,CoRe等の合金である場合に良好
な特性を認められる。また、特に良好な耐食性や磁気特
性を求める場合は、磁性膜を構成するための磁性体とし
てCoNiZr,CoCrPt,CoCrTa,CoN
iCrを主たる成分とする合金で構成することが望まし
い。また、保護層としてWC,WMoC等の炭化物,Z
rNbN,Si34等の窒化物,SiO2,ZrO2等の
酸化物,あるいはB,B4C,MoS2,Rh等を用いる
と耐摺動性,耐食性を向上できるので好ましい。ディス
ク基板は、Al−Mg合金,化学強化ガラス,または有
機樹脂を使用することができ、かつこれらの基板の上
に,NiP,NiWP,NiV等からなる非磁性メッキ
層を形成したものを使用することも可能である。さら
に、磁気記録媒体とトラック幅が10μm以下の磁気ヘ
ッドを組合せることにより、大容量で高信頼性の磁気記
録装置を提供することができる。
Further, Cr, Mo,
The magnetic characteristics can be improved by forming an underlayer containing W or an alloy containing these as the main components in a thickness of 10 to 500 nm. Furthermore, Co or Fe, or Ni
By forming a magnetic layer having a thickness of 10 to 100 nm as a main component, a carbon having a thickness of 10 to 50 nm as a protective layer, and further providing a lubricating layer of 1 to 20 nm of an adsorbent perfluoroalkyl polyether or the like, A magnetic recording medium capable of high density recording in the plane is obtained. In addition, as an underlayer, Cr, Mo, W with Ti, Ta, Pt,
An alloy containing any one of Pd, Si, Fe, and V is used, and Cr, Mo, W, Zr, Ta, and
It is preferable to use an alloy to which at least one of Nb, Al, Si and Pt is added, because the recording / reproducing characteristics and corrosion resistance of the medium are further improved. In particular, the magnetic substance forming the magnetic layer is CoNi, CoCr, CoFe, CoMo,
Good properties are recognized when the alloy is CoW, CoPt, CoRe, or the like. In addition, when particularly good corrosion resistance and magnetic properties are required, CoNiZr, CoCrPt, CoCrTa, CoN are used as the magnetic material for forming the magnetic film.
It is desirable to use an alloy containing iCr as a main component. Further, as a protective layer, carbides such as WC and WMoC, Z
It is preferable to use a nitride such as rNbN, Si 3 N 4 or the like, an oxide such as SiO 2 , ZrO 2 , or B, B 4 C, MoS 2 , Rh or the like because the sliding resistance and the corrosion resistance can be improved. For the disk substrate, Al-Mg alloy, chemically strengthened glass, or organic resin can be used, and a non-magnetic plating layer made of NiP, NiWP, NiV or the like formed on these substrates is used. It is also possible. Furthermore, by combining a magnetic recording medium with a magnetic head having a track width of 10 μm or less, it is possible to provide a magnetic recording device having a large capacity and high reliability.

【0016】[0016]

【作用】本発明者らはディスク基板の微細な表面形状と
磁気記録特性,ヘッド浮上性の関係に関し鋭意研究を重
ねた結果、上記目的はディスク基板表面に円周方向と半
径方向のテクスチャを混在させることにより達せられる
との知見を得た。
As a result of intensive studies on the relationship between the fine surface shape of the disk substrate, the magnetic recording characteristics, and the head flying property, the present inventors have found that the object is to mix textures in the circumferential and radial directions on the surface of the disk substrate. We obtained the knowledge that it can be achieved by doing.

【0017】ディスク基板表面にテクスチャを円周方向
と半径方向に混在させて形成すると、同じ凹凸の大きさ
のテクスチャを従来の略円周方向のみに形成した媒体と
比べ停止時の磁気ヘッド−媒体間の接触面積が減少し、
その結果、回転始動時のヘッド粘着が抑制される。この
ため、従来の略円周方向のみにテクスチャ形成した媒体
と比べて凹凸が極めて小さいテクスチャを用いても、ヘ
ッド粘着を抑制することが可能となる。さらに、テクス
チャの凹凸を小さくすると不可避的に発生する媒体表面
の突起やバリが小さくなるため、スペーシングを下げた
際に磁気ヘッドと媒体が接触する頻度が減り、従来より
狭いスペーシングで記録再生することが可能となる。し
たがって、信頼性を確保したままで記録再生特性を向上
できる。
When the texture is formed on the surface of the disk substrate in a mixed manner in the circumferential direction and the radial direction, the magnetic head-medium at the time of stopping is different from the conventional medium in which the texture having the same unevenness is formed only in the substantially circumferential direction. The contact area between
As a result, head adhesion at the start of rotation is suppressed. Therefore, head adhesion can be suppressed even when a texture having extremely small unevenness is used as compared with the conventional medium in which the texture is formed only in the substantially circumferential direction. Furthermore, if the texture irregularities are made smaller, the protrusions and burrs on the medium surface that inevitably occur will be reduced, so the frequency of contact between the magnetic head and the medium will be reduced when the spacing is lowered, and recording and playback will be performed with a narrower spacing than before. It becomes possible to do. Therefore, it is possible to improve the recording / reproducing characteristics while ensuring the reliability.

【0018】また、凹凸の小さいテクスチャを形成する
ので従来より粒径の小さい砥粒を用いることが可能とな
り,微視的な表面形状まで極めて均一に制御することが
できる。従って、ディスク面内や,ロット間で記録再生
特性が変動するという問題が解消される。
Further, since a texture having small irregularities is formed, it becomes possible to use abrasive grains having a smaller grain size than in the past, and it is possible to control even a microscopic surface shape extremely uniformly. Therefore, the problem that the recording / reproducing characteristics fluctuate within the disc surface or between lots is solved.

【0019】また、Ra値が0.5nm以上10nm未
満、Rmax値が5nm以上100nm未満の範囲となる
ようにディスク表面の研磨条件を設定すると、スペーシ
ングを下げた際に磁気ヘッドと媒体が接触する頻度が減
り、低スペーシングで記録再生することが可能となる。
また、高い記録密度を得るための狭スペーシング稼動に
対しては、Ra値を0.5nm以上5nm未満,Rmax値
を5nm以上50nm未満の範囲とすることで対応でき
る。
If the polishing conditions of the disk surface are set so that the Ra value is 0.5 nm or more and less than 10 nm and the Rmax value is 5 nm or more and less than 100 nm, the magnetic head and the medium come into contact with each other when the spacing is lowered. It is possible to perform recording and reproduction with a low spacing, since the frequency of use is reduced.
Further, the narrow spacing operation for obtaining a high recording density can be dealt with by setting the Ra value in the range of 0.5 nm or more and less than 5 nm and the Rmax value in the range of 5 nm or more and less than 50 nm.

【0020】[0020]

【実施例】以下,実施例により本発明をさらに詳細に説
明する。図1は,本発明に係る薄膜型磁気記録媒体の縦
断面構造を模式的に示したものである。同図において,
符号11はAl−Mg合金,化学強化ガラス,有機樹
脂,セラミックス等からなる磁気ディスク基板,12お
よび12’は基板11の両面に形成したNiP,NiW
P等からなる非磁性メッキ層である。Al−Mg合金を
基板として用いた場合はこのようなメッキ層を備えたも
のを磁気ディスクの基板として使用する。13および1
3’はメッキ層12,12’の上に形成したクロム,モ
リブデン,タングステンまたはクロム,モリブデン,タ
ングステンのいずれかを主な成分とする合金からなる金
属下地膜、14および14’は当該下地膜の上に形成し
たCoNi,CoCr,CoRe,CoPt,CoP,
CoFe,CoNiZr,CoCrAl,CoCrT
a,CoCrPt,CoNiCr,CoCrNb,Co
NiP,CoNiPt,CoCrSi等からなる金属磁
性層、15および15’は当該磁性膜の上に形成したカ
ーボン,ボロン,B4C,SiC,SiO2,Si34
WC,WMoC,WZrC等からなる非磁性保護膜をそ
れぞれ示す。
EXAMPLES The present invention will be described in more detail below with reference to examples. FIG. 1 schematically shows a vertical cross-sectional structure of a thin film magnetic recording medium according to the present invention. In the figure,
Reference numeral 11 is a magnetic disk substrate made of Al-Mg alloy, chemically strengthened glass, organic resin, ceramics or the like, and 12 and 12 'are NiP and NiW formed on both surfaces of the substrate 11.
It is a non-magnetic plating layer made of P or the like. When an Al-Mg alloy is used as the substrate, one having such a plating layer is used as the substrate of the magnetic disk. 13 and 1
3'is a metal underlayer formed of chromium, molybdenum, tungsten or an alloy containing any of chromium, molybdenum, and tungsten as a main component formed on the plated layers 12, 12 ', and 14 and 14' are CoNi, CoCr, CoRe, CoPt, CoP formed on the
CoFe, CoNiZr, CoCrAl, CoCrT
a, CoCrPt, CoNiCr, CoCrNb, Co
NiP, CoNiPt, metallic magnetic layer made of CoCrSi like, carbon 15 and 15 'are formed on the said magnetic film, boron, B 4 C, SiC, SiO 2, Si 3 N 4,
Non-magnetic protective films made of WC, WMoC, WZrC, etc. are shown respectively.

【0021】また,図2は本実施例に係る薄膜型磁気記
録媒体のテクスチャ形成工程およびテクスチャ構造を模
式的に示したものである。同図において、符号21はデ
ィスク基板,22はテープポリッシングマシンにおける
研磨テープ,23は同マシンにおけるコンタクトロー
ル,24は研磨剤,25はディスク基板表面の半径方向
に形成したテクスチャ,26はディスク基板表面の円周
方向に形成したテクスチャである。
FIG. 2 schematically shows a texture forming process and a texture structure of the thin film magnetic recording medium according to this embodiment. In the figure, reference numeral 21 is a disk substrate, 22 is a polishing tape in a tape polishing machine, 23 is a contact roll in the machine, 24 is an abrasive, 25 is a texture formed in the radial direction of the disk substrate surface, and 26 is a disk substrate surface. Is a texture formed in the circumferential direction.

【0022】〈実施例1〉外径130mm,内径40m
m,厚さ1.9mmの,Al−4Mg(原子記号の前に
付した数字は当該素材の含有量を示す。この場合は重量
%)からなるディスク基板の両面にNi−12P(重量
%)からなる膜厚13μmのメッキ層を形成した。この
非磁性基板の表面に、ラッピングマシンを用いて中心線
平均粗さRaが5nm以下になるまで平滑に研磨し,洗
浄,乾燥した。
Example 1 Outer diameter 130 mm, inner diameter 40 m
Ni-12P (wt%) on both sides of a disk substrate made of Al-4Mg (the number preceding the atomic symbol indicates the content of the material. In this case, wt%), and the thickness is 1.9 mm. And a plating layer having a film thickness of 13 μm was formed. The surface of this non-magnetic substrate was smooth-polished using a lapping machine until the center line average roughness Ra was 5 nm or less, washed, and dried.

【0023】その後、図2に示すようにテープポリッシ
ングマシンを用い、基板21を回転させながら、研磨テ
ープ22をコンタクトロール23を通してディスク面の
両側に押しつけ、研磨剤24の存在下で研磨テープをデ
ィスクの半径方向に振動させ,基板表面上に半径方向の
テクスチャ25を形成した。次いでディスク基板を回転
させながら研磨剤存在下で研磨テープをコンタクトロー
ルを通してディスク面の両側に押しつけ、ディスク基板
上に円周方向のテクスチャ26を形成した。その際,半
径方向のテクスチャが消失しないようにした。最後に、
基板に付着した研磨剤等の汚れを洗浄除去し乾燥した。
こうして得られた基板の表面粗さを、触針式表面粗さ計
または走査トンネル顕微鏡,電子線三次元粗さ測定装置
などにより求めた。さらに、基板表面の微細テクスチャ
構造を走査電子顕微鏡や走査トンネル顕微鏡,電子線三
次元粗さ測定装置などにより観察した結果,円周方向と
半径方向の両方のテクスチャが混在していることが確認
された。
Then, using a tape polishing machine as shown in FIG. 2, while rotating the substrate 21, the polishing tape 22 is pressed against both sides of the disk surface through the contact rolls 23, and the polishing tape is transferred to the disk in the presence of the polishing agent 24. Was vibrated in the radial direction to form a radial texture 25 on the substrate surface. Next, while rotating the disk substrate, the polishing tape was pressed against both sides of the disk surface through the contact rolls in the presence of an abrasive to form a texture 26 in the circumferential direction on the disk substrate. At that time, the texture in the radial direction was prevented from disappearing. Finally,
Dirt such as abrasives adhered to the substrate was washed off and dried.
The surface roughness of the substrate thus obtained was determined by a stylus type surface roughness meter, a scanning tunneling microscope, an electron beam three-dimensional roughness measuring device, or the like. Furthermore, as a result of observing the fine texture structure of the substrate surface with a scanning electron microscope, a scanning tunnel microscope, an electron beam three-dimensional roughness measuring device, etc., it was confirmed that textures in both the circumferential direction and the radial direction were mixed. It was

【0024】また、比較例として略円周方向のみのテク
スチャを有するディスク基板を作製した。この時の表面
粗さは本実施例と同等とした。このようなディスク基板
をマグネトロンスパッタリング装置に装填して、200
℃の温度に保持し、5mTorrのアルゴン圧の条件の
もとで膜厚50nmのクロム下地膜を形成した。この下
地膜の上にCo−12Cr−4Ta(原子%)からなる
膜厚40nmの金属磁性膜を積層した。その後、磁性膜
上に膜厚20nmのカーボン保護膜を形成し、最後に当
該保護膜上に吸着性のパーフルオロアルキルポリエーテ
ル等の潤滑層を形成した。
As a comparative example, a disk substrate having a texture only in the substantially circumferential direction was manufactured. The surface roughness at this time was made equal to that of this example. After loading such a disk substrate into a magnetron sputtering device,
The temperature was maintained at a temperature of ° C, and a chromium underlayer film having a film thickness of 50 nm was formed under the condition of an argon pressure of 5 mTorr. A 40 nm-thickness metal magnetic film made of Co-12Cr-4Ta (atomic%) was laminated on the base film. After that, a carbon protective film having a film thickness of 20 nm was formed on the magnetic film, and finally, a lubricating layer of adsorbable perfluoroalkyl polyether or the like was formed on the protective film.

【0025】こうして形成された本実施例及び比較例の
媒体の記録再生特性を相対速度12m/s,浮上スペー
シング0.1μmにおいて,実効ギャップ長0.4μm,
トラック幅10μmの薄膜磁気ヘッドを用いて測定し、
モジュレーション(Md),出力半減記録密度
(D50),媒体S/Nの値を求めた。ここでモジュレー
ションMdはディスク面内における最大出力H,最低出
力Lとにより Md =(H−L)/(H+L) の式により定義した。また、動摩擦係数の最大値(μ
f)を、磁気ヘッド材料Al23・TiC,加重10g
f,相対速度0.5m/secにて測定した。さらに、
作製直後およびコンタクト・スタート・アンド・ストッ
プ(以後CSSと略記する)5万回後のディスク記録面
当たりの記録再生エラービット数を測定し、CSS前後
でのエラー数の増加を測定した。
The recording / reproducing characteristics of the media of the present example and the comparative example formed in this way were measured at a relative velocity of 12 m / s, a flying spacing of 0.1 μm, and an effective gap length of 0.4 μm.
Measured using a thin film magnetic head with a track width of 10 μm,
The values of modulation (Md), output half recording density (D 50 ) and medium S / N were determined. Here, the modulation Md is defined by the formula Md = (HL) / (H + L) by the maximum output H and the minimum output L in the disk plane. Also, the maximum value of the dynamic friction coefficient (μ
f) is magnetic head material Al 2 O 3 .TiC, weighted 10 g
f, measured at a relative speed of 0.5 m / sec. further,
Immediately after the production and after 50,000 contact start-and-stop (hereinafter abbreviated as CSS) times, the number of recording / reproducing error bits per disk recording surface was measured to measure the increase in the number of errors before and after CSS.

【0026】表1に、本実施例及び比較例の媒体のそれ
ぞれに対し、Ra,Rmaxを等しく変化させてテクスチャ
を形成した場合の動摩擦係数の最大値(μf),CSS
前後でのエラー数の増加,モジュレーション(Md)の
測定値を示す。
Table 1 shows the maximum values of the dynamic friction coefficient (μf) and CSS when Ra and Rmax are changed equally to form a texture for each of the media of this example and the comparative example.
The increase in the number of errors before and after and the measured value of modulation (Md) are shown.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から、本実施例の媒体は、比較例に比
べ、同じ表面粗さでも動摩擦係数,CSS前後のエラー
数の増加,記録再生時のモジュレーションが小さいこと
がわかる。特に、表面粗さの値が極めて小さい形成条件
において、本実施例の媒体は、比較例に比べ顕著に動摩
擦係数(μf),CSS前後のエラー数の増加,モジュ
レーションが小さいことがわかる。また、本実施例の媒
体は、比較例に比べ記録再生時の出力半減記録密度(D
50),媒体S/Nの値が高いことが確認された。
It can be seen from Table 1 that the medium of this example has a smaller dynamic friction coefficient, an increase in the number of errors before and after CSS, and a smaller modulation at the time of recording / reproducing even with the same surface roughness, as compared with the comparative example. In particular, it can be seen that under the forming conditions where the surface roughness value is extremely small, the medium of this example has a significantly smaller dynamic friction coefficient (μf), an increase in the number of errors before and after CSS, and a smaller modulation than the comparative example. In addition, the medium of the present example has an output half recording density (D
50 ), and it was confirmed that the medium S / N value was high.

【0029】上記結果より、信頼性の高い媒体の表面粗
さは、Ra値の範囲として0.5nm以上9.8nm以
下,Rmax値の範囲として5nm以上93nm以下が好
ましいことがわかる。また、特に高い信頼性を必要とす
る場合においては、Ra値が0.5nm以上4.9nm
以下,Rmax値が5nm以上49nm以下の範囲にある
ことが好ましいことがわかる。
From the above results, it is understood that the surface roughness of the highly reliable medium is preferably 0.5 nm or more and 9.8 nm or less as the Ra value range and 5 nm or more and 93 nm or less as the Rmax value range. Further, when particularly high reliability is required, the Ra value is 0.5 nm or more and 4.9 nm or more.
Hereafter, it is understood that the Rmax value is preferably in the range of 5 nm or more and 49 nm or less.

【0030】〈実施例2〉実施例1のテクスチャ形成工
程において、研磨テープの振動数,ディスク基板回転速
度を種々の値に設定し、図2に示される円周方向テクス
チャの方向角(A)および半径方向テクスチャ方向の方
向角(B)を変化させたディスク基板を形成した。この
時、表面粗さがRa=1nm,Rmax=9nmとなるよう
制御した。また各テクスチャの方向角A,Bの値は走査
電子顕微鏡や走査トンネル顕微鏡,電子線三次元粗さ測
定装置などにより観察し,それぞれの平均値として求め
た。
<Embodiment 2> In the texture forming step of Embodiment 1, the frequency of the polishing tape and the rotational speed of the disk substrate are set to various values, and the direction angle (A) of the circumferential texture shown in FIG. And disk substrates with different direction angles (B) in the radial texture direction were formed. At this time, the surface roughness was controlled so that Ra = 1 nm and Rmax = 9 nm. The values of the directional angles A and B of each texture were observed by a scanning electron microscope, a scanning tunneling microscope, an electron beam three-dimensional roughness measuring device, etc., and the average value was obtained.

【0031】また、比較例として略円周方向のみのテク
スチャを有するディスク基板を作製した。この時の表面
粗さは本実施例と等しくなるよう制御した。次に、本実
施例及び比較例のディスク基板を、実施例1と同様の方
法によりマグネトロンスパッタリング装置に装填し、C
r−10Ti(原子%)下地膜,Co−13Cr−4P
t(原子%)からなる金属磁性膜,およびカーボン保護
膜を順次積層し、最後にパーフルオロアルキルポリエー
テル等の潤滑層を形成した。
As a comparative example, a disk substrate having a texture only in the substantially circumferential direction was manufactured. The surface roughness at this time was controlled to be equal to that of this example. Next, the disk substrates of the present example and the comparative example were loaded into a magnetron sputtering apparatus by the same method as in Example 1, and C
r-10Ti (atomic%) base film, Co-13Cr-4P
A metal magnetic film of t (atomic%) and a carbon protective film were sequentially laminated, and finally a lubricating layer of perfluoroalkyl polyether or the like was formed.

【0032】こうして形成された本実施例及び比較例の
媒体の記録再生特性を実施例1と同様の方法により測定
し、モジュレーション(Md),媒体S/N,出力半減
記録密度(D50)の値を測定した。また、動摩擦係数
(μf),CSS前後でのエラー数の増加を実施例1と
同様の方法により測定した。
The recording / reproducing characteristics of the media of the present example and the comparative example thus formed were measured by the same method as in Example 1, and the modulation (Md), medium S / N, and output half recording density (D 50 ) The value was measured. The dynamic friction coefficient (μf) and the increase in the number of errors before and after CSS were measured by the same method as in Example 1.

【0033】表2に、方向角A,Bを変化させた際の、
動摩擦係数(μf),モジュレーション(Md),媒体S
/Nの値を示した。
In Table 2, when the direction angles A and B are changed,
Dynamic friction coefficient (μf), modulation (Md), medium S
The value of / N is shown.

【0034】[0034]

【表2】 [Table 2]

【0035】表2から、本実施例の媒体は、方向角Aの
値を19度以下の範囲で変化させた場合、比較例に比べ
動摩擦係数,モジュレーションが小さく,媒体S/Nが
大きいことがわかる。また、方向角Bの値を44度以下
の範囲で変化させた場合、比較例に比べ動摩擦係数,モ
ジュレーションが小さく、媒体S/Nが大きいことがわ
かる。また、CSS前後でのエラー数の増加は比較例に
比べ小さく、記録再生時の出力半減記録密度(D50)が
高いことが確認された。また上記結果は、Ra値が0.
5nm以上10nm未満,Rmax値が5nm以上100
nm未満の範囲で同様に認められた。また、特に信頼性
を高めるためにはRa値が0.5nm以上5nm未満,
Rmax値が5nm以上50nm以下の範囲が好ましいこ
とが確認された。
It can be seen from Table 2 that the medium of this example has a smaller dynamic friction coefficient and smaller modulation and a larger medium S / N than those of the comparative example when the value of the direction angle A is changed within a range of 19 degrees or less. Recognize. Further, it can be seen that when the value of the direction angle B is changed within the range of 44 degrees or less, the dynamic friction coefficient and the modulation are small and the medium S / N is large as compared with the comparative example. It was also confirmed that the increase in the number of errors before and after CSS was smaller than that in the comparative example, and that the output half recording density (D 50 ) during recording and reproduction was high. The above results show that the Ra value is 0.
5 nm or more and less than 10 nm, Rmax value is 5 nm or more and 100
It was similarly recognized in the range of less than nm. Further, in order to particularly improve reliability, Ra value is 0.5 nm or more and less than 5 nm,
It was confirmed that the Rmax value is preferably in the range of 5 nm to 50 nm.

【0036】〈実施例3〉実施例1又は2の磁気ディス
ク4枚を記録媒体として使用し、CoTaZr合金を記
録用磁極材とし、再生部に磁気抵抗効果型系を有する複
合型薄膜磁気ヘッドを7個組み合わせた磁気記録装置を
試作した。本装置は、図3に示すように磁気記録媒体3
1,磁気記録媒体駆動部32,磁気ヘッド33,磁気ヘ
ッド駆動部34,記録再生信号処理系35などの部品か
ら構成される。この磁気記録装置を使用し、スペーシン
グ0.08μmにおいてエラーが発生するまでの平均時
間を求めたところ、比較例の記録媒体を用いた磁気記録
装置と比較して5倍以上の寿命があり、信頼性が極めて
高いことを実証することができた。また、本実施例で試
作した磁気記録装置はスペーシングが小さいため、信号
の記録再生における位相マージンが広くなり、面記録密
度を比較例に対し2倍に高めることができ、小形の磁気
記録装置を提供できた。
Example 3 A composite thin film magnetic head having four magnetic disks of Example 1 or 2 as a recording medium, CoTaZr alloy as a recording magnetic pole material, and a magnetoresistive system in the reproducing portion was used. A magnetic recording device was produced by combining seven magnetic recording devices. As shown in FIG.
1, a magnetic recording medium driving unit 32, a magnetic head 33, a magnetic head driving unit 34, a recording / reproducing signal processing system 35, and the like. Using this magnetic recording device, when the average time until an error occurred at a spacing of 0.08 μm was obtained, it was found that it has a life of 5 times or more as compared with the magnetic recording device using the recording medium of the comparative example. We were able to demonstrate that the reliability was extremely high. Further, since the magnetic recording device prototyped in this embodiment has a small spacing, the phase margin in recording / reproducing a signal becomes wide, and the areal recording density can be doubled as compared with the comparative example. Could be provided.

【0037】本実施例では、CoTaZr合金を磁極材
とする薄膜磁気ヘッドを用いた場合について説明した
が、NiFe,CoFe合金等を記録用磁極材とする録
再分離型薄膜磁気ヘッド、CoTaZr,FeAlSi
合金等をギャップ部に設けたメタル・イン・ギャップ型
(MIG)録再分離複合磁気ヘッド、誘導型薄膜ヘッドま
たはMIGヘッドを用いた場合にも同様の効果が得られ
ることを確認した。
In this embodiment, the case of using the thin film magnetic head using the CoTaZr alloy as the magnetic pole material has been described.
Metal-in-gap type with alloy etc. provided in the gap
It has been confirmed that the same effect can be obtained when a (MIG) recording / reproducing composite magnetic head, an inductive thin film head or a MIG head is used.

【0038】[0038]

【発明の効果】本発明によれば、高密度記録が可能な磁
気記録媒体、およびこれを用いた小形で大容量の磁気記
録装置を提供できる。
According to the present invention, it is possible to provide a magnetic recording medium capable of high density recording and a small-sized and large-capacity magnetic recording apparatus using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜型磁気記録媒体の断面
構造図である。
FIG. 1 is a cross-sectional structural diagram of a thin film magnetic recording medium of one embodiment of the present invention.

【図2】本発明に係る薄膜型磁気記録媒体のテクスチャ
形成工程およびテクスチャ構造の模式図である。
FIG. 2 is a schematic diagram of a texture forming process and a texture structure of a thin film magnetic recording medium according to the present invention.

【図3】本発明の一実施例の磁気記録装置の縦断面構造
図である。
FIG. 3 is a vertical cross-sectional structural diagram of a magnetic recording apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…磁気ディスク基板,12,12’…非磁性メッキ
層,13,13’…金属下地膜,14,14’…金属磁
性膜,15,15’…非磁性保護膜,21…ディスク基
板,22…コンタクトロール,23…研磨テープ,24
…研磨剤,25…半径方向テクスチャ,26…円周方向
テクスチャ,31…磁気記録媒体,32…磁気記録媒体
駆動部,33…磁気ヘッド,34…磁気ヘッド駆動部,
23…記録再生信号処理系。
11 ... Magnetic disk substrate, 12, 12 '... Non-magnetic plating layer, 13, 13' ... Metal base film, 14, 14 '... Metal magnetic film, 15, 15' ... Non-magnetic protective film, 21 ... Disk substrate, 22 … Contact rolls, 23… Abrasive tapes, 24
... polishing agent, 25 ... radial texture, 26 ... circumferential texture, 31 ... magnetic recording medium, 32 ... magnetic recording medium drive section, 33 ... magnetic head, 34 ... magnetic head drive section,
23 ... Recording / reproducing signal processing system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 徒之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 屋久 四男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 加藤 幸男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Ohno 1-280 Higashi Koikeku, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Yasuo Yaku 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory (72) Inventor Yukio Kato 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory Hitachi, Ltd. (72) Inventor Tomoh Yamamoto 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Research Center Co., Ltd. In-house

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】非磁性ディスク基板と、該非磁性ディスク
基板表面上に形成された磁性膜を有する磁気記録媒体に
おいて,上記非磁性ディスク基板表面に円周方向テクス
チャおよび半径方向テクスチャの各々が少なくとも1方
向形成されていることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a non-magnetic disk substrate and a magnetic film formed on the surface of the non-magnetic disk substrate, wherein each of the circumferential texture and the radial texture is at least 1 on the non-magnetic disk substrate surface. A magnetic recording medium characterized by being formed in a direction.
【請求項2】上記非磁性ディスク基板はAl−Mg合
金,化学強化ガラス,有機樹脂,セラミックス等からな
る基板上にNiP,NiWP等からなる非磁性メッキ層
が形成されたものである請求項1記載の磁気記録媒体。
2. The non-magnetic disk substrate is a substrate made of Al--Mg alloy, chemically strengthened glass, organic resin, ceramics, etc., on which a non-magnetic plating layer made of NiP, NiWP, etc. is formed. The magnetic recording medium described.
【請求項3】上記非磁性ディスク基板表面のRa値の範
囲は0.5nm以上10nm未満,Rmax値の範囲は5
nm以上100nm未満である請求項1又は2に記載の
磁気記録媒体。
3. The Ra value range of the non-magnetic disk substrate surface is 0.5 nm or more and less than 10 nm, and the Rmax value range is 5.
The magnetic recording medium according to claim 1 or 2, which has a thickness of not less than 100 nm and less than 100 nm.
【請求項4】上記非磁性ディスク基板表面のRa値の範
囲は0.5nm以上5nm未満,Rmax値の範囲は5n
m以上50nm未満である請求項3記載の磁気記録媒
体。
4. The Ra value range of the non-magnetic disk substrate surface is 0.5 nm or more and less than 5 nm, and the Rmax value range is 5 n.
The magnetic recording medium according to claim 3, wherein the magnetic recording medium has a length of m or more and less than 50 nm.
【請求項5】上記非磁性ディスク基板と上記磁性膜との
間に下地膜が形成されている請求項1乃至4のいずれか
一項に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, further comprising a base film formed between the non-magnetic disk substrate and the magnetic film.
【請求項6】上記磁性膜上に保護膜が形成されている請
求項5記載の磁気記録媒体。
6. The magnetic recording medium according to claim 5, wherein a protective film is formed on the magnetic film.
【請求項7】磁気記録媒体と,磁気記録媒体回転駆動部
と,磁気ヘッドと,磁気ヘッド駆動部と,記録再生信号
処理系とを具備して成る磁気記録装置であって,上記磁
気記録媒体は請求項1乃至6のいずれか一項に記載の磁
気記録媒体であることを特徴とする磁気記録装置。
7. A magnetic recording device comprising a magnetic recording medium, a magnetic recording medium rotation drive unit, a magnetic head, a magnetic head drive unit, and a recording / reproducing signal processing system. Is a magnetic recording medium according to any one of claims 1 to 6.
JP1281092A 1992-01-22 1992-01-28 Magnetic recording medium and magnetic recording device Pending JPH05205258A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1281092A JPH05205258A (en) 1992-01-28 1992-01-28 Magnetic recording medium and magnetic recording device
US08/007,969 US5605733A (en) 1992-01-22 1993-01-22 Magnetic recording medium, method for its production, and system for its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281092A JPH05205258A (en) 1992-01-28 1992-01-28 Magnetic recording medium and magnetic recording device

Publications (1)

Publication Number Publication Date
JPH05205258A true JPH05205258A (en) 1993-08-13

Family

ID=11815747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281092A Pending JPH05205258A (en) 1992-01-22 1992-01-28 Magnetic recording medium and magnetic recording device

Country Status (1)

Country Link
JP (1) JPH05205258A (en)

Similar Documents

Publication Publication Date Title
US6057021A (en) Magnetic recording media and magnetic recording system using the same
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
JP2000195042A (en) Magnetic storage medium and method of manufacturing the same
JP2002056520A (en) Substrate for medium and its manufacturing method
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JP3564707B2 (en) Magnetic recording media
JP3359706B2 (en) Magnetic recording media
JPH05205258A (en) Magnetic recording medium and magnetic recording device
JP2002163817A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording/reproducing device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3962415B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JPH03127327A (en) Magnetic disk, manufacturing method and magnetic disk device
JP3565103B2 (en) Magnetic recording device
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JP2003109213A (en) Magnetic recording medium
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JP2000048358A (en) Production of magnetic record medium
JP2000348334A (en) Magnetic recording medium and magnetic disk device
JPH08138228A (en) Magnetic recording medium, its production and magnetic recorder
JP2006085888A5 (en)
JP2004234826A (en) Magnetic recording vehicle
JPH0793738A (en) Magnetic recording medium
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JPH11232631A (en) Magnetic disk substrate
JP2002042329A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording device