JPH05198433A - Connecting structure of superconductive current lead - Google Patents

Connecting structure of superconductive current lead

Info

Publication number
JPH05198433A
JPH05198433A JP745692A JP745692A JPH05198433A JP H05198433 A JPH05198433 A JP H05198433A JP 745692 A JP745692 A JP 745692A JP 745692 A JP745692 A JP 745692A JP H05198433 A JPH05198433 A JP H05198433A
Authority
JP
Japan
Prior art keywords
current lead
superconducting current
superconducting
connection structure
lead member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP745692A
Other languages
Japanese (ja)
Other versions
JP3142934B2 (en
Inventor
Yutaka Hitomi
豊 人見
Ryoichi Sugawara
良市 菅原
Kenji Tazaki
賢司 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP745692A priority Critical patent/JP3142934B2/en
Publication of JPH05198433A publication Critical patent/JPH05198433A/en
Application granted granted Critical
Publication of JP3142934B2 publication Critical patent/JP3142934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the breakdown caused by thermal impact and mechanical external force by electrically connecting the bonding surfaces of member to be connected by the bonding at the machined surfaces, which can be connected in the tight contact state. CONSTITUTION:A superconductive current lead member 5 is constituted of a terminal part to be connected 5a, which is expanded and formed, and a small linear-diameter part (small diameter part) 5b, which connects the terminal part to be connected 5a. The edge of the terminal part to be connected 5a is machined in a shape, which can be connected at the arbitrary angle and in the direction with respect to the edges of the terminal parts to be connected of other superconductive current lead members 5 that are connected to each other or the edge of the terminal part to be connected of a normal conductive current lead member. A plurality of the superconductive current lead members 5 formed in this way are connected in the tight contact mode through the edges of the terminal parts 5a to be connected. Thus, the connecting structure of the superconductive current lead is obtained. In this way, durability for thermal impact and mechanical external force is obtained, and the superconductive current lead member and the normal conductor can be readily connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導電流リード部材同
士もしくは超電導電流リード部材と常電導導体部材との
電気的な接続構造体に係り、特に任意の構造化や特性の
均一化された超電導電流リードの接続構造体、あるいは
熱的衝撃や機械的外力による破損の保護などが図られた
超電導電流リードの接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically connecting structure between superconducting current flow lead members or between a superconducting current flow lead member and a normal conducting member, and particularly to a superconducting current flow having an arbitrary structure and uniform characteristics. The present invention relates to a lead connection structure or a superconducting current lead connection structure that is protected from damage due to thermal shock or mechanical external force.

【0002】[0002]

【従来の技術】酸化物超電導体からなる超電導電流リー
ドは、熱伝導率が低いという特性を備えている。この特
性を利用して、超電導電流リード部材の一方を極低温中
の超電導線に接続し、他方を常温中にある常電導導体
(たとえば銅製の電流リード)を接続して、常温中にあ
る常電導導体から極低温中への熱進入を防ぎながら所要
の電流を流す手段が考えられる。また、この超電導電流
リード部材としての利用においては、線径が細ければ細
い程、常電導導体から極低温中への熱進入も低減し得
る。したがって、超電導電流リード部材は、できるだけ
細くするのが理想的であり、図9に要部を断面的に示す
ごとく、超電導電流リード部材と常電導導体部材の接続
構造体は、酸化物超電導体からなる超電導電流リード部
材1の被接続端子部1aを膨大に(拡張)形成する一方、
常電導導体である銅製電流リード部材2の被接続端子部
2aと同一形状として、両被接続端子部1a,2aの被接合面
を対接させ電気的に接続している。そして、前記超電導
電流リード部材1の被接続端子部1a被接合面と銅製電流
リード2の被接続端子部2aの被接合面との接続について
は、被接合面間に導電性の接着剤を介在させて接続する
か、あるいは図 に要部構成を断面的に示すごとく、超
電導電流リード部材1および銅製電流リード部材2の各
被接合面を対接させて、これらをクランプ3によって堅
固に締め付け、機械的に接続する手段などがある。
2. Description of the Related Art A superconducting current lead made of an oxide superconductor has a characteristic of low thermal conductivity. Utilizing this property, one of the superconducting current lead members is connected to the superconducting wire at a cryogenic temperature, and the other is connected to a normal conducting conductor (for example, a copper current lead) at room temperature to keep the A means for supplying a required current while preventing heat from entering from the conductive conductor into the cryogenic temperature can be considered. Further, in the use as the superconducting current flow lead member, the thinner the wire diameter, the smaller the heat penetration from the normal conductor into the cryogenic temperature. Therefore, it is ideal that the superconducting current lead member is made as thin as possible, and the connecting structure of the superconducting current lead member and the normal conductor member is made of an oxide superconductor as shown in FIG. While forming the connected terminal portion 1a of the superconducting current lead member 1 that is enormous (expansion),
Connected terminal portion of copper current lead member 2 which is a normal conductor
With the same shape as 2a, the surfaces to be joined of both connected terminal portions 1a and 2a are brought into contact with each other and electrically connected. Regarding the connection between the joined terminal portion 1a of the superconducting current lead member 1 and the joined surface of the joined terminal portion 2a of the copper current lead 2, a conductive adhesive is interposed between the joined surfaces. Or connect the surfaces to be joined of the superconducting current lead member 1 and the copper current lead member 2 to each other as shown in a sectional view in FIG. There are means for mechanically connecting.

【0003】また、前記酸化物超電導体は、一般的に機
械的な強度が劣り、僅かな機械的衝撃でも破損し易いと
いう脆さがあるので、比較的線径が小さくて長尺なもの
などを製造ないし加工することが非常に困難である。し
たがって、丸棒形で比較的短尺なものを得て、これらを
接続して所要の超電導電流リード部材1を構成する場合
がしばしばある。
Further, the oxide superconductor generally has poor mechanical strength and is fragile such that it is easily broken even by a slight mechanical shock, so that it has a relatively small wire diameter and is long. Is very difficult to manufacture or process. Therefore, it is often the case that a relatively short rod-shaped member is obtained and these are connected to form the required superconducting current lead member 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記図
示した構成の超電導電流リード部材1の場合、すなわち
被接続端子部1aを選択的に拡張形成(膨大化)して、そ
の被接続端面を銅製電流リード2の被接続端子部2a端面
とほぼ同形状にし、両被接続端面を対接させ接続するこ
とにより、接触面積を大きくし接触抵抗の低減を図った
構成では次のような問題がある。つまり、接触面積を大
きくし接触抵抗の低減を図るため、超電導電流リード部
材1の被接続端子部1aを急激に拡張形成(膨大化)して
おり、この被接続端子部1aと比較的線径が小さい部分1b
との連接部4が、熱的衝撃,銅製電流リード部材2との
接続時,あるいは組み立て時に発生する機械的外力によ
って破断など起こし易いという問題がある。
However, in the case of the superconducting current flow lead member 1 having the above-described structure, that is, the connection terminal portion 1a is selectively expanded (expanded), and the connection end surface is made of copper current. The following problem arises in the configuration in which the contact area is increased and the contact resistance is reduced by making the lead 2 have substantially the same shape as the end face of the connected terminal portion 2a and connecting both end faces to be connected to each other. That is, in order to increase the contact area and reduce the contact resistance, the connected terminal portion 1a of the superconducting current lead member 1 is drastically expanded (expanded), and the wire diameter of the connected terminal portion 1a is relatively large. Is the small part 1b
There is a problem that the connecting portion 4 with and is easily broken due to a thermal shock, a mechanical external force generated during connection with the copper current lead member 2, or during assembly.

【0005】また、丸棒形の短尺な超電導電流リード部
材1を、複数個直列に接続一体化して構成する超電導電
流リードの場合は、前記の各短尺な超電導電流リード部
材1が必ずしも特性の均一性を保持しないため、設計上
も多くの制約を伴うことになり、構成の繁雑さと相俟っ
て実用的に問題がある。
Further, in the case of a superconducting current lead which is constituted by connecting and integrating a plurality of short rod-shaped superconducting current lead members 1 in series, each of the short superconducting current lead members 1 described above does not necessarily have uniform characteristics. Since it does not maintain the property, it has many restrictions in design, which is a practical problem in combination with the complexity of the configuration.

【0006】さらに、前記いずれの場合も、超電導電流
リードの構成がいわゆる直線的で、使用態様も一定の範
囲に制限されている。しかし、この種の超電導電流リー
ドを装着する極低温装置のコンパクト化などの点から、
超電導電流リードについても任意な形状,任意な使用態
様の選択・設定も要求される場合も往々生じているが、
前記従来の超電導電流リードの構成では、このような要
望に対応し得ない。
Further, in any of the above cases, the structure of the superconducting current flow lead is so-called linear, and the mode of use is limited to a certain range. However, from the point of view of making the cryogenic device equipped with this type of superconducting current lead compact,
It is often the case that the superconducting current lead is also required to be selected and set in an arbitrary shape and usage pattern.
The conventional superconducting current flow lead structure cannot meet such a demand.

【0007】ここで、前記熱的衝撃について説明する
と、超電導電流リード1は、常温中では超電導状態とは
ならず、極低温中でのみ超電導状態となる。したがっ
て、ここでいう熱的衝撃とは、常温から極低温への急激
な温度変化における超電導電流リード1の膨張、収縮に
よる熱的疲労のことである。
The thermal shock will now be described. The superconducting current lead 1 does not become superconducting at room temperature, but only at extremely low temperatures. Therefore, the thermal shock referred to here is thermal fatigue due to expansion and contraction of the superconducting current flow lead 1 when the temperature changes rapidly from room temperature to extremely low temperature.

【0008】本発明は上記問題点を解決するためのもの
であり、任意の構造(形状)の選択が可能で、かつ一様
な特性を呈する超電導電流リード、もしくは超電導電流
リードの熱的衝撃や機械的外力による破損の防止、超電
導電流リードと常電導導体との接続の容易性を確保する
ことが可能な超電導電流リードの接続構造体の提供を目
的とする。
The present invention is intended to solve the above-mentioned problems, and it is possible to select an arbitrary structure (shape) and to exhibit uniform characteristics. An object of the present invention is to provide a connection structure for a superconducting current lead, which is capable of preventing damage due to a mechanical external force and ensuring the ease of connection between the superconducting current lead and the normal conductor.

【0009】[0009]

【課題を解決するための手段】本発明に係る超電導電流
リードの接続構造体は、超電導電流リード部材同士もし
くは超電導電流リード部材と常電導導体部材との電気的
な接続構造体において、前記各被接合部材は被接合面が
互いに密着的な対接可能な加工面での接合により電気的
に接続されていることを特徴とし(第1の接続構造
体)、また、酸化物超電導体から成る超電導電流リード
部材と常電導導体部材とがほぼ同形の被接合面で対接し
て電気的に接続する接続構造体において、前記超電導電
流リード部材の径が被接合面方向へ徐々に膨大化されて
構成されていることを特徴とし(第2の接続構造体)、
さらに、酸化物超電導体からなる超電導電流リード部材
と常電導導体部材との電気的な接続構造体において、前
記両被接合部材は被接合面が互いに嵌合・密着して対接
可能な錐形の凹凸面を備え、前記錐形の凹凸面の嵌合・
密着により電気的に接続していることを特徴として(第
3の接続構造体)いる。
According to the present invention, there is provided a connection structure for a superconducting current lead, wherein the superconducting current lead members are connected to each other or the superconducting current lead member and the normal conducting member are electrically connected. The bonding member is characterized in that the surfaces to be bonded are electrically connected to each other by bonding on the processed surfaces that can be intimately contacted with each other (first connection structure), and the superconducting oxide superconductor is also used. In a connection structure in which a current lead member and a normal conductor member are in contact with each other and are electrically connected to each other on the surfaces to be joined having substantially the same shape, the diameter of the superconducting current lead member is gradually enlarged toward the surfaces to be joined. (Second connection structure),
Furthermore, in an electrical connection structure of a superconducting current lead member made of an oxide superconductor and a normal conducting member, both of the members to be joined are conical in shape so that the surfaces to be joined can be fitted and closely contacted to each other. The concavo-convex surface is fitted,
It is characterized in that they are electrically connected by close contact (third connection structure).

【0010】[0010]

【作用】第1の接続構造体の場合は、超電導電流リード
がいわゆるユニット化されているため、これらユニット
化されている超電導電流リード部材の選択・組み合わせ
により任意の形状ないし構造で、かつ均一な特性の長尺
形超電導電流リードとして機能する。
In the case of the first connection structure, since the superconducting current lead is so-called unitized, the unitary superconducting current lead member is selected and combined to have an arbitrary shape or structure and a uniform structure. Functions as a characteristic long type superconducting current lead.

【0011】また、第2および第3の接続構造体の場合
は、熱的衝撃や機械的外力に対して耐久性を有するとと
もに、超電導電流リード部材と常電導導体との接続も容
易に達成し得る。
Further, in the case of the second and third connecting structures, the second connecting structure has durability against thermal shock and mechanical external force, and the connection between the superconducting current lead member and the normal conducting conductor can be easily achieved. obtain.

【0012】[0012]

【実施例】以下図1〜図8を参照して本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0013】実施例1 本実施例はユニット化された超電導電流リード部材の選
択・組み合わせにより構成された超電導電流リードの接
続構造体の場合である。図1は前記ユニット化さた超電
導電流リード部材5の一構造例を断面的に示したもの
で、超電導電流リード部材5は、拡張形成(膨大化)し
た被接続端子部5aおよびこの被接続端子部5a間を連接す
る線径の小さ部分5bとで構成されている。そして、前記
被接続端子部5aの端面は、互いに接続される他の超電導
電流リード部材5の被接続端子部5aの端面、もしくは常
電導電流リード部材の被接続端子部の端面と、対接可能
な形(状態)に任意の角度および方向にに加工された構
成を成している。つまり、前記超電導電流リード部材5
の被接続端子部5aの端面は、相互に接続して構成する超
電導電流リードの接続構造体の形態に対応して、接続さ
れる他の超電導電流リード部材5などの被接続端子部5a
の端面の傾斜方向や角度に応じて適宜面加工されてい
る。
Embodiment 1 This embodiment is a case of a superconducting electric current lead connecting structure constituted by selecting and combining unitized superconducting electric current lead members. FIG. 1 is a cross-sectional view showing an example of the structure of the unitized superconducting current lead member 5. The superconducting current lead member 5 is formed by expanding (enlarging) the connected terminal portion 5a and the connected terminal. It is composed of a small wire diameter portion 5b connecting between the portions 5a. The end surface of the connected terminal portion 5a can be in contact with the end surface of the connected terminal portion 5a of another superconducting current lead member 5 connected to each other or the end surface of the connected terminal portion of the normal conducting flow lead member. It has a configuration in which it is processed into an arbitrary shape (state) at an arbitrary angle and direction. That is, the superconducting current flow lead member 5
The end surface of the connected terminal portion 5a of the connected terminal portion 5a of another superconducting current lead member 5 or the like to be connected corresponds to the form of the connection structure of the superconducting current lead formed by being connected to each other.
The surface is appropriately machined according to the inclination direction and the angle of the end surface.

【0014】図2および図3は、前記のように構成され
た超電導電流リード部材5複数個を、相互にその被接続
端子部5a端面間に、たとえば銀粉末を含有する導電性接
着剤層を介して、密着的に対接させて構成した超電導電
流リードの接続構造体のそれぞれ異なる構造例を斜視的
に示したものである。すなわち、図2は超電導電流リー
ド部材5などの被接続端子部5aの端面の傾斜方向を変え
て、湾曲的に構成した超電導電流リード接続構造体であ
り、また図3は分岐形もしくは合流形に構成した超電導
電流リード接続構造体である。
FIGS. 2 and 3 show a plurality of superconducting current flow lead members 5 constructed as described above, and a conductive adhesive layer containing silver powder, for example, between the end faces of the connected terminal portions 5a. 3A and 3B are perspective views showing different structural examples of the connection structure of the superconducting current flow leads which are closely contacted with each other. That is, FIG. 2 shows a superconducting current lead connecting structure that is formed in a curved shape by changing the inclination direction of the end surface of the connected terminal portion 5a such as the superconducting current lead member 5, and FIG. 3 shows a branched or merged type. It is the superconducting electric current lead connection structure which was comprised.

【0015】上記構成例では、超電導電流リード部材5
相互の被接続端子部5a端面間に、導電性接着剤層を介在
させて一体化したが、図4にその断面構造を示すごと
く、超電導電流リード部材5相互の被接続端子部5a端面
を、予め銀蒸着もしくは銀箔処理しておくとともに、対
接する被接続端子部5a同士を接続する孔を穿設してお
き、金属棒もしくは酸化物超電導体製のボルトナット6
で締め付け一体化して接続構造体を構成してもよい。
In the above configuration example, the superconducting current lead member 5 is used.
The electrically conductive adhesive layer is interposed between the end surfaces of the connected terminal portions 5a to be integrated with each other, but as shown in the cross-sectional structure of FIG. In advance, silver vapor deposition or silver foil treatment is performed, and holes for connecting the opposite connection target terminal portions 5a are drilled, and a bolt or nut 6 made of a metal rod or an oxide superconductor is formed.
The connection structure may be formed by tightening and integrating with each other.

【0016】さらに、前記の構成例では、超電導電流リ
ード部材5の被接続端子部5aなどを膨大化(拡張形成)
したが、たとえば図5に断面的に示すように、超電導電
流リード部材5に膨大化(拡張形成)部を設けずに、被
接続端子面同士を接続して所要の超電導電流リード接続
構造体を構成してもよい。
Further, in the above configuration example, the connected terminal portions 5a of the superconducting current lead member 5 are enlarged (extended formation).
However, as shown in a sectional view in FIG. 5, for example, the required superconducting current lead connecting structure is formed by connecting the connected terminal surfaces without providing the superconducting current lead member 5 with an enlarged (expanded) portion. You may comprise.

【0017】実施例2 本実施例は、熱的衝撃および機械的外力による破損など
を保護可能に構成された超電導電流リードの場合であ
る。図6は熱的衝撃や機械的外力による破損からの保護
が可能な、超電導電流リードの接続構造体の構成例の要
部を断面的に示したもので、5′は超電導電流リード部
材、7はたとえば銅から成る常電導電流部材である。そ
して、この構成例においては、酸化物超電導体から成る
超電導電流リード部材5′と常電導電流部材7とは、ほ
ぼ同形の被接合面で対接して電気的に接続する接続構造
体を構成しており、かつ前記超電導電流リード部材5′
は被接合面方向へ徐々に膨大化した形状を成している。
つまり、前記超電導電流リード部材5′の被接続端子部
5a′は、細径部5b′から徐々に拡張形成(膨大化)され
ており、前記被接続端子部5a′と細径部5b′との連接部
8が熱的および機械的に補強された構成となるため、熱
的衝撃および機械的外力に対して大幅に保護された超電
導電流リードの接続構造体として機能し得ることにな
る。
Embodiment 2 This embodiment is a case of a superconducting conductive flow lead constructed so as to be able to protect from damage due to thermal shock and mechanical external force. FIG. 6 is a cross-sectional view showing a main part of a constitutional example of a connection structure of superconducting current leads capable of protection from damage due to thermal shock and mechanical external force. Is a normal current conducting member made of, for example, copper. Further, in this configuration example, the superconducting current lead member 5 ′ made of an oxide superconductor and the normal conducting current member 7 form a connection structure in which they are in contact with each other and are electrically connected to each other on the surfaces to be joined having substantially the same shape. And the superconducting current lead member 5 '.
Has a gradually enlarged shape in the direction of the surfaces to be joined.
That is, the connected terminal portion of the superconducting current lead member 5 '.
5a 'is gradually expanded (expanded) from the small diameter portion 5b', and the connecting portion 8 between the connected terminal portion 5a 'and the small diameter portion 5b' is thermally and mechanically reinforced. Due to the constitution, it can function as a connection structure of the superconducting current lead which is largely protected against thermal shock and external mechanical force.

【0018】なお、超電導電流リード部材5′および常
電導電流部材7の接続部9の断面積は、超電導電流リー
ド部材5′の電流密度が常電導電流部材7の電流密度よ
りはるかに大きいことから、超電導電流リード部材5′
に流す電流と常電導電流部材7の材質によって決められ
る。たとえば、超電導電流リード部材5′に流す電流を
1000[A] としたとき、常電導電流部材7が銅とすると銅
の電流密度が約12.7[A/mm2 ]であるため、超電導電流
リード部材5′および常電導電流部材7の接続部9の断
面積は約78.5[ mm2 ]となる。ただし、銅の電流密度1
2.7[A/mm2 ]は、温度を液体窒素レベルに置き換えて
算出した値である。
The cross-sectional area of the connecting portion 9 between the superconducting conductive current lead member 5'and the normal conducting current member 7 is because the current density of the superconducting conductive lead member 5'is much larger than that of the normal conducting current member 7. , Superconducting current lead member 5 '
It is determined by the current flowing through and the material of the normal current conducting member 7. For example, the current flowing in the superconducting current lead member 5 '
When 1000 [A], the current density of copper is about 12.7 [A / mm 2 ] if the normal conducting current member 7 is copper, so that the connecting portion 9 of the superconducting current lead member 5 ′ and the normal conducting current member 7 is The cross-sectional area of is about 78.5 [mm 2 ]. However, the current density of copper 1
2.7 [A / mm 2 ] is a value calculated by replacing the temperature with the liquid nitrogen level.

【0019】図7は他の構成例を断面的に示したもの
で、この構成の場合は超電導電流リード部材5′と常電
導電流部材7との被接続面の位置決めや接続を容易に成
し得る超電導電流リードの接続構造体である。すなわ
ち、この構成においては、超電導電流リード部材5′の
被接続端子部5a′を円錐状の凸面にし、一方、常電導電
流部材7の接続端子部7a′を、前記超電導電流リード部
材5′の円錐状被接続端子部5a′に合致する円錐状の凹
面形状とし、これら円錐状の凹凸面の嵌合による一体化
で、超電導電流リード部材5′を常電導電流部材7に接
続して成る超電導電流リードの接続構造体である。
FIG. 7 is a cross-sectional view showing another structural example. In the case of this structure, the surface to be connected between the superconducting conductive current lead member 5'and the normal conducting current member 7 can be easily positioned and connected. It is a connection structure of the obtained superconducting current lead. That is, in this structure, the connected terminal portion 5a 'of the superconducting current lead member 5'is made into a conical convex surface, while the connecting terminal portion 7a' of the normal conducting current member 7 is connected to the superconducting current lead member 5 '. A superconducting device having a conical concave surface shape that matches the conical connected terminal portion 5a ', and connecting the superconducting current flow lead member 5'to the normal current conducting flow member 7 by integrating these conical uneven surfaces. It is a connection structure of a current lead.

【0020】なお、この構成例においては、前記円錐状
の凹凸面の嵌合による一体化に当たり、常電導電流部材
7の接続端子部7a′を円錐状の凸面化し、超電導電流リ
ード部材5′の被接続端子部5a′を円錐状の凹面形状と
ししても、前記の場合と同様に接続時の位置決め、接続
を容易に行い得る。また、接続端子部の形状は円錐状に
限定されることなく角錐状などでもよい。
In this constitutional example, the connection terminal portion 7a 'of the normal current conducting member 7 is made into a conical convex surface when the conical concave and convex surfaces are fitted to each other so that the superconducting current lead member 5'is formed. Even if the connected terminal portion 5a 'has a conical concave surface, positioning and connection at the time of connection can be easily performed as in the case described above. Further, the shape of the connection terminal portion is not limited to the conical shape, and may be a pyramid shape or the like.

【0021】図8は、さらに他の異なる構成例を断面的
に示したもので、前記図6に図示した構成と図7に図示
した構成とを備えた超電導電流リードの接続構造体であ
る。すなわち、超電導電流リード部材5′の被接続端子
部5a′を、細径部5b′から徐々に拡張形成(膨大化)し
た構成とし、前記被接続端子部5a′と細径部5b′との連
接部8が熱的および機械的に補強される構成とする一
方、超電導電流リード部材5′の被接続端子部5a′およ
び常電導電流部材7の接続端子部7a′を、嵌合して一体
化が可能な円錐状の凹凸面とし、位置決めなど容易な構
成とすることにより、熱的衝撃および機械的外力に対し
て大幅に保護でき、かつ接続の位置決めも容易に成し得
る超電導電流リードの接続構造体である。
FIG. 8 is a cross-sectional view showing still another different configuration example, which is a superconducting current flow lead connection structure having the configuration shown in FIG. 6 and the configuration shown in FIG. That is, the connected terminal portion 5a 'of the superconducting current lead member 5'is configured to be gradually expanded (enlarged) from the small diameter portion 5b', and the connected terminal portion 5a 'and the small diameter portion 5b' are The connecting portion 8 is configured to be reinforced thermally and mechanically, while the connected terminal portion 5a 'of the superconducting current lead member 5'and the connecting terminal portion 7a' of the normal conducting current member 7 are fitted and integrated. By adopting a conical uneven surface that can be made into a flexible structure and locating it easily for positioning, it is possible to greatly protect against thermal shock and mechanical external force, and to position the connection easily It is a connection structure.

【0022】なお、この構成例の場合、超電導電流リー
ド部材5′と常電導電流部材7との接続は、超電導電流
リード部材5′および常電導電流部材7の被接続端子部
5a′、7a′をそれぞれ膨大化しておき、この膨大化部分
でネジ10により機械的に接続するか、あるいはネジ10に
よる機械的な接続の代わりに、たとえば導電性の接着剤
で超電導電流リード部材5′と常電導電流部材7とを接
続してもよい。
In the case of this configuration example, the superconducting conductive current lead member 5'and the normal conducting current member 7 are connected to each other by the connected terminal portions of the superconducting conductive lead member 5'and the normal conducting current member 7.
5a 'and 7a' are enlarged respectively, and these enlarged portions are mechanically connected by the screw 10, or instead of the mechanical connection by the screw 10, for example, a conductive adhesive is used to form the superconducting current lead member. 5'may be connected to the normal current conducting member 7.

【0023】[0023]

【発明の効果】以上の説明からも明らかなように、本発
明に係る超電導電流リードの接続構造体は、使用態様に
応じて任意なもしくは複雑な構造ないし形状を採り得る
し、かつ均一な特性を呈する超電導電流リードとして機
能し得る。また、熱的衝撃や機械的外力による破損も解
消し得るし、超電導電流リード部材と常電導電流部材と
の接続部における接触抵抗の低減も図り得る。しかも、
超電導電流リードの接続構造体の構成に当たり、超電導
電流リード部材と常電導電流部材とを高い精度で位置決
めし容易に接続することもできる。
As is apparent from the above description, the connection structure of the superconducting current lead according to the present invention can have an arbitrary or complicated structure or shape depending on the use mode and has uniform characteristics. Can function as a superconducting current lead. Further, damage due to thermal shock or mechanical external force can be eliminated, and contact resistance at the connecting portion between the superconducting conductive current lead member and the normal conducting current member can be reduced. Moreover,
In constructing the connection structure of the superconducting current lead, the superconducting current lead member and the normal conducting flow member can be positioned with high accuracy and easily connected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導電流リードの接続構造体を
構成する超電導電流リード部材の構造例を示す断面図。
FIG. 1 is a cross-sectional view showing a structural example of a superconducting current lead member constituting a connection structure of a superconducting current lead according to the present invention.

【図2】本発明に係る超電導電流リードの接続構造体の
第1の構造例を示す斜視図。
FIG. 2 is a perspective view showing a first structural example of a connection structure of a superconducting current lead according to the present invention.

【図3】本発明に係る超電導電流リードの接続構造体の
第2の構造例を示す斜視図。
FIG. 3 is a perspective view showing a second structural example of a connection structure of a superconducting current lead according to the present invention.

【図4】本発明に係る超電導電流リードの接続構造体の
第3の構造例を示す断面図。
FIG. 4 is a cross-sectional view showing a third structural example of a connection structure of a superconducting current lead according to the present invention.

【図5】本発明に係る超電導電流リードの接続構造体の
第4の構造例を示す断面図。
FIG. 5 is a cross-sectional view showing a fourth structural example of a connection structure of a superconducting current lead according to the present invention.

【図6】本発明に係る超電導電流リードの接続構造体の
第5の構造例を示す断面図。
FIG. 6 is a cross-sectional view showing a fifth structural example of a connection structure of a superconducting current lead according to the present invention.

【図7】本発明に係る超電導電流リードの接続構造体の
第6の構造例を示す断面図。
FIG. 7 is a cross-sectional view showing a sixth structural example of a connection structure of a superconducting current lead according to the present invention.

【図8】本発明に係る超電導電流リードの接続構造体の
第7の構造例を示す断面図。
FIG. 8 is a cross-sectional view showing a seventh structural example of a connection structure of a superconducting current lead according to the present invention.

【図9】従来の超電導電流リードの接続構造体の構造例
を示す断面図。
FIG. 9 is a cross-sectional view showing a structural example of a connection structure of a conventional superconducting current lead.

【図10】従来の超電導電流リードと常電導導体の他の
構造例を示す断面図。
FIG. 10 is a cross-sectional view showing another structural example of a conventional superconducting current lead and a normal conducting conductor.

【符号の説明】[Explanation of symbols]

1,5,5′……超電導電流リード部材 1a,5a……
超電導電流リード部材の被接続端子部 1a,5b……超
電導電流リード部材の細径部 2,7……常電導電流
リード部材 2a,7a……常電導電流リード部材の被接
続端子部 3……クランプ 4,8…超電導電流リ
ード部材の被接続端子部と細径部の連接部 6……ボル
トナット 9……接続部
1, 5, 5 '... Superconducting current lead members 1a, 5a ..
Connected terminal part of superconducting current lead member 1a, 5b ...... Small diameter part of superconducting current lead member 2,7 ...... Normal current conducting current lead member 2a, 7a ...... Connected terminal part of normal current conducting lead member 3 ... Clamps 4, 8 ... Connection part between the terminal to be connected of the superconducting current lead member and the small diameter part 6 ... Bolt nut 9 ... Connection part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超電導電流リード部材同士もしくは超電
導電流リード部材と常電導導体部材との電気的な接続構
造体において、 前記各被接合部材は被接合面が互いに密着的な対接可能
な加工面での接合により電気的に接続されていることを
特徴とする超電導電流リードの接続構造体。
1. A structure for electrically connecting superconducting current lead members to each other or a superconducting current lead member to a normal conductor member, wherein each member to be joined is a work surface in which the surfaces to be joined are in close contact with each other. A superconducting current lead connection structure characterized in that it is electrically connected by joining with.
【請求項2】 酸化物超電導体から成る超電導電流リー
ド部材と常電導導体部材とがほぼ同形の被接合面で対接
して電気的に接続する接続構造体において、 前記超電導電流リード部材の径が被接合面方向へ徐々に
膨大化されて構成されていることを特徴とする超電導電
流リードの接続構造体。
2. A connection structure in which a superconducting current lead member made of an oxide superconductor and a normal conducting member are in contact with each other at a joint surface having substantially the same shape and are electrically connected to each other. A superconducting current lead connection structure characterized by being gradually enlarged in the direction of the surfaces to be joined.
【請求項3】 酸化物超電導体からなる超電導電流リー
ド部材と常電導導体部材との電気的な接続構造体におい
て、 前記両被接合部材は被接合面が互いに嵌合・密着して対
接可能な錐形の凹凸面を備え、前記錐形の凹凸面の嵌合
・密着により電気的に接続していることを特徴とする超
電導電流リードの接続構造体。
3. In a structure for electrically connecting a superconducting current lead member made of an oxide superconductor and a normal conductor member, the members to be joined can be brought into contact with each other with their surfaces to be joined fitted and in close contact with each other. A superconducting current flow lead connection structure comprising a conical irregular surface, and the conical irregular surface is electrically connected by fitting and adhering.
JP745692A 1992-01-20 1992-01-20 Superconducting current lead connection structure Expired - Fee Related JP3142934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP745692A JP3142934B2 (en) 1992-01-20 1992-01-20 Superconducting current lead connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP745692A JP3142934B2 (en) 1992-01-20 1992-01-20 Superconducting current lead connection structure

Publications (2)

Publication Number Publication Date
JPH05198433A true JPH05198433A (en) 1993-08-06
JP3142934B2 JP3142934B2 (en) 2001-03-07

Family

ID=11666330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP745692A Expired - Fee Related JP3142934B2 (en) 1992-01-20 1992-01-20 Superconducting current lead connection structure

Country Status (1)

Country Link
JP (1) JP3142934B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178339B1 (en) * 1995-04-11 2001-01-23 Matsushita Electric Industrial Co., Ltd. Wireless communication filter operating at low temperature
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP2007073653A (en) * 2005-09-06 2007-03-22 Japan Superconductor Technology Inc Current lead for superconductive magnet
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178339B1 (en) * 1995-04-11 2001-01-23 Matsushita Electric Industrial Co., Ltd. Wireless communication filter operating at low temperature
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
USRE44996E1 (en) * 2004-06-25 2014-07-08 Nichia Corporation Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US8441180B2 (en) 2004-07-09 2013-05-14 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7884539B2 (en) 2004-07-09 2011-02-08 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US8066910B2 (en) 2004-07-28 2011-11-29 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
USRE44162E1 (en) * 2004-08-02 2013-04-23 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US7803286B2 (en) 2004-08-27 2010-09-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US8308981B2 (en) 2004-08-27 2012-11-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JP4559325B2 (en) * 2005-09-06 2010-10-06 ジャパンスーパーコンダクタテクノロジー株式会社 Current lead for superconducting magnet
JP2007073653A (en) * 2005-09-06 2007-03-22 Japan Superconductor Technology Inc Current lead for superconductive magnet

Also Published As

Publication number Publication date
JP3142934B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JPH05198433A (en) Connecting structure of superconductive current lead
KR890001690B1 (en) Surface-metalized,bonded fuse with mechanically-stabilized end caps
JP5238038B2 (en) Moisture-proof laminated sleeve heater and manufacturing method thereof
US6039238A (en) Electrical connection method
JPS6121387B2 (en)
WO2006022257A1 (en) Ceramic electronic component
JP2643396B2 (en) Plate-shaped lead wire soldered to a ceramic capacitor
JP4402928B2 (en) Oxide superconductor conducting element
US6853088B2 (en) Semiconductor module and method for fabricating the semiconductor module
JP2922914B2 (en) Oxide superconductor terminal
KR20230021636A (en) connection of components
JP2003324013A (en) Oxide superconductor current lead
JP4728847B2 (en) Oxide superconductor conducting element
JPH07135034A (en) Connecting method for superconducting wire
JPS61284075A (en) Multilayer-structure electric connection terminal
JPH07211946A (en) Electrode structure for current led made of oxide superconducting material
JPH1117234A (en) Thermoelectric transducer
JP2539772Y2 (en) Superconducting and normal conducting connection terminals
JPH02117157A (en) Semiconductor device
JP2560088B2 (en) How to join superconductors
Williams et al. Advanced solderless flexible thermal link
JP2508251B2 (en) Piezoelectric actuator
JPH0589919A (en) Low resistance current lead and low resistance current lead unit
JPH0766031A (en) Superconductive current lead
JPH0521228A (en) Oxide superconductor current lead

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

LAPS Cancellation because of no payment of annual fees