JPH05198574A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPH05198574A
JPH05198574A JP3050940A JP5094091A JPH05198574A JP H05198574 A JPH05198574 A JP H05198574A JP 3050940 A JP3050940 A JP 3050940A JP 5094091 A JP5094091 A JP 5094091A JP H05198574 A JPH05198574 A JP H05198574A
Authority
JP
Japan
Prior art keywords
film
silicon
insulating film
gas
silicon oxynitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3050940A
Other languages
Japanese (ja)
Other versions
JP3041066B2 (en
Inventor
Makoto Yasuda
安田  真
Hisashi Fukuda
永 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12872823&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05198574(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3050940A priority Critical patent/JP3041066B2/en
Publication of JPH05198574A publication Critical patent/JPH05198574A/en
Application granted granted Critical
Publication of JP3041066B2 publication Critical patent/JP3041066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film on a silicon substrate with film quality more excellent than usual one and with a high destructive strength. CONSTITUTION:A silicon oxide film 12 formed on a silicon substrate 10 is heated at a temperature of 1000 to 1200 deg.C in an N2O gas atmosphere, while it is changed into a silicon oxide-nitrified film (Si0N film) 14 having a film thickness Y which is satisfied with X/Y<=0.9 with respect to a film thickness X of a silicon oxide film. An insulating film is constituted of the silicon oxidenitrified film 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は絶縁膜形成方法、特に
膜厚が薄くかつ特性の優れた絶縁膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film, and more particularly to a method for forming an insulating film having a thin film and excellent characteristics.

【0002】[0002]

【従来の技術】最先端技術により形成される超LSI、
特にダイナミック・ランダム・アクセス・メモリ(DR
AM)では、微細化に伴い膜厚が極めて薄い酸化膜がメ
モリキャパシタ絶縁膜やゲート絶縁膜に用いられてい
る。また、不揮発性メモリ、例えば薄いSiO2膜のフ
ァウラ・ノールトハイム(Fowler Nordhe
im)トンネル電流を利用したE2PROMにおいて
も、薄いSiO2膜が用いられ、特性の向上を図ってい
る。
2. Description of the Related Art A VLSI formed by the latest technology,
Especially dynamic random access memory (DR
In AM), an oxide film having an extremely thin film thickness is used for a memory capacitor insulating film and a gate insulating film due to miniaturization. Also, a non-volatile memory such as a Fowler Nordheim thin SiO 2 film is used.
im) A thin SiO 2 film is also used in the E 2 PROM utilizing the tunnel current to improve the characteristics.

【0003】しかし、これらのSiO2膜は、MV/c
mオーダの高電界が印加される場合があり、高電界スト
レスやホットエレクトロン等によるデバイスの劣化が問
題となる。
However, these SiO 2 films are MV / c
A high electric field of the order of m may be applied, and deterioration of the device due to high electric field stress or hot electrons becomes a problem.

【0004】そこで、SiO2膜の膜質向上の試みがな
されている(例えば、文献:「次世代超LSIプロセス
技術−応用編−,広瀬 全孝編著,リアライズ社,P.
75(1988)」参照)。この文献に開示されている
方法では、SiO2膜をNH3ガス中で高温加熱すること
により、その表面を窒化物に変換し、Si酸化膜に比べ
て緻密な構造の熱窒化酸化膜(SiOXY)(但し、
X,Yは0より大きい数)を形成する。
Therefore, attempts have been made to improve the film quality of the SiO 2 film (for example, reference: "Next-generation VLSI process technology-application edition", edited by Masataka Hirose, Realize Co., P .;
75 (1988) "). In the method disclosed in this document, the surface of the SiO 2 film is converted into a nitride by heating the SiO 2 film at high temperature in NH 3 gas, and the thermal oxynitride film (SiO 2) having a denser structure than the Si oxide film is formed. X N Y ) (However,
X and Y form a number greater than 0).

【0005】この熱窒化酸化膜の形成方法を、ゲート絶
縁膜形成に適用すると、ストレス耐性の向上が図れる。
また、膜中への不純物拡散が抑制されて膜質の改善が図
れるとともに、熱窒化酸化膜は誘電率がSi酸化膜に比
べて大きいのでこの熱窒化酸化膜の超LSI等のデバイ
スへの応用が期待されている。
If this method of forming a thermal oxynitride film is applied to the formation of a gate insulating film, the stress resistance can be improved.
Further, the diffusion of impurities into the film is suppressed to improve the film quality, and the thermal oxynitride film has a larger dielectric constant than the Si oxide film, so that the thermal oxynitride film can be applied to devices such as VLSI. Is expected.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Si基
板上に形成したSiO2膜をNH3ガス中で高温加熱する
ことにより窒化を行うと、窒素(N)とともに多量の水
素(H)がSiO2膜中に侵入し、そのため、反応副生
成物として、−NHX基、−CH基、−H基等の化学種
をSiO2膜中に生成する。その結果、この熱窒化酸化
膜を用いてMOS型電界効果トランジスタ(MOSFE
T)を構成すると、反応副生成物として生成した−NH
X基、−CH基、−H基等が電子トラップの核となっ
て、トランジスタの閾値電圧の変動や耐圧の劣化の原因
となっている。
[0007] However, Si when the nitriding by high-temperature heating the SiO 2 film formed on the substrate in NH 3 gas, a large amount of hydrogen with a nitrogen (N) (H) is SiO 2 It penetrates into the film, and as a result, chemical species such as —NH x group, —CH group and —H group are generated in the SiO 2 film as reaction by-products. As a result, a MOS field effect transistor (MOSFE) is formed using this thermal oxynitride film.
When T) is constituted, -NH formed as a reaction by-product is produced.
The X group, the -CH group, the -H group, etc. serve as the nucleus of the electron trap, which causes the fluctuation of the threshold voltage of the transistor and the deterioration of the withstand voltage.

【0007】この発明は、上述した従来の問題点に鑑み
なされたもので、従来に比して膜質が優れ、破壊耐性の
高い絶縁膜形成方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method for forming an insulating film which is superior in film quality and high in fracture resistance as compared with the prior art.

【0008】[0008]

【課題を解決するための手段】この目的の達成を図るた
め、この発明によれば、シリコンの下地上に絶縁膜を形
成する方法において、シリコンの下地上に形成されたシ
リコン酸化膜を窒素含有の酸化性ガス雰囲気中で加熱処
理してシリコン酸窒化膜に置換し該シリコン酸窒化膜を
当該絶縁膜とし、前述の置換は、前記シリコン酸化膜の
膜厚が前記シリコン酸窒化膜の膜厚に対し0.9以下の
膜厚となるように行うことを特徴とする。
In order to achieve this object, according to the present invention, in a method for forming an insulating film on a silicon underlayer, the silicon oxide film formed on the silicon underlayer is made to contain nitrogen. In the oxidizing gas atmosphere, the silicon oxynitride film is replaced by the silicon oxynitride film to form the insulating film, and the replacement is performed by changing the film thickness of the silicon oxide film to the film thickness of the silicon oxynitride film. However, the film thickness is 0.9 or less.

【0009】この発明の実施に当り、好ましくは、前述
の窒素を含む酸化性ガスを一酸化窒素(NO)ガス、一
酸化二窒素(N2O)ガス、二酸化窒素(NO2)ガスを
含む群のうちから選ばれた一種のガスまたは2種以上の
混合ガスとするのが良い。
In carrying out the present invention, preferably, the nitrogen-containing oxidizing gas includes nitrogen monoxide (NO) gas, dinitrogen monoxide (N 2 O) gas, and nitrogen dioxide (NO 2 ) gas. It is preferable to use one kind of gas selected from the group or a mixed gas of two or more kinds.

【0010】また、この発明の実施に当り、好ましく
は、前述の加熱処理を1000〜1200℃の範囲内の
温度で行うのが良い。
Further, in carrying out the present invention, it is preferable that the above-mentioned heat treatment is carried out at a temperature within the range of 1000 to 1200 ° C.

【0011】なお、ここでシリコンの下地とは、シリコ
ン基板はもとより、その他に、このシリコン基板にエピ
タキシャル層を形成したもの、その他、これらに限らず
基板やエピタキシャル層に素子が作り込まれている中間
体等、絶縁膜が形成されるべき広く下地を意味してい
る。
Here, the term “silicon underlayer” means not only a silicon substrate but also a silicon substrate on which an epitaxial layer is formed, and not limited to these, and an element is formed on the substrate or the epitaxial layer. It widely means a base on which an insulating film should be formed, such as an intermediate.

【0012】また、シリコンの下地上に形成されるシリ
コン酸化膜の形成方法は、特に限定されない。例えば、
シリコンの下地を反応炉内において酸化性ガス雰囲気中
で酸化させシリコンの下地表面にシリコン酸化膜を形成
する方法、シリコンの下地上に公知の成膜方法例えばC
VD法、スパッタ法によりシリコン酸化膜を形成する方
法、シリコンの下地を多結晶シリコンとしこれを熱酸化
させる方法等種々の方法を用いることが出来る。しか
し、窒素を含む酸化性ガスによる酸窒化処理との連続性
を考えた場合、シリコンの下地を反応炉内において酸化
性ガス雰囲気中で酸化させシリコンの下地表面にシリコ
ン酸化膜を形成する方法が好適である。
The method of forming the silicon oxide film formed on the lower surface of silicon is not particularly limited. For example,
A method of oxidizing a silicon underlayer in an oxidizing gas atmosphere in a reaction furnace to form a silicon oxide film on the surface of the silicon underlayer, a known film forming method such as C
Various methods such as a VD method, a method of forming a silicon oxide film by a sputtering method, a method of using polycrystalline silicon as a base of silicon and thermally oxidizing the same can be used. However, considering the continuity with the oxynitriding treatment using an oxidizing gas containing nitrogen, a method of forming a silicon oxide film on the surface of the silicon underlayer by oxidizing the silicon underlayer in an oxidizing gas atmosphere in a reaction furnace is considered. It is suitable.

【0013】[0013]

【作用】上述したこの発明の絶縁膜形成方法によれば、
Siの下地上に形成されているシリコン酸化膜を、窒素
含有の酸化性ガス雰囲気中で高温加熱することによりシ
リコン酸窒化膜に置換しこのシリコン酸窒化膜を絶縁膜
とする。このシリコン酸窒化膜は、シリコンの酸化膜に
比べて構造が緻密なため電子トラップの発生数が少な
く、かつ破壊耐性の高い良質の絶縁膜となる。その結
果、電子デバイスの電気特性が向上し、寿命が長く、信
頼性の向上の図れる高品質の絶縁膜となる。
According to the insulating film forming method of the present invention described above,
The silicon oxide film formed on the lower surface of Si is heated to a high temperature in a nitrogen-containing oxidizing gas atmosphere to be replaced with a silicon oxynitride film, and this silicon oxynitride film is used as an insulating film. Since this silicon oxynitride film has a denser structure than a silicon oxide film, it is a high-quality insulating film with a small number of electron traps and high breakdown resistance. As a result, the electrical characteristics of the electronic device are improved, the life is long, and a high-quality insulating film with improved reliability can be obtained.

【0014】[0014]

【実施例】以下、図面を参照し、この出願の発明の実施
例につき説明する。
Embodiments of the invention of this application will be described below with reference to the drawings.

【0015】なお、図面はこの発明が理解できる程度
に、各構成成分の寸法、形状および配設位置を概略的に
示しているにすぎない。また、以下の説明では、特定の
材料および特性の数値的条件を挙げて説明するが、これ
ら材料および条件は単なる好適例にすぎず、従ってこれ
らに何ら限定されるものではない。
It should be noted that the drawings merely schematically show the sizes, shapes and positions of the constituent components to the extent that the present invention can be understood. Further, in the following description, numerical conditions of specific materials and properties are described, but these materials and conditions are merely preferable examples and are not limited thereto.

【0016】図1の(A)および(B)は、この発明の
絶縁膜形成方法の一実施例の説明に供する工程図で、各
図は要部断面図で示してある。 1.絶縁膜の形成 1−1.シリコン酸化膜の形成 先ず、反応炉(図示せず)内にシリコンの下地としてP
型(100)Si基板10を設置する。所要に応じて基
板表面の清浄化、所要に応じ反応炉内の清浄化を行う。
次に、基板10の表面にシリコン酸化膜12を成膜す
る。この実施例では、シリコン酸化膜の形成は、窒素非
含有の酸化性ガス雰囲気中で基板10を加熱することに
より行う。窒素非含有の酸化性ガスとして、ここでは酸
素(O2)ガスを用いる。シリコン酸化膜形成の際は、
酸化膜形成時の反応副生成物を反応炉外に排気するた
め、反応炉内を例えば100〜10-2Torrの低真空
の減圧状態に維持しても良いが、この実施例では反応炉
内の圧力を大気圧とした。また、基板10に対する加熱
温度を1000℃以上の温度とするのが良い。この基板
の加熱は、好ましくは、赤外線ランプ、アークランプ、
レーザビーム或いはヒータ等の加熱手段を用いて行う。
この実施例では、赤外線ランプを用い、基板10の表面
温度を、例えば、オプティカルパイロメータで判定しな
がら、例えば、50℃/秒〜200℃/秒の間の適当な
割合で、好ましくは、昇温温度約100℃/秒で、約1
100℃まで上昇させ、この1100℃の温度に一定の
時間期間保持して、膜厚7nmのSiO2膜12を成膜
する(図1の(A))。なお、このSi酸化膜の膜厚制
御は、例えば、酸化温度、酸化時間、酸化ガスの流量お
よび酸化ガスの反応炉内での圧力を調整することによっ
て、行える。
FIGS. 1A and 1B are process drawings for explaining an embodiment of an insulating film forming method of the present invention, and each drawing is a cross-sectional view of an essential part. 1. Formation of insulating film 1-1. Formation of Silicon Oxide Film First, as a base of silicon, P was formed in a reaction furnace (not shown).
A mold (100) Si substrate 10 is installed. The substrate surface is cleaned as required, and the inside of the reaction furnace is cleaned as required.
Next, the silicon oxide film 12 is formed on the surface of the substrate 10. In this embodiment, the silicon oxide film is formed by heating the substrate 10 in a nitrogen-free oxidizing gas atmosphere. As the nitrogen-free oxidizing gas, oxygen (O 2 ) gas is used here. When forming a silicon oxide film,
Since the reaction by-products at the time of forming the oxide film are exhausted to the outside of the reaction furnace, the inside of the reaction furnace may be maintained at a low vacuum reduced pressure of, for example, 100 to 10 -2 Torr. Was set to atmospheric pressure. Further, it is preferable that the heating temperature for the substrate 10 be 1000 ° C. or higher. The heating of this substrate is preferably an infrared lamp, arc lamp,
It is performed by using a heating means such as a laser beam or a heater.
In this embodiment, an infrared lamp is used, and the surface temperature of the substrate 10 is determined, for example, by an optical pyrometer, and the temperature is preferably raised at an appropriate rate of, for example, 50 ° C./sec to 200 ° C./sec. About 1 at a temperature of about 100 ℃ / sec
The temperature is raised to 100 ° C., and the temperature of 1100 ° C. is maintained for a certain period of time to form a SiO 2 film 12 having a film thickness of 7 nm ((A) of FIG. 1). The thickness of the Si oxide film can be controlled by, for example, adjusting the oxidation temperature, the oxidation time, the flow rate of the oxidizing gas, and the pressure of the oxidizing gas in the reaction furnace.

【0017】1−2.シリコン酸窒化膜への置換 次に、反応炉内へ供給するガスを窒素含有の酸化性ガス
に切り換えて、シリコン酸化膜12をシリコン酸窒化膜
に変える。この実施例では窒素含有の酸化性ガスとし
て、N2Oガスを用い、このN2Oガスを反応炉内に導入
する。この場合、反応炉内の圧力を100〜10-2To
rrの低真空の減圧状態としても良いが、この実施例で
は約1気圧とする。そして、このN2Oガス雰囲気中
で、基板温度を、例えば50℃/秒〜200℃/秒の間
の適当な割合で、1000℃〜1200℃の温度範囲内
の適当な温度にまで上昇させ、この温度に一定期間保持
して、SiO2膜12の酸窒化を行って、シリコン酸窒
化膜14を得る(図1の(B))。この試料について
は、膜厚7nmのシリコン酸化膜12をシリコン酸窒化
膜に置換すると共にシリコン酸化膜12下のシリコン基
板10をも酸窒化し膜厚10nmのSiON膜14を得
る。この場合の加熱手段は、シリコン酸化膜の成膜の時
に用いたと同様な加熱手段を用いれば良い。なお、この
SiO2膜を置換して得たシリコン酸窒化膜の膜厚は、
温度、時間およびN2Oガスの流量を調整することによ
って適当に制御できる。なお、加熱温度を1000℃よ
り低くすると窒化反応、酸化反応共に抑制され特にシリ
コン下地との界面近傍の膜質が劣化してしまい、また、
1200℃より高くなると基板がダメージを受けるの
で、酸窒化のための加熱温度は1000℃〜1200℃
の範囲内とした。
1-2. Substitution with silicon oxynitride film Next, the gas supplied into the reaction furnace is switched to a nitrogen-containing oxidizing gas to change the silicon oxide film 12 to a silicon oxynitride film. In this embodiment, N 2 O gas is used as the nitrogen-containing oxidizing gas, and this N 2 O gas is introduced into the reaction furnace. In this case, the pressure in the reactor is 100 to 10 -2 To
The reduced pressure state of rr may be a low vacuum, but in this embodiment, it is set to about 1 atm. Then, in this N 2 O gas atmosphere, the substrate temperature is raised to an appropriate temperature within a temperature range of 1000 ° C. to 1200 ° C. at an appropriate rate of, for example, 50 ° C./sec to 200 ° C./sec. The silicon oxynitride film 14 is obtained by oxynitriding the SiO 2 film 12 while maintaining this temperature for a certain period of time (FIG. 1B). For this sample, the silicon oxide film 12 having a thickness of 7 nm is replaced with a silicon oxynitride film, and the silicon substrate 10 under the silicon oxide film 12 is also oxynitrided to obtain a SiON film 14 having a thickness of 10 nm. As the heating means in this case, the same heating means as that used at the time of forming the silicon oxide film may be used. The thickness of the silicon oxynitride film obtained by replacing the SiO 2 film is
It can be controlled appropriately by adjusting the temperature, the time and the flow rate of N 2 O gas. When the heating temperature is lower than 1000 ° C., both the nitriding reaction and the oxidation reaction are suppressed, and the quality of the film particularly near the interface with the silicon underlayer deteriorates.
If the temperature is higher than 1200 ° C, the substrate is damaged, so the heating temperature for oxynitriding is 1000 ° C to 1200 ° C.
Within the range of.

【0018】また、シリコン基板10上に形成するシリ
コン酸化膜12の膜厚を8nmとしたこと以外は上述の
手順と同様な手順でシリコン酸窒化膜14(膜厚10n
m)を得た試料、さらにシリコン酸化膜12の膜厚を9
nmとしたこと以外は上述の手順と同様な手順でシリコ
ン酸窒化膜14(膜厚10nm)を得た試料をそれぞれ
作製する。
Further, the silicon oxynitride film 14 (having a thickness of 10 n) is formed by the same procedure as described above except that the thickness of the silicon oxide film 12 formed on the silicon substrate 10 is 8 nm.
m), and the silicon oxide film 12 having a thickness of 9
Samples each having the silicon oxynitride film 14 (film thickness 10 nm) are prepared by the same procedure as described above except that the thickness is set to nm.

【0019】2.絶縁膜の特性試験 次に、リソグラフィおよびエッチング技術を用いて、上
述の各試料(酸窒化前のシリコン酸化膜の膜厚が7,
8,9nmの各試料)のシリコン酸窒化膜14上に、4
×1020cm-3(マイナス3乗)の濃度にリンドープし
た多結晶Siのゲート電極16を形成して、図2に要部
断面図で示す構造のMOSキャパシタを作製した。
2. Insulating Film Characteristic Test Next, using the lithography and etching techniques, each of the above-mentioned samples (the film thickness of the silicon oxide film before oxynitridation was 7,
4) on the silicon oxynitride film 14 of each sample of 8 and 9 nm)
A gate electrode 16 of polycrystalline Si doped with phosphorus at a concentration of × 10 20 cm -3 (minus cube) was formed to fabricate a MOS capacitor having a structure shown in the cross-sectional view of the main part in FIG.

【0020】このキャパシタのゲート電極から一定電流
密度で電子をシリコン酸窒化膜14に注入し、注入前後
での基板10とゲート電極16との間の電位差(Vgs
及びフラットバンド電圧(VFB)の変動量を室温でそれ
ぞれ測定した。
Electrons are injected into the silicon oxynitride film 14 from the gate electrode of this capacitor at a constant current density, and the potential difference (V gs ) between the substrate 10 and the gate electrode 16 before and after the injection.
And the fluctuation amount of the flat band voltage (V FB ) were measured at room temperature.

【0021】定電流電子注入は、基板10を接地し、ゲ
ート電極16と接地との間に定電流源を直列に接続して
行った。
The constant current electron injection was performed by grounding the substrate 10 and connecting a constant current source in series between the gate electrode 16 and the ground.

【0022】図3は面積0.020mm2のキャパシタ
に総電荷量3C/cm2の電子を注入した前後での基板
10とゲート電極16との間の電位差Vgsの負の変動量
−ΔVgs(単位V)の測定結果を示した図である。縦軸
は電位差Vgsの負の変動量であり、横軸はシリコン酸化
膜12を酸窒化し形成したシリコン酸窒化膜14の膜厚
Y(図1(B)参照)から酸窒化前のシリコン酸化膜1
2の膜厚X(図1(A)参照)を引いて定義される値Z
(Z=Y−X)である。
FIG. 3 shows a negative variation amount -ΔV gs of the potential difference V gs between the substrate 10 and the gate electrode 16 before and after injecting electrons having a total charge amount of 3 C / cm 2 into a capacitor having an area of 0.020 mm 2 . It is the figure which showed the measurement result of (unit V). The vertical axis represents the negative fluctuation amount of the potential difference V gs , and the horizontal axis represents the thickness of the silicon oxynitride film 14 formed by oxynitriding the silicon oxide film 12 (see FIG. 1B) to the silicon before oxynitriding. Oxide film 1
A value Z defined by subtracting the film thickness X of 2 (see FIG. 1A)
(Z = Y−X).

【0023】図3中の○印は実施例の各試料すなわちZ
=3nm,2nm,1nmの各試料の測定データであ
る。また、●印は比較例の試料の測定データである。こ
の比較例の試料とは、膜厚が9nmのSiO2膜をNH3
ガス中で基板表面温度を1100℃まで加熱し、熱窒化
酸化膜の膜厚が10nmに成膜するまでの時間期間の間
1100℃で加熱処理して形成した試料のことである。
比較例の試料の熱酸化窒化膜の形成は、先ず実施例と同
様にシリコン基板を酸化しシリコン酸化膜を得、次いで
反応炉内から酸素ガスをパージした後反応炉内にNH3
ガスを導入し反応炉内を300〜400Torrに維持
した状態でシリコン基板表面が1100℃になるように
基板を加熱することで行っている。
The circles in FIG. 3 indicate the samples of the examples, that is, Z.
= 3 nm, 2 nm, 1 nm measurement data of each sample. In addition, ● mark is the measurement data of the sample of the comparative example. In the sample of this comparative example, a SiO 2 film having a film thickness of 9 nm was used as NH 3
This is a sample formed by heating the substrate surface temperature to 1100 ° C. in a gas and performing heat treatment at 1100 ° C. during the time period until the film thickness of the thermal oxynitride film is formed to 10 nm.
The thermal oxynitride film of the sample of the comparative example was formed by first oxidizing the silicon substrate to obtain a silicon oxide film in the same manner as in the example, and then purging oxygen gas from the inside of the reaction furnace and then NH 3 in the reaction furnace.
It is carried out by heating the substrate so that the surface of the silicon substrate becomes 1100 ° C. in a state where the gas is introduced and the inside of the reaction furnace is maintained at 300 to 400 Torr.

【0024】電位差(Vgs)の負の変動量(−ΔVgs
はSiON膜中の電子トラップの発生量に関係する。こ
の−ΔVgsの値が大きい程電子トラップの発生量が多く
なり、膜の特性変動が大きく、膜質が良くないことが知
られている。
[0024] The negative variation of the potential difference (V gs) (-ΔV gs)
Is related to the amount of electron traps generated in the SiON film. It is known that the larger the value of −ΔV gs, the larger the amount of electron traps generated, the larger the characteristic variation of the film, and the poor film quality.

【0025】この点を考慮して図3を見てみると、シリ
コン酸化膜をN2Oガス雰囲気中で加熱処理して形成し
たシリコン酸窒化膜は、少なくともZ=1nm以上、す
なわちシリコン酸化膜12の膜厚Xがシリコン酸窒化膜
14の膜厚Yに対して0.9以下(X/Y≦0.9)の
範囲では、NH3ガス雰囲気中での従来の窒化より電位
差の負の変動量(−ΔVgs)の値が小さく膜質が優れて
いることが分る。
Considering this point, referring to FIG. 3, the silicon oxynitride film formed by heating the silicon oxide film in the N 2 O gas atmosphere has at least Z = 1 nm or more, that is, the silicon oxide film. When the film thickness X of 12 is 0.9 or less (X / Y ≦ 0.9) with respect to the film thickness Y of the silicon oxynitride film 14, the potential difference is smaller than that of the conventional nitriding in the NH 3 gas atmosphere. It can be seen that the variation amount (-ΔV gs ) is small and the film quality is excellent.

【0026】次に、フラットバンド電圧(VFB)の値を
MOSキャパシタ容量を高周波(1MHz)で測定する
ことによって決定した。
Next, the value of the flat band voltage (V FB ) was determined by measuring the capacitance of the MOS capacitor at high frequency (1 MHz).

【0027】図4は、面積0.0264mm2のキャパ
シタに総電荷量2C/cm2の電子を注入した前後での
フラットバンド電圧(VFB)の負の変動量(−△VFB
(単位V)の測定結果を示す。図4の縦軸はMOSキャ
パシタのフラットバンド電圧の負の変動量(−△VFB
(単位はボルト(V))である。横軸は図3と同様Z
(Z=Y−X)である。また、○印及び●印は図3の場
合と同様であり○印が実施例データ、●印が比較例デー
タである。
[0027] FIG. 4 is a negative variation amount of the area 0.0264Mm 2 flat band voltage before and after the injection of electrons total charge 2C / cm 2 to the capacitor (V FB) (- △ V FB)
The measurement result of (unit V) is shown. The vertical axis of FIG. 4 represents the negative fluctuation amount of the flat band voltage of the MOS capacitor (−ΔV FB ).
(Unit is Volt (V)). Horizontal axis is Z as in Fig. 3
(Z = Y−X). Further, the circles and the circles are the same as in the case of FIG. 3, and the circles are the example data and the circles are the comparative data.

【0028】フラットバンド電圧(VFB)の負の変動量
(VFB)は、シリコン酸窒化膜中の正電荷の発生量に関
係する。この−△VFBの値が大きいほど正電荷の発生量
が多くなり、絶縁破壊耐性が低下し、膜質が劣化するこ
とが知られている。
The negative fluctuation amount (V FB ) of the flat band voltage (V FB ) is related to the generation amount of positive charges in the silicon oxynitride film. It is known that the larger the value of −ΔV FB, the larger the amount of positive charges generated, the lower the dielectric breakdown resistance, and the lower the film quality.

【0029】この点を考慮し図3の測定結果を見てみる
と、シリコン酸化膜をN2Oガス雰囲気中で加熱処理し
て形成したシリコン酸窒化膜は、少なくともZ=1nm
以上すなわち、シリコン酸化膜12の膜厚Xがシリコン
酸窒化膜14の膜厚Yに対して0.9以下(X/Y≦
0.9)の範囲では、NH3ガス雰囲気中での従来の窒
化よりフラットバンド電圧の負の変動量(−ΔVFB)の
値が小さく絶縁耐性が優れていることが分る。
Considering this point, the measurement result of FIG. 3 shows that the silicon oxynitride film formed by heating the silicon oxide film in the N 2 O gas atmosphere has at least Z = 1 nm.
That is, the film thickness X of the silicon oxide film 12 is 0.9 or less (X / Y ≦) with respect to the film thickness Y of the silicon oxynitride film 14.
In the range of 0.9), the value of the negative fluctuation amount of the flat band voltage (-ΔV FB ) is smaller than that of the conventional nitriding in the NH 3 gas atmosphere, and the insulation resistance is excellent.

【0030】以上、−ΔVgs及び−ΔVFBの測定結果か
ら総合的に判断して、膜厚Xのシリコン酸化膜をN2
ガス雰囲気中で加熱処理して形成したシリコン酸窒化膜
は、シリコン酸化膜の膜厚Xがシリコン酸窒化膜の膜厚
Yに対して0.9以下(X/Y≦0.9)の範囲では、
NH3ガス雰囲気中での従来の窒化で得た熱窒化酸化膜
より膜質が優れることが分る。
As described above, the silicon oxide film having the film thickness X is N 2 O, judging comprehensively from the measurement results of −ΔV gs and −ΔV FB.
In the silicon oxynitride film formed by heat treatment in a gas atmosphere, the thickness X of the silicon oxide film is 0.9 or less (X / Y ≦ 0.9) with respect to the thickness Y of the silicon oxynitride film. Then
It can be seen that the film quality is superior to the thermal oxynitride film obtained by the conventional nitriding in the NH 3 gas atmosphere.

【0031】3.変形例、変更例 この発明は上述した実施例にのみ限定されるものではな
いこと明らかである。
3. Modifications and Modifications It is obvious that the present invention is not limited to the above-described embodiments.

【0032】通常のSiO2膜は膜中にSi原子やO原
子の不対結合や弱い結合が多数存在するので電子注入の
ストレスによってこれらの結合が切断されること、或い
は電子注入により発生した正孔がトラップされることな
どにより絶縁膜破壊が発生する。しかし、このSiO2
膜を窒化することで、これら不安定な結合部分に窒素原
子が結合、または置換して不対結合や弱い結合の数が減
少する。これらは全てSiO2膜形成後に行われる化学
的な過程である。従って、図1の(A)のSi基板10
の導電型や面方位、図1の(A)のSiO2膜12形成
時の加熱温度や酸素分圧およびSiO2膜の膜厚にも関
係なく、この発明を適用できること明らかである。ま
た、SiO2膜12はCVD等の化学的堆積法によって
形成しても、多結晶Siを酸化して形成しても同様の改
善効果が得られる。
Since a normal SiO 2 film has many unpaired bonds and weak bonds of Si atoms and O atoms in the film, these bonds are broken by the stress of electron injection, or a positive bond generated by electron injection is generated. The insulation film is broken due to the trapping of the holes. However, this SiO 2
By nitriding the film, the number of unpaired bonds or weak bonds is reduced by bonding or substituting nitrogen atoms to these unstable bonding portions. These are all chemical processes performed after forming the SiO 2 film. Therefore, the Si substrate 10 of FIG.
Conductivity type and plane orientation, SiO 2 film 12 formed at regardless on the thickness of the heating temperature and oxygen partial pressure and the SiO 2 film in the FIG. 1 (A), the it is apparent that the present invention can be applied. Further, the same improvement effect can be obtained by forming the SiO 2 film 12 by a chemical deposition method such as CVD or by oxidizing polycrystalline Si.

【0033】また、上述の実施例では、窒素含有の第2
酸化性ガスとしてN2Oガスの例を挙げて説明したが、
一酸化窒素(NO)ガスまたは二酸化窒素(NO2)ガ
スの単体ガス、もしくは、NOガス、N2Oガスおよび
NO2ガスの群から選ばれた二種類以上の混合ガスを用
いてもよい。また、上述した実施例では、シリコン酸窒
化膜の膜厚を10nm(100オングストローム)とし
たが、これと異なる膜厚、特にこれより薄い膜厚では実
施例と同程度の改善効果が得られる。 4.適用例 この発明は絶縁膜の破壊耐性を向上させているので絶縁
膜を有するあらゆる型の半導体素子に適用し、その破壊
寿命を延ばす効果がある。
Further, in the above embodiment, the second nitrogen-containing second
Although the example of N 2 O gas is used as the oxidizing gas in the description,
A simple substance gas of nitric oxide (NO) gas or nitrogen dioxide (NO 2 ) gas, or a mixed gas of two or more kinds selected from the group of NO gas, N 2 O gas and NO 2 gas may be used. Further, in the above-described embodiment, the film thickness of the silicon oxynitride film is set to 10 nm (100 angstrom), but a film thickness different from this, particularly a film thickness smaller than this, can obtain the same improvement effect as the embodiment. 4. Application Example Since the present invention improves the breakdown resistance of the insulating film, it can be applied to all types of semiconductor elements having an insulating film and has the effect of extending the breakdown life.

【0034】図5および図6に、不揮発性MOSFET
メモリ素子にこの発明を適用した例をそれぞれ示す。図
5は、MNOS(Metal Nitride Oxi
deSemiconductor)型メモリ素子の要部
の断面構造を示す。このメモリ素子は、Si基板20に
ソース・ドレイン領域用の拡散層22を具え、この基板
20の上面に、この発明の絶縁膜形成方法に従って作成
したシリコン酸窒化膜24と、例えば、Si34または
Al23の絶縁膜26と、この絶縁膜26上にゲート電
極28を具えた構造となっている。シリコン酸窒化膜
(トンネル酸化膜)24と、絶縁膜26とで構成される
ゲート絶縁膜30の、両絶縁膜24と26との界面近傍
に存在する界面準位に、主として基板側から、ファウラ
・ノールドハイム・トンネル電流、または、直接トンネ
ル電流を流してキャリアを注入しトラップすることで記
憶動作を行う。
Nonvolatile MOSFETs are shown in FIGS.
An example in which the present invention is applied to a memory element will be shown. FIG. 5 shows MNOS (Metal Nitride Oxi).
2 shows a cross-sectional structure of a main part of a deSemiconductor type memory device. This memory device comprises a diffusion layer 22 for source / drain regions on a Si substrate 20, and a silicon oxynitride film 24 formed according to the insulating film forming method of the present invention on the upper surface of the substrate 20 and, for example, Si 3 N 2. The insulating film 26 is made of 4 or Al 2 O 3 , and the gate electrode 28 is provided on the insulating film 26. A fouling occurs mainly from the substrate side in the interface state existing in the vicinity of the interface between the two insulating films 24 and 26 of the gate insulating film 30 composed of the silicon oxynitride film (tunnel oxide film) 24 and the insulating film 26. -The memory operation is performed by injecting and trapping carriers by passing a Noordheim tunnel current or a direct tunnel current.

【0035】データ書き換えは絶縁膜(トンネル酸化
膜)24に高電界を印加して行うので、このメモリ素子
の信頼性はこの絶縁膜24の破壊耐性に大きく依存す
る。従来、この絶縁膜24にはSiO2膜を用いている
が、この絶縁膜24にこの発明により得られるシリコン
酸窒化膜を用いることで絶縁膜の破壊耐性が向上し、特
性変動、劣化を抑え、データ書き換え回数が多くデータ
保持特性に優れた長寿命のメモリ素子の実現が期待でき
る。
Since data rewriting is performed by applying a high electric field to the insulating film (tunnel oxide film) 24, the reliability of this memory element largely depends on the breakdown resistance of the insulating film 24. Conventionally, a SiO 2 film is used as the insulating film 24. However, by using the silicon oxynitride film obtained by the present invention for the insulating film 24, the breakdown resistance of the insulating film is improved and the characteristic fluctuation and deterioration are suppressed. Therefore, it is expected that a long-life memory device having a large number of data rewritings and excellent data retention characteristics can be realized.

【0036】図6はFLOTOX(Floating
gate Tunnel Oxide)型メモリ素子を
示す。
FIG. 6 shows FLOTOX (Floating
1 shows a gate tunnel oxide type memory device.

【0037】このメモリ素子も、Si基板20にソース
・ドレイン領域用の拡散層22を具えている。そして、
この基板20の上面には、この発明の絶縁膜形成方法に
従って作成したシリコン酸窒化膜34と、浮遊ゲート3
6と、層間絶縁膜38と、ゲート電極40とを順次に具
えた構造となっている。
This memory device also has a diffusion layer 22 for the source / drain regions on the Si substrate 20. And
On the upper surface of the substrate 20, the silicon oxynitride film 34 formed according to the insulating film forming method of the present invention and the floating gate 3 are formed.
6, the interlayer insulating film 38, and the gate electrode 40 in this order.

【0038】このメモリ素子は浮遊ゲート36の下の絶
縁膜であるシリコン酸窒化膜34(トンネル酸化膜)の
一部の膜厚が極めて薄くなっている。この薄膜部分を3
4aで示す。
In this memory element, a part of the silicon oxynitride film 34 (tunnel oxide film) which is an insulating film below the floating gate 36 is extremely thin. This thin film part 3
4a.

【0039】このトンネル酸化膜の薄膜部分34aを通
してファウラ・ノールドハイム・トンネル電流を流し
て、キャリアを浮遊ゲート36へ注入して記憶動作を行
う。従来この絶縁膜34にはSiO2膜を用いている
が、この絶縁膜34にこの発明のシリコン酸窒化膜を用
いることで、絶縁膜の破壊耐性が向上し、特性変動、劣
化を抑え、データ書き換え回数が多く、データ保持特性
に優れた長寿命のメモリ素子の実現が期待できる。
A Fowler-Nordheim tunnel current is caused to flow through the thin film portion 34a of the tunnel oxide film to inject carriers into the floating gate 36 to perform a memory operation. Conventionally, a SiO 2 film is used for the insulating film 34, but by using the silicon oxynitride film of the present invention for the insulating film 34, the breakdown resistance of the insulating film is improved, the characteristic fluctuation and deterioration are suppressed, and It can be expected to realize a long-life memory device that has a large number of rewrites and has excellent data retention characteristics.

【0040】[0040]

【発明の効果】上述した説明からも明らかなように、こ
の発明の絶縁膜形成方法によれば、シリコンの下地に形
成されたシリコン酸化膜を窒素含有の酸化性ガス雰囲気
中で加熱処理を行ってシリコン酸化膜の膜厚Xに対しX
/Y≦0.9を満足する膜厚Yのシリコン酸窒化膜に変
えこのシリコン酸窒化膜を当該絶縁膜とするので、従来
のNH3ガスを用いた窒化により形成した熱窒化酸化膜
に比べてフラットバンド電圧の負の変動−△VFBの値、
基板とゲート電極との間の電位差の負の変動−ΔVgs
値共に小さくなる。したがって、正電荷の発生量が少な
いので絶縁破壊耐性の高い高品質の絶縁膜が得られ、ま
た電子トラップの発生量が少いので特性変動の少い絶縁
膜が得られる。
As is apparent from the above description, according to the insulating film forming method of the present invention, the silicon oxide film formed on the silicon underlayer is subjected to the heat treatment in the nitrogen-containing oxidizing gas atmosphere. X for the film thickness X of the silicon oxide film
Since the silicon oxynitride film instead of the silicon oxynitride film with a thickness Y satisfying the /Y≦0.9 and the insulating film, compared with a thermal oxynitride film formed by nitriding with conventional NH 3 gas Negative fluctuation of flat band voltage-value of ΔV FB ,
Negative fluctuation of the potential difference between the substrate and the gate electrode-both the value of ΔV gs becomes small. Therefore, since the amount of positive charges generated is small, a high-quality insulating film having a high dielectric breakdown resistance can be obtained, and the amount of generated electron traps is small, so that an insulating film with less characteristic fluctuation can be obtained.

【0041】したがって、この発明により形成した絶縁
膜を用いて電子デバイス例えば不揮発性MOSFETメ
モリ素子やMNOS型メモリ素子などを作成するとこれ
ら電子デバイスの寿命と信頼性を従来のものより向上さ
せることができる。
Therefore, when an electronic device such as a non-volatile MOSFET memory element or a MNOS type memory element is manufactured by using the insulating film formed according to the present invention, the life and reliability of these electronic devices can be improved as compared with the conventional ones. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)および(B)は、この発明の絶縁膜形成
方法の一実施例の説明に供する工程図である。
FIG. 1A and FIG. 1B are process drawings for explaining an embodiment of an insulating film forming method of the present invention.

【図2】この発明の絶縁膜形成方法の評価に用いたMO
Sキャパシタの説明に供する要部断面図である。
FIG. 2 is an MO used for evaluation of an insulating film forming method of the present invention.
FIG. 4 is a cross-sectional view of an essential part for explaining an S capacitor.

【図3】この発明の絶縁膜形成方法の一実施例の説明に
供する、シリコン酸窒化膜の膜厚と基板及びゲート電極
間電位差の負の変動量(−ΔVgs)との関係を示す特性
図である。
FIG. 3 is a characteristic showing a relationship between a film thickness of a silicon oxynitride film and a negative variation amount (−ΔV gs ) of a potential difference between a substrate and a gate electrode, which is used for explaining an embodiment of an insulating film forming method of the present invention. It is a figure.

【図4】この発明の絶縁膜形成方法の一実施例の説明に
供する、シリコン酸窒化膜の膜厚とフラットバンド電圧
の負の変動量(−△VFB)との関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between the film thickness of the silicon oxynitride film and the negative variation amount (−ΔV FB ) of the flat band voltage, which is used for explaining an embodiment of the insulating film forming method of the present invention. is there.

【図5】この発明の絶縁膜形成方法により形成したシリ
コン酸窒化膜を用いた、MNOS型メモリ素子の要部断
面図である。
FIG. 5 is a cross-sectional view of an essential part of a MNOS type memory element using a silicon oxynitride film formed by the insulating film forming method of the present invention.

【図6】この発明の絶縁膜形成方法により形成したシリ
コン酸窒化膜を用いた、FLOTOX型メモリ素子の要
部断面図である。
FIG. 6 is a cross-sectional view of an essential part of a FLOTOX type memory device using a silicon oxynitride film formed by the insulating film forming method of the present invention.

【符号の説明】[Explanation of symbols]

10、20:Si基板 12:シリコン酸化膜 14、24、34:シリコン酸窒化膜 16、28、40:ゲート電極 22:拡散層 26:絶縁膜 34a:シリコン酸窒化膜の薄膜部分 36:浮遊ゲート 38:層間絶縁膜 10, 20: Si substrate 12: Silicon oxide film 14, 24, 34: Silicon oxynitride film 16, 28, 40: Gate electrode 22: Diffusion layer 26: Insulating film 34a: Thin film portion of silicon oxynitride film 36: Floating gate 38: Interlayer insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコンの下地上に絶縁膜を形成する方
法において、 シリコンの下地上に形成されたシリコン酸化膜を窒素含
有の酸化性ガス雰囲気中で加熱処理してシリコン酸窒化
膜に置換し該シリコン酸窒化膜を当該絶縁膜とし、 前記置換は、前記シリコン酸化膜の膜厚が前記シリコン
酸窒化膜の膜厚に対し0.9以下の膜厚となるように行
うことを特徴とする絶縁膜形成方法。
1. A method of forming an insulating film on a silicon underlayer, wherein the silicon oxide film formed on the silicon underlayer is heat-treated in a nitrogen-containing oxidizing gas atmosphere to replace the silicon oxynitride film. The silicon oxynitride film is used as the insulating film, and the substitution is performed so that the film thickness of the silicon oxide film is 0.9 or less with respect to the film thickness of the silicon oxynitride film. Insulating film forming method.
【請求項2】 請求項1に記載の絶縁膜形成方法におい
て、 前記窒素含有の酸化性ガスを一酸化窒素(NO)ガス、
一酸化二窒素(N2O)ガスおよび二酸化窒素(NO2
ガス群のうちから選ばれた1種のガスまたは2種以上の
混合ガスとすることを特徴とする絶縁膜形成方法。
2. The insulating film forming method according to claim 1, wherein the nitrogen-containing oxidizing gas is nitric oxide (NO) gas,
Nitrous oxide (N 2 O) gas and nitrogen dioxide (NO 2 )
A method for forming an insulating film, which comprises using one kind of gas selected from a group of gases or a mixed gas of two or more kinds.
JP3050940A 1991-03-15 1991-03-15 Insulating film forming method Expired - Fee Related JP3041066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050940A JP3041066B2 (en) 1991-03-15 1991-03-15 Insulating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050940A JP3041066B2 (en) 1991-03-15 1991-03-15 Insulating film forming method

Publications (2)

Publication Number Publication Date
JPH05198574A true JPH05198574A (en) 1993-08-06
JP3041066B2 JP3041066B2 (en) 2000-05-15

Family

ID=12872823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050940A Expired - Fee Related JP3041066B2 (en) 1991-03-15 1991-03-15 Insulating film forming method

Country Status (1)

Country Link
JP (1) JP3041066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221093A (en) * 1994-01-22 1995-08-18 Lg Semicon Co Ltd Silicon insulation film formation of semiconductor element
US6147011A (en) * 1998-02-28 2000-11-14 Micron Technology, Inc. Methods of forming dielectric layers and methods of forming capacitors
US6362114B1 (en) 1996-11-12 2002-03-26 Micron Technology, Inc. Semiconductor processing methods of forming an oxynitride film on a silicon substrate
US6683010B1 (en) * 1997-06-27 2004-01-27 Samsung Electronics Co., Ltd. Method for forming silicon-oxynitride layer on semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221093A (en) * 1994-01-22 1995-08-18 Lg Semicon Co Ltd Silicon insulation film formation of semiconductor element
US6362114B1 (en) 1996-11-12 2002-03-26 Micron Technology, Inc. Semiconductor processing methods of forming an oxynitride film on a silicon substrate
US6683010B1 (en) * 1997-06-27 2004-01-27 Samsung Electronics Co., Ltd. Method for forming silicon-oxynitride layer on semiconductor device
US6147011A (en) * 1998-02-28 2000-11-14 Micron Technology, Inc. Methods of forming dielectric layers and methods of forming capacitors
US6319856B1 (en) 1998-02-28 2001-11-20 Micron Technology, Inc. Methods of forming dielectric layers and methods of forming capacitors
US6787477B2 (en) 1998-02-28 2004-09-07 Micron Technology, Inc. Methods of forming dielectric layers and methods of forming capacitors

Also Published As

Publication number Publication date
JP3041066B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US6884685B2 (en) Radical oxidation and/or nitridation during metal oxide layer deposition process
US6294819B1 (en) CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET
US7682990B2 (en) Method of manufacturing nonvolatile semiconductor memory device
US7060594B2 (en) Memory device and method of manufacturing including deuterated oxynitride charge trapping structure
KR100803861B1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
EP0690487A1 (en) Methods for forming oxide films
JP3805825B2 (en) Formation method of insulating film
US6991987B1 (en) Method for producing a low defect homogeneous oxynitride
JP3041066B2 (en) Insulating film forming method
JP3041065B2 (en) Insulating film forming method
JP3288796B2 (en) Semiconductor device
CN101494172A (en) Semiconductor device and method for manufacturing the same
JP4594554B2 (en) Semiconductor device and manufacturing method thereof
JPH06318588A (en) Manufacture of semiconductor device
JP2793416B2 (en) Insulating film formation method
JP3548563B2 (en) Method for manufacturing semiconductor device
JPH07193059A (en) Manufacture of semiconductor device
JP3310988B2 (en) Method for forming silicon oxynitride film and method for manufacturing semiconductor device using the same
JP3425579B2 (en) Method for manufacturing semiconductor device
USRE40113E1 (en) Method for fabricating gate oxide
JP3802945B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH05160114A (en) Formation of insulating film
JPS61172339A (en) Manufacture of semiconductor device
JPH08340056A (en) Formation of silicon insulating film and semiconductor device
JP3316210B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees