JPH05201767A - Silicon nitride-based sintered compact and its production - Google Patents

Silicon nitride-based sintered compact and its production

Info

Publication number
JPH05201767A
JPH05201767A JP4096456A JP9645692A JPH05201767A JP H05201767 A JPH05201767 A JP H05201767A JP 4096456 A JP4096456 A JP 4096456A JP 9645692 A JP9645692 A JP 9645692A JP H05201767 A JPH05201767 A JP H05201767A
Authority
JP
Japan
Prior art keywords
silicon nitride
temp
crystal
sintered body
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4096456A
Other languages
Japanese (ja)
Other versions
JP2783720B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Takehiro Oda
武廣 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4096456A priority Critical patent/JP2783720B2/en
Publication of JPH05201767A publication Critical patent/JPH05201767A/en
Application granted granted Critical
Publication of JP2783720B2 publication Critical patent/JP2783720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon nitride-based sintered compact which undergoes slight deterioration of the strength in the temp. range from room temp. to a high temp. and has excellent oxidation resistance. CONSTITUTION:A compact consisting of 70-97mol% silicon nitride and 3-30mol%, in total, of the oxide of a group IIIa element of the periodic table and silicon oxide in 1:>=2 molar ratio is fired in a nonoxidizing atmosphere and the resulting sintered compact is held at a temp. between the softening temp. of glass formed at the grain boundaries of the sintered body and the crystallization temp. of the glass which is crystallized to y-RE2Si2O7 crystals (RE is the above- mentioned group IIIa element). The sintered compact is then held at a temp. between the crystallization temp. of the glass and the transition temp. of y- RE2Si2O7 which undergoes transition to beta-RE2Si2O7 to deposit y-RE2Si2O7 at the crystal boundaries of a silicon nitride crystal phase as the principal phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、特に、自動車用部品やガスタ−ビンエン
ジン用部品等に使用される窒化珪素質焼結体及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which is excellent in strength characteristics from room temperature to high temperature and is particularly used for automobile parts, gas turbine engine parts and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、窒化珪素質焼結体は、耐熱
性、耐熱衝撃性および耐酸化性に優れることからエンジ
ニアリングセラミックス、特にタ−ボロ−タ−等の熱機
関用として応用が進められている。この窒化珪素質焼結
体は、一般には窒化珪素に対してY2 3 、Al2 3
あるいはMgOなどの焼結助剤を添加することにより高
密度で高強度の特性が得られている。このような窒化珪
素質焼結体に対しては、さらにその使用条件が高温化す
るに際して、高温における強度および耐酸化性のさらな
る改善が求められている。かかる要求に対して、これま
で焼結助剤の検討や焼成条件等を改善する等各種の改良
が試みられている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies are excellent in heat resistance, thermal shock resistance and oxidation resistance, and therefore, their application has been promoted for engineering ceramics, especially for heat engines such as turbochargers. ing. This silicon nitride sintered material is generally used for Y 2 O 3 , Al 2 O 3 and silicon nitride.
Alternatively, by adding a sintering aid such as MgO, high density and high strength characteristics are obtained. Further improvement in strength and oxidation resistance at high temperature is required for such a silicon nitride-based sintered body when the operating conditions thereof further increase in temperature. In order to meet such demands, various improvements have been attempted so far, such as examination of sintering aids and improvement of firing conditions.

【0003】その中で、従来より焼結助剤として用いら
れてきたAl2 3 等の低融点酸化物が高温特性を劣化
させるという見地から、窒化珪素に対してY2 3 等の
希土類元素および酸化珪素からなる単純な3元系の組成
からなる焼結体が提案されている。また、かかる焼結体
の粒界にSi3 4 −RE2 3 −SiO2 からなるY
AM相、アパタイト相、ワラストナイト相、シリコンオ
キシナイトライド相、ダイシリケート相等の結晶相を析
出させることにより粒界の高融点化および安定化を図る
ことが提案されている。
In view of the fact that low melting point oxides such as Al 2 O 3 which have been conventionally used as a sintering aid deteriorate the high temperature characteristics, rare earth elements such as Y 2 O 3 are used for silicon nitride. A sintered body having a simple ternary composition of elements and silicon oxide has been proposed. In addition, Y composed of Si 3 N 4 —RE 2 O 3 —SiO 2 is added to the grain boundary of the sintered body.
It has been proposed to increase the melting point and stabilize the grain boundaries by precipitating a crystal phase such as an AM phase, an apatite phase, a wollastonite phase, a silicon oxynitride phase, or a disilicate phase.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、粒界
を結晶化することにより、粒界が非晶質である場合に比
較して高温特性は改善されるものの、安定な結晶相の生
成を行うことができず、しかも、所定の結晶相が析出す
ると同時に結晶化に寄与しなかった成分により低融点の
粒界相が形成されてしまうために、結晶化による充分な
効果が得られていないのが現状であった。
However, by crystallizing the grain boundary, high temperature characteristics are improved as compared with the case where the grain boundary is amorphous, but a stable crystal phase is generated. In addition, a grain boundary phase having a low melting point is formed by a component that does not contribute to crystallization at the same time when a predetermined crystal phase is precipitated, and thus a sufficient effect due to crystallization is not obtained. Was the current situation.

【0005】そのために、かかる焼結体を実用化する実
用的には未だ不十分であり、さらなる強度の改良、およ
び耐酸化特性の改良が要求されている。
Therefore, it is still insufficient for practical use of such a sintered body, and further improvement in strength and improvement in oxidation resistance are required.

【0006】本発明は、特に耐酸化性の観点から室温か
ら高温まで自動車用部品やガスタ−ビンエンジン用部品
等で使用されるに充分な強度特性、特に、室温から14
00℃の高温までの抗折強度に優れ、さらに低温から高
温までの耐酸化特性に優れた窒化珪素質焼結体を提供す
ることを目的とするものである。
From the standpoint of oxidation resistance, the present invention has sufficient strength characteristics to be used in automobile parts, gas turbine engine parts and the like from room temperature to high temperature, particularly from room temperature to 14
It is an object of the present invention to provide a silicon nitride sintered body which is excellent in bending strength up to a high temperature of 00 ° C. and is also excellent in oxidation resistance characteristics from a low temperature to a high temperature.

【0007】[0007]

【問題点を解決するための手段】本発明者は、焼結体の
強度特性、及び耐酸化特性を高めるためには、焼結体の
組成および窒化珪素相の粒界に存在する副相を制御する
ことが重要であるという見地に基づき検討を重ねた結
果、窒化珪素70〜97モル%と、周期律表第3a族元
素酸化物および酸化珪素が合量で3〜30モル%で、且
つ酸化珪素の周期律表第3a族元素酸化物に対するモル
比が2以上の組成からなる成形体を非酸化性雰囲気中に
焼成した後、前記焼結体の粒界に生成しているガラスの
軟化温度Tgと、該ガラスからy型RE2 Si2 7
晶への結晶化温度Tcの間で一旦保持した後、前記結晶
化温度Tcとy型RE2 Si2 7 からβ型RE2 Si
2 7 に転移する転移温度Ttとの間で保持して、窒化
珪素結晶相を主相とし、その粒界にy型RE2 Si2
7 (REは周期律表第3a族元素)を析出させることに
より粒界中のアモルファス層の生成を抑制し、室温から
高温まで優れた強度特性を有し、さらに低温から140
0℃まで優れた耐酸化特性を有する焼結体が得られるこ
とを知見した。
In order to improve the strength characteristics and the oxidation resistance characteristics of the sintered body, the present inventor has determined the composition of the sintered body and the sub-phase existing in the grain boundary of the silicon nitride phase. As a result of repeated studies based on the viewpoint that it is important to control, 70 to 97 mol% of silicon nitride, 3 to 30 mol% of the oxide of group 3a element of the periodic table and silicon oxide in total, and After a molded body having a composition in which the molar ratio of silicon oxide to the Group 3a element oxide of the periodic table is 2 or more is fired in a non-oxidizing atmosphere, the softening of the glass formed in the grain boundaries of the sintered body. The temperature is kept between the temperature Tg and the crystallization temperature Tc from the glass to the y-type RE 2 Si 2 O 7 crystal, and then the crystallization temperature Tc and the y-type RE 2 Si 2 O 7 to the β-type RE 2 Si.
The temperature is maintained between the transition temperature Tt at which it transforms to 2 O 7 , and the silicon nitride crystal phase is the main phase, and y-type RE 2 Si 2 O is present at the grain boundaries.
7 (RE is an element of Group 3a of the Periodic Table), which suppresses the formation of an amorphous layer in the grain boundaries, has excellent strength characteristics from room temperature to high temperature, and from 140 ° C to 140 ° C.
It was found that a sintered body having excellent oxidation resistance up to 0 ° C can be obtained.

【0008】本発明の窒化珪素質焼結体は、窒化珪素を
主成分としこれに添加成分として、周期律表第3a族元
素および過剰酸素を含むものである。ここで、過剰酸素
とは焼結体中の全酸素量から焼結体中の周期律表第3a
族元素が化学量論的に酸化物を形成した場合に元素に結
合している酸素を除く残りの酸素量であり、そのほとん
どは窒化珪素原料に含まれる酸素、あるいは、SiO2
等の添加として混入するものであり、本発明では全てS
iO2 として存在するものとして考慮する。
The silicon nitride-based sintered body of the present invention contains silicon nitride as a main component, and contains an element of Group 3a of the periodic table and excess oxygen as additional components. Here, excess oxygen means the amount of total oxygen in the sintered body from the periodic table 3a in the sintered body.
When the group element forms an oxide stoichiometrically, it is the remaining oxygen amount excluding oxygen bound to the element, most of which is oxygen contained in the silicon nitride raw material or SiO 2
And the like are mixed as additions, and in the present invention, all S
Consider as existing as iO 2 .

【0009】本発明の焼結体は、組織的には窒化珪素結
晶相を主相とするものであり、そのほとんどはβ−Si
3 4 からなる。また、その主相の粒界には周期律表第
3a族元素および過剰の酸素(酸化珪素として存在する
と考えられる)が存在するが、本発明によれば、この粒
界相にy型RE2 Si2 7 を析出させることが重要で
ある。この結晶相は、焼結過程では、窒化珪素粒子との
反応により低融点の液相として存在し、焼結性を高める
が、冷却後そのまま、粒界相にガラス相として残存する
と高温強度を低下させてしまうと同時に耐酸化特性を劣
化させてしまう。よって、所定の冷却過程あるいは熱処
理によりy型RE2 Si2 7 結晶相を析出させること
により高温強度を高めると同時に耐酸化特性を高めるこ
とができる。
The sintered body of the present invention structurally has a silicon nitride crystal phase as a main phase, most of which is β-Si.
It consists of 3 N 4 . Further, a Group 3a element of the Periodic Table and excess oxygen (which is considered to exist as silicon oxide) are present in the grain boundary of the main phase. According to the present invention, y-type RE 2 is present in this grain boundary phase. It is important to deposit Si 2 O 7 . During the sintering process, this crystal phase exists as a liquid phase with a low melting point due to the reaction with silicon nitride particles and enhances the sinterability, but if it remains as a glass phase in the grain boundary phase after cooling, the high temperature strength will decrease. At the same time, the oxidation resistance is deteriorated. Therefore, by precipitating the y-type RE 2 Si 2 O 7 crystal phase by a predetermined cooling process or heat treatment, it is possible to enhance the high temperature strength and at the same time the oxidation resistance.

【0010】また、上記結晶相を析出させるために焼結
体中の過剰酸素の酸化珪素の換算量(SiO2 )の周期
律表第3a族元素(RE)の酸化物換算量(RE
2 3 )に対するモル比率(SiO2 /RE2 3 )が
2.0以上であることが必要である。これは上記比率が
2.0未満では、粒界相にRE2 Si2 7 以外にRE
−Si−O−Nからなる微量のガラス層が存在しやす
く、高温強度を低下させると共に耐酸化特性を劣化させ
る。また、完全に結晶化させてもRE10Si2 234
やRE10(SiO4 6 2 等で記述されているアパタ
イト相や、RE4 Si2 7 2 で記述されるYAM相
が析出し、耐酸化特性を劣化させてしまうためである。
Further, in order to precipitate the above crystal phase, the amount of excess oxygen in the sintered body converted to silicon oxide (SiO 2 ) (SiO 2 ) is converted to the amount of oxide of the group 3a element (RE) of the periodic table (RE).
2 O 3 molar ratio (SiO 2 / RE 2 O 3 against)) is required to be 2.0 or more. This is because when the above ratio is less than 2.0, the grain boundary phase contains RE other than RE 2 Si 2 O 7.
A trace amount of a glass layer made of —Si—O—N is likely to be present, which lowers high temperature strength and deteriorates oxidation resistance. Moreover, even if completely crystallized, RE 10 Si 2 O 23 N 4
This is because the apatite phase described in RE 10 (SiO 4 ) 6 N 2 or the like and the YAM phase described in RE 4 Si 2 O 7 N 2 are precipitated and deteriorate the oxidation resistance characteristics.

【0011】また、上記結晶相を析出させるために焼結
体中の過剰酸素の酸化珪素の換算量(SiO2 )の周期
律表第3a族元素(RE)の酸化物換算量(RE
2 3 )に対するモル比率(SiO2 /RE2 3 )が
2.0以上、特に2.0〜5.0であることが必要であ
る。これは上記比率が2.0未満では、粒界相にRE2
Si2 7 以外にRE−Si−O−Nからなる微量のガ
ラス層が存在しやすく、高温強度を低下させると共に耐
酸化特性を劣化させる。また、完全に結晶化させてもR
10Si2 234 やRE10(SiO4 6 2 等で記
述されているアパタイト相や、RE4 Si2 7 2
記述されるYAM相が析出し、耐酸化特性を劣化させて
しまうためである。
Further, in order to precipitate the above crystal phase, the amount of excess oxygen in the sintered body in terms of silicon oxide (SiO 2 ) in terms of silicon oxide (RE) in terms of oxide of group 3a element (RE) in the periodic table (RE) is calculated.
2 O 3) molar ratio (SiO 2 / RE 2 O 3) of 2.0 or more with respect, it is necessary that especially 2.0 to 5.0. This is because when the above ratio is less than 2.0, RE 2 is contained in the grain boundary phase.
Si 2 O 7 RE-Si- O-N glass layer traces tends to exist consisting of the addition deteriorates the oxidation resistance with decreasing the high-temperature strength. Even if it is completely crystallized, R
The apatite phase described by E 10 Si 2 O 23 N 4 and RE 10 (SiO 4 ) 6 N 2 and the YAM phase described by RE 4 Si 2 O 7 N 2 are precipitated to improve the oxidation resistance. This is because it deteriorates.

【0012】本発明によれば、粒界にy型RE2 Si2
7 結晶を析出させるが、モル比率(SiO2 /RE2
3 )が2.0以上で、およそ2.5以下では結晶相は
y型RE2 Si2 7 結晶のみ析出するが、モル比率が
2.5より大きくなるとRE2 Si2 7 結晶以外にわ
ずかにSi2 2 Oが析出することがあるが、耐酸化性
の点からは、何ら問題ない。しかし、Si2 2 Oを主
体とする結晶相が析出すると破壊靱性値が低下するとい
う問題が生じるためにモル比率は2.0〜2.5である
ことが望ましい。
According to the present invention, y-type RE 2 Si 2 is formed at the grain boundary.
O 7 crystals are deposited, but the molar ratio (SiO 2 / RE 2
O 3 ) is 2.0 or more and about 2.5 or less, the crystalline phase precipitates only the y-type RE 2 Si 2 O 7 crystal, but when the molar ratio is more than 2.5, other than RE 2 Si 2 O 7 crystal. Although a slight amount of Si 2 N 2 O may be precipitated, there is no problem from the viewpoint of oxidation resistance. However, when a crystal phase mainly composed of Si 2 N 2 O is precipitated, there arises a problem that the fracture toughness value is lowered. Therefore, the molar ratio is preferably 2.0 to 2.5.

【0013】なお、本発明に用いられる周期律表第3a
族元素としてはYやランタノイド元素が挙げられるが特
にYb,Er、Dyが好ましい。
The periodic table No. 3a used in the present invention is as follows.
Examples of the group element include Y and lanthanoid elements, but Yb, Er and Dy are particularly preferable.

【0014】また、本発明の窒化珪素質焼結体によれ
ば、Al2 3 、MgO、CaO等の低融点の金属酸化
物が存在すると粒界の結晶化が阻害されるとともに高温
強度を劣化させるためにこれらの酸化物は合量で0.5
重量%以下に制御することが望ましい。
According to the silicon nitride sintered body of the present invention, the presence of a low-melting metal oxide such as Al 2 O 3 , MgO, or CaO hinders the crystallization of the grain boundaries and increases the high temperature strength. The total amount of these oxides is 0.5 for deterioration.
It is desirable to control the content to be not more than weight%.

【0015】次に、本発明に窒化珪素質焼結体を製造す
る方法について説明すると、まず、原料粉末として窒化
珪素粉末を主成分とし、添加成分として周期律表第3a
族元素酸化物粉末と酸化珪素粉末を添加する他に、また
は添加成分として周期律表第3a族元素酸化物と酸化珪
素からなる化合物粉末、または窒化珪素と周期律表第3
a族元素酸化物と酸化珪素とからなる化合物粉末を用い
ることもできる。
Next, a method for producing a silicon nitride sintered body according to the present invention will be described. First, silicon nitride powder is the main component as a raw material powder, and the periodic table 3a is an addition component.
In addition to the addition of the group oxide oxide and the silicon oxide powder, or the compound powder consisting of the group 3a oxide of the group 3a and silicon oxide as an addition component, or silicon nitride and the periodic table 3
A compound powder composed of a group a element oxide and silicon oxide can also be used.

【0016】用いる窒化珪素粉末は、それ自体α−Si
3 4 、β−Si3 4 のいずれでもよく、それらの粒
径は0.4〜1.2μmが適当である。
The silicon nitride powder used is itself α-Si.
Either 3 N 4 or β-Si 3 N 4 may be used, and their particle size is preferably 0.4 to 1.2 μm.

【0017】本発明によれば、これらの粉末を用いて、
窒化珪素が70〜97モル%、周期律表第3a族元素酸
化物(RE2 3 )、過剰酸素(SiO2 換算量)の合
計が3〜30モル%で、SiO2 /RE2 3 で表され
るモル比が2.0以上になるように調整、混合する。こ
の時の過剰酸素(SiO2 換算量)とは、窒化珪素粉末
に含まれる不純物酸素をSiO2 換算した量と添加する
酸化珪素粉末、または、珪素含有化合物の酸化珪素換算
量との合量である。
According to the invention, using these powders,
Silicon nitride is 70 to 97 mol%, the total amount of periodic table group 3a element oxide (RE 2 O 3 ) and excess oxygen (SiO 2 conversion amount) is 3 to 30 mol%, and SiO 2 / RE 2 O 3 is used. Are adjusted and mixed so that the molar ratio represented by is 2.0 or more. The excess oxygen (SiO 2 conversion amount) at this time is the sum of the amount of impurity oxygen contained in the silicon nitride powder converted to SiO 2 and the added silicon oxide powder, or the silicon oxide conversion amount of the silicon-containing compound. is there.

【0018】このようにして得られた混合粉末を公知の
成形方法、例えば、プレス成形、鋳込み成形、押出し成
形、射出成形、冷間静水圧成形などにより所望の形状に
成形した後、得られた成形体を公知の焼成方法、例え
ば、ホットプレス方法、常圧焼成、窒素ガス圧力焼成、
さらには、これらの焼成後のHIP焼成、および、ガラ
スシ−ルHIP焼成等で焼成し、緻密な焼結体を得る。
この時の焼成温度が高すぎると窒化珪素結晶が粒成長し
強度が低下するために1900℃以下、特に、1650
〜1850℃の窒素を含有する非酸化性雰囲気であるこ
とが望ましい。
The mixed powder thus obtained was molded into a desired shape by a known molding method such as press molding, cast molding, extrusion molding, injection molding, cold isostatic molding, and then obtained. A known firing method for the molded body, for example, a hot pressing method, normal pressure firing, nitrogen gas pressure firing,
Further, HIP calcination after these calcinations, glass seal HIP calcination and the like are carried out to obtain a dense sintered body.
If the firing temperature at this time is too high, the silicon nitride crystal grains grow and the strength decreases.
A non-oxidizing atmosphere containing nitrogen at ˜1850 ° C. is desirable.

【0019】次に、焼成終了後、冷却過程で熱処理を施
すか、または得られた焼結体を非酸化性雰囲気中で熱処
理する。この時、従来の熱処理方法では、他のRE2
2 7 結晶が析出するとともに窒化珪素結晶粒子と粒
界の結晶相との間に多量のアモルファス相が残存し、高
温強度の低下を招いてしまう。
Next, after firing, heat treatment is performed in the cooling process, or the obtained sintered body is heat treated in a non-oxidizing atmosphere. At this time, according to the conventional heat treatment method, another RE 2 S
The i 2 O 7 crystal is precipitated and a large amount of an amorphous phase remains between the silicon nitride crystal grains and the crystal phase of the grain boundary, resulting in deterioration of high temperature strength.

【0020】そこで、本発明によれば、熱処理方法とし
て、まず、焼結体の粒界に生成しているガラスの軟化温
度Tgと、該ガラスからy型RE2 Si2 7 結晶への
結晶化温度Tcの間で一旦保持してy型RE2 Si2
7 の結晶核を発生させる。その後、結晶化温度Tcとy
型RE2 Si2 7 結晶からβ型RE2 Si2 7 結晶
に転移する転移温度Ttとの間で保持することによりy
型RE2 Si2 7 の結晶核を成長させつつ熱処理を行
うことにより、粒界に存在する不純物をy型RE2 Si
2 7 結晶界面に固溶させることができるとともに窒化
珪素結晶粒子と粒界の結晶相との間のアモルファス層の
生成を抑制することができる。
Therefore, according to the present invention, as the heat treatment method, first, the softening temperature Tg of the glass formed at the grain boundaries of the sintered body and the crystallization from the glass to the y-type RE 2 Si 2 O 7 crystal are performed. Y type RE 2 Si 2 O
Generate 7 crystal nuclei. Then, the crystallization temperature Tc and y
Y by holding between the mold RE 2 Si 2 O 7 crystals of transition temperature Tt to metastasize to β-type RE 2 Si 2 O 7 crystals
By performing heat treatment while growing the crystal nuclei of the RE 2 Si 2 O 7 -type RE 2 Si
It is possible to form a solid solution at the 2 O 7 crystal interface and to suppress the formation of an amorphous layer between the silicon nitride crystal grains and the crystal phase of the grain boundaries.

【0021】上記軟化温度Tg、結晶化温度Tcおよび
転移温度Ttを求める方法としては、前述した方法と同
様な方法で焼成した後、室温まで急冷し、粒界相がガラ
ス相である焼結体を作製し、この焼結体から薄片を切出
し、分析電子顕微鏡を用いてこの粒界相のガラス組成を
UTW−EDX法により求める。次にこのガラス組成と
同じ組成になるように調製した混合粉末を成形後、焼成
して急冷しガラスを作成しDTA法によりこのガラスの
軟化温度Tg、y型RE2 Si2 7 結晶への結晶化温
度Tc、及びy型RE2 Si2 7 結晶からβ型RE2
Si2 7 結晶への転移温度Ttを求めることができ
る。
The softening temperature Tg, the crystallization temperature Tc, and the transition temperature Tt can be determined by firing in the same manner as described above and then rapidly cooling to room temperature to obtain a sintered body having a glass phase as a grain boundary phase. A thin piece is cut out from this sintered body, and the glass composition of this grain boundary phase is determined by the UTW-EDX method using an analytical electron microscope. Next, a mixed powder prepared to have the same composition as this glass composition is molded, fired and rapidly cooled to prepare a glass, and a softening temperature Tg of this glass and a y-type RE 2 Si 2 O 7 crystal are obtained by the DTA method. Crystallization temperature Tc, and y-type RE 2 Si 2 O 7 crystal to β-type RE 2
The transition temperature Tt to the Si 2 O 7 crystal can be obtained.

【0022】本発明者等の実験によれば、各種の窒化珪
素とRE2 Si2 7 から構成されるガラスの軟化温度
Tgは約950前後、Tcは1100℃前後、また、T
tは1300℃前後の温度である。したがって、熱処理
温度として、一段目の温度を1050℃近辺に設定し、
二段目の温度を1150℃前後に設定することが好まし
い。二段目の保持時間を延ばすことで、さらに温度さら
に上昇させてももはや相転移は起こらなくすることがで
きる。
According to experiments conducted by the present inventors, the softening temperature Tg of a glass composed of various silicon nitrides and RE 2 Si 2 O 7 is about 950, Tc is about 1100 ° C., and T
t is a temperature around 1300 ° C. Therefore, as the heat treatment temperature, the temperature of the first step is set to around 1050 ° C,
It is preferable to set the temperature of the second stage to around 1150 ° C. By prolonging the holding time of the second stage, the phase transition can no longer occur even if the temperature is further raised.

【0023】[0023]

【作用】RE2 Si2 7 (RE:希土類元素)で表さ
れる結晶には、各種の多形(α、β、γ、δ)が存在す
るが、特に、y型RE2 Si2 7 に結晶化しているこ
とが重要である。このy型RE2 Si2 7 結晶は、そ
の他のRE2 Si2 7 結晶に比較してCa、Feなど
の金属元素を固溶させることができるという特異な性質
を有する。
The crystal represented by RE 2 Si 2 O 7 (RE: rare earth element) has various polymorphs (α, β, γ, δ), but especially y-type RE 2 Si 2 O It is important that it crystallizes to 7 . This y-type RE 2 Si 2 O 7 crystal has a unique property that it can form a solid solution with a metal element such as Ca or Fe as compared with other RE 2 Si 2 O 7 crystals.

【0024】Ca、Feなどの金属元素は、窒化珪素原
料中に不可避的に存在し、焼結体中の窒化珪素結晶粒子
間の粒界3重点に存在し、窒化珪素結晶と粒界結晶相と
の界面にアモルファス層として残存し、高温特性、特
に、ストレスラプチャ−特性を劣化させてしまう。熱処
理条件によりCa、Fe等の元素を固溶させながら、y
型のRE2 Si2 7 に粒界相を結晶化させ、さらに、
長時間の熱処理により、この結晶相を安定化させること
ができる。よって、本発明によれば、CaやFe等の不
純物金属を粒界の結晶相中に固溶させることにより元素
を固定化することができ、それによりこれらの不純物元
素の存在によるアモルファス層の生成を抑制することが
できる。
Metal elements such as Ca and Fe are unavoidably present in the silicon nitride raw material, and are present at three grain boundaries between the silicon nitride crystal grains in the sintered body, and the silicon nitride crystal and the grain boundary crystal phase are present. It remains as an amorphous layer at the interface with and deteriorates the high temperature characteristics, especially the stress rupture characteristics. While solid-dissolving elements such as Ca and Fe depending on heat treatment conditions, y
Crystallizing the grain boundary phase in RE 2 Si 2 O 7 of the mold,
This crystal phase can be stabilized by heat treatment for a long time. Therefore, according to the present invention, an impurity metal such as Ca or Fe can be solid-dissolved in the crystal phase of the grain boundary to fix the element, thereby forming an amorphous layer due to the presence of these impurity elements. Can be suppressed.

【0025】これにより、室温から高温における強度劣
化を小さくすることができるとともに室温から高温まで
の優れた耐酸化性を付与することができる。
This makes it possible to reduce strength deterioration from room temperature to high temperature and to impart excellent oxidation resistance from room temperature to high temperature.

【0026】[0026]

【実施例】原料粉末として窒化珪素粉末(BET比表面
積8m2/g、α率98%、酸素量1.2重量%、陽イ
オン金属不純物量0.03重量%)と各種の周期律表第
3a族元素酸化物粉末、酸化珪素粉末、または周期律表
第3a族元素酸化物と酸化珪素粉末から合成したRE2
Si2 7 粉末を用いて(試料No,19)表1に示す組
成になるように調合後、1t/cm2 で金型成形した。
Example As raw material powder, silicon nitride powder (BET specific surface area 8 m2 / g, α ratio 98%, oxygen amount 1.2% by weight, cation metal impurity amount 0.03% by weight) and various periodic table 3a. RE 2 synthesized from group 3 element oxides, silicon oxide powders, or group 3a element oxides of periodic table and silicon oxide powders
Si 2 O 7 powder was used (Sample No. 19, 19) to prepare the composition shown in Table 1, and the mixture was molded with 1 t / cm 2 .

【0027】表中、試料No.1〜No.12の成形体を炭
化珪素質の匣鉢に入れて、組成変動を少なくするため
に、雰囲気を制御し、10気圧窒素ガス気流中、185
0℃、4時間の条件で焼成した。さらに一部の試料は表
1に示す条件で冷却中に熱処理を実施した。さらに一部
の試料については常圧にて窒素ガス気流中、表1に示す
条件で熱処理を施した。
In the table, the molded bodies of Samples No. 1 to No. 12 were placed in a silicon carbide sagger and the atmosphere was controlled to reduce the compositional fluctuation, and the atmosphere was controlled under a nitrogen gas stream of 10 atm 185.
Firing was performed under the conditions of 0 ° C. and 4 hours. Further, some of the samples were subjected to heat treatment during cooling under the conditions shown in Table 1. Further, some of the samples were heat-treated under the conditions shown in Table 1 in a nitrogen gas stream at normal pressure.

【0028】また、試料No.13〜19の成形体につい
ては、シ−ルHIP法にて焼結体を作製した。具体的に
は、まず、焼成に先立ち、前述した方法で得た成形体に
対して、焼成工程においてシ−ルHIP材であるガラス
等との反応を防止することを目的として、BN粉末等の
ガラスと濡れ性の悪い粉末をスラリ−化して成形体に塗
布するか、または上記スラリ−をスプレ−塗布する。次
に、BNが塗布された成形体をガラス製カプセルに封入
し、HIP法にて1700℃、1時間の条件で焼結体を
作製した。一部の試料については常圧にて窒素ガス気流
中表1に示す条件で熱処理を実施し焼結体を得た。
As for the molded bodies of Sample Nos. 13 to 19, sintered bodies were prepared by the seal HIP method. Specifically, first, prior to firing, the molded body obtained by the above-described method is treated with BN powder or the like for the purpose of preventing reaction with the glass or the like as a seal HIP material in the firing step. A powder having poor wettability with glass is made into a slurry and applied to a molded body, or the above slurry is spray-applied. Next, the molded body coated with BN was encapsulated in a glass capsule, and a sintered body was produced by the HIP method at 1700 ° C. for 1 hour. Some of the samples were heat-treated under atmospheric pressure in a nitrogen gas stream under the conditions shown in Table 1 to obtain sintered bodies.

【0029】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてアルキメデス法に基づく比重測定、JIS−
R1601に基づく室温および1000℃での4点曲げ
抗折強度試験を実施した。また、試料を900℃空気
中、または、1400℃空気中に100時間暴露し、重
量増加量と試料の表面積から単位表面積当たりの重量変
化を求めた。また、X線回折測定により焼結体中の粒界
相の結晶を同定した。結果は表2に示した。焼結体組成
は、試料を粉砕し、酸素量は最終二酸化炭素に変換して
の赤外線吸収法で定量し、窒素量は熱伝導度測定によ
り、珪素、周期律表第3a族元素は発光分光分析により
求め、これらから求めた。結果は表2に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. Specific gravity measurement based on Archimedes method, JIS-
A four-point bending transverse strength test was carried out at room temperature and 1000 ° C. based on R1601. Further, the sample was exposed to 900 ° C. air or 1400 ° C. air for 100 hours, and the weight change per unit surface area was determined from the weight increase amount and the surface area of the sample. In addition, the crystal of the grain boundary phase in the sintered body was identified by X-ray diffraction measurement. The results are shown in Table 2. The composition of the sintered body was crushed from a sample, the amount of oxygen was converted into final carbon dioxide, and quantified by an infrared absorption method. The amount of nitrogen was measured by thermal conductivity. It was obtained by analysis and obtained from these. The results are shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1および表2の結果によると、SiO2
/RE2 3 が1.0の試料No.1は緻密化不足で強度
低下しており、この比率が2より小さい範囲で密度を高
めた試料No.2、No.3、No.13、No.14は、主と
してYAMあるいはYAMとアパタイトからなる結晶相
の析出が認められ、強度はある程度高い値を示したが、
高温における耐酸化性に劣るものであった。SiO2
RE2 3 が2以上でも、熱処理条件が適切でなく粒界
相にy型RE2 Si2 7 に結晶化していないNo.4、
No.8、No.9、No.15の試料は高温強度が劣化して
いた。
According to the results of Table 1 and Table 2, SiO 2
Sample No. 1 having a / RE 2 O 3 ratio of 1.0 has a reduced strength due to insufficient densification, and Samples No. 2, No. 3, No. 13 having a higher density in the range where this ratio is less than 2, In No. 14, precipitation of a crystal phase mainly composed of YAM or YAM and apatite was observed, and the strength showed a somewhat high value,
It was inferior in oxidation resistance at high temperature. SiO 2 /
Even if RE 2 O 3 is 2 or more, the heat treatment conditions are not appropriate and the grain boundary phase is not crystallized into y-type RE 2 Si 2 O 7 , No. 4,
The samples of No. 8, No. 9 and No. 15 had deteriorated high temperature strength.

【0033】また、周期律表第3a族元素酸化物と酸化
珪素との合量が3モル%より小さい試料No,20では緻
密化することができず、30モル%を越える試料No,2
1では強度の劣化が認められた。
Sample No, 20 in which the total amount of the oxide of Group 3a element of the periodic table and silicon oxide is less than 3 mol% cannot be densified, and Sample No, 2 in excess of 30 mol% cannot be obtained.
In No. 1, deterioration of strength was recognized.

【0034】これらの比較例に対し、その他の本発明に
基づく試料は、いずれも粒界にy型RE2 Si2 7
あるいはy型RE2 Si2 7 結晶とわずかにSi2
2 O結晶の析出が認められ、いずれも優れた抗折強度、
耐酸化特性を示していた。
In contrast to these comparative examples, all the other samples according to the present invention have y-type RE 2 Si 2 O 7 ,
Or y-type RE 2 Si 2 O 7 crystal and slightly Si 2 N
Precipitation of 2 O crystals was observed, and excellent bending strength
It showed oxidation resistance.

【0035】[0035]

【発明の効果】以上詳述したように、本発明によれば、
所定の条件で熱処理して粒界に特定の結晶相を析出させ
ることにより、室温から高温における強度劣化が小さ
く、優れた耐酸化性を有する窒化珪素質焼結体を提供す
ることができる。
As described in detail above, according to the present invention,
By subjecting a specific crystal phase to precipitation at grain boundaries by heat treatment under predetermined conditions, it is possible to provide a silicon nitride-based sintered body having little strength deterioration from room temperature to high temperature and having excellent oxidation resistance.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月13日[Submission date] May 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてアルキメデス法に基づく比重測定、JIS−
R1601に基づく室温および1400℃での4点曲げ
抗折強度試験を実施した。また、試料を900℃空気
中、または、1400℃空気中に100時間暴露し、重
量増加量と試料の表面積から単位表面積当たりの重量変
化を求めた。また、X線回折測定により焼結体中の粒界
相の結晶を同定した。結果は表2に示した。焼結体組成
は、試料を粉砕し、酸素量は最終二酸化炭素に変換して
の赤外線吸収法で定量し、窒素量は熱伝導度測定によ
り、珪素、周期律表第3a族元素は発光分光分析により
求め、これらから求めた。結果は表2に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. Specific gravity measurement based on Archimedes method, JIS-
A four-point bending transverse strength test was carried out at room temperature and 1400 ° C. according to R1601. The sample was exposed to 900 ° C. air or 1400 ° C. air for 100 hours, and the weight change per unit surface area was determined from the weight increase amount and the surface area of the sample. In addition, the crystal of the grain boundary phase in the sintered body was identified by X-ray diffraction measurement. The results are shown in Table 2. The composition of the sintered body was crushed from a sample, the amount of oxygen was converted into final carbon dioxide, and quantified by an infrared absorption method. The amount of nitrogen was measured by thermal conductivity. It was obtained by analysis and obtained from these. The results are shown in Table 2.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】[0031]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素結晶相を主相とし、その粒界にy
型RE2 Si2 7 (REは周期律表第3a族元素)結
晶が析出してなることを特徴とする窒化珪素質焼結体。
1. A silicon nitride crystal phase as a main phase, with y at its grain boundaries.
A silicon nitride sintered body, characterized in that a type RE 2 Si 2 O 7 (RE is a Group 3a element of the periodic table) crystal is deposited.
【請求項2】焼結体中の周期律表第3a族元素(RE)
の酸化物換算量(RE2 3 )と過剰酸素の酸化珪素の
換算量(SiO2 )においてSiO2 /RE2 3 で表
されるモル比が2.0以上である請求項1記載の窒化珪
素質焼結体。
2. A group 3a element (RE) of the periodic table in the sintered body.
2. The molar ratio represented by SiO 2 / RE 2 O 3 is 2.0 or more in terms of the oxide conversion amount (RE 2 O 3 ) and the excess oxygen conversion amount of silicon oxide (SiO 2 ). Silicon nitride sintered body.
【請求項3】窒化珪素70〜97モル%と、周期律表第
3a族元素酸化物および酸化珪素が合量で3〜30モル
%で、且つ酸化珪素の周期律表第3a族元素酸化物に対
するモル比が2以上の組成からなる成形体を非酸化性雰
囲気中に焼成した後、前記焼結体の粒界に生成している
ガラスの軟化温度Tgと、該ガラスからy型RE2 Si
2 7 結晶への結晶化温度Tcの間で一旦保持した後、
前記結晶化温度Tcとy型RE2 Si2 7 結晶からβ
型RE2 Si2 7 結晶に転移する転移温度Ttとの間
で保持することを特徴とする窒化珪素質焼結体の製法。
3. A total of 3 to 30 mol% of silicon nitride 70 to 97 mol%, a group 3a element oxide of the periodic table and silicon oxide, and a silicon oxide of the group 3a element oxide of the periodic table. After firing a molded product having a composition with a molar ratio of 2 or more to a non-oxidizing atmosphere, the softening temperature Tg of the glass formed at the grain boundaries of the sintered product and y-type RE 2 Si from the glass.
After holding once during the crystallization temperature Tc for 2 O 7 crystal,
From the crystallization temperature Tc and y-type RE 2 Si 2 O 7 crystal, β
A method for producing a silicon nitride-based sintered body, which is maintained at a transition temperature Tt at which a type RE 2 Si 2 O 7 crystal is transformed.
JP4096456A 1991-11-27 1992-04-16 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2783720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096456A JP2783720B2 (en) 1991-11-27 1992-04-16 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-312151 1991-11-27
JP31215191 1991-11-27
JP4096456A JP2783720B2 (en) 1991-11-27 1992-04-16 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05201767A true JPH05201767A (en) 1993-08-10
JP2783720B2 JP2783720B2 (en) 1998-08-06

Family

ID=26437650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096456A Expired - Fee Related JP2783720B2 (en) 1991-11-27 1992-04-16 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2783720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327426A (en) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd Heating resistor, heating resistor for ceramic heater and ceramic heater using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327426A (en) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd Heating resistor, heating resistor for ceramic heater and ceramic heater using the same

Also Published As

Publication number Publication date
JP2783720B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH09268069A (en) Highly heat conductive material and its production
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH05201767A (en) Silicon nitride-based sintered compact and its production
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP3140122B2 (en) Silicon nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPH09142935A (en) Silicon nitride sintered compact and its production
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP3207065B2 (en) Silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JPH1059773A (en) Silicon nitride sintered compact and its production
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH06100376A (en) Sintered beta-sialon and its production
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2783711B2 (en) Silicon nitride sintered body
JP2000001370A (en) Silicon nitride-base sintered compact and its production
JP2000247749A (en) Silicon nitride-silicon carbide-based composite sintered compact and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees