JPH05196870A - Scanning type laser microscope - Google Patents

Scanning type laser microscope

Info

Publication number
JPH05196870A
JPH05196870A JP987392A JP987392A JPH05196870A JP H05196870 A JPH05196870 A JP H05196870A JP 987392 A JP987392 A JP 987392A JP 987392 A JP987392 A JP 987392A JP H05196870 A JPH05196870 A JP H05196870A
Authority
JP
Japan
Prior art keywords
light
beam splitter
polarization beam
deflecting element
laser microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP987392A
Other languages
Japanese (ja)
Inventor
Yasushi Haraguchi
原口康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI RAIOSONITSUKU KK
Jeol Ltd
Original Assignee
NIPPON DENSHI RAIOSONITSUKU KK
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI RAIOSONITSUKU KK, Jeol Ltd filed Critical NIPPON DENSHI RAIOSONITSUKU KK
Priority to JP987392A priority Critical patent/JPH05196870A/en
Publication of JPH05196870A publication Critical patent/JPH05196870A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To efficiently observe a body by guiding deflected luminous flux, projected from an anisotropic Bragg diffraction acoustooptic light deflecting element, onto the body without any loss. CONSTITUTION:The anisotropic Bragg acoustooptic light deflecting element 3, a polarization beam splitter 6, and a galvanomirror 9 are arranged in the order of the travel of light from a light source 1 and the body S is scanned with the converged luminous flux in two dimensions; and the light scattered by the body S is passed through the galvanomirror 9 and directed by the polarization beam splitter 6 to the direction different from the direction to the light source and its intensity is detected by a detector 15. This scanning type laser microscope has a 1/4-wavelength plate 4 arranged between the anisotropic Bragg diffraction acoustooptic light deflecting element 3 and polarization beam splitter 6 and the deflected luminous flux which is elliptically polarized by the light deflecting element 3 is converted into linear polarized light which passes through the polarization beam splitter 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型レーザー顕微鏡
に関し、特に、音響光学光偏向素子を用いた走査型レー
ザー顕微鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning laser microscope, and more particularly to a scanning laser microscope using an acousto-optic light deflection element.

【0002】[0002]

【従来の技術】走査型レーザー顕微鏡は、レーザー光源
からの光束を対物レンズにより物体上の点に集束し、そ
の散乱光を光電変換装置で受けて物体の1点の状態を表
わす信号を得るようにした光電顕微鏡の一種であって、
物体と集束レーザー光束の相対位置を変えることによ
り、物体の面の状態に関する情報を得ることができるよ
うにしたものであり、広汎な応用が期待されているもの
である。
2. Description of the Related Art In a scanning laser microscope, a light beam from a laser light source is focused on a point on an object by an objective lens, and the scattered light is received by a photoelectric conversion device to obtain a signal representing the state of one point on the object. Which is a type of photoelectric microscope
By changing the relative positions of the object and the focused laser beam, it is possible to obtain information about the state of the surface of the object, and is expected to have a wide range of applications.

【0003】従来、この種の装置においては、物体とレ
ーザー光束の相対位置を変えるのに、(1)物体を移動
させる、又は、(2)レーザー光源と対物レンズとの間
にガルバノミラー、回転多面体又はクォーツプレートを
配置して、物体上における光束の集束位置を変化させ
る、又は、(3)上記(2)で示した光偏向素子と異方
ブラッグ回折を利用した音響光学光偏向素子を組み合わ
せて、物体上における光束の集束位置を変化させる、と
言う方法がとられていた。
Conventionally, in this type of device, in order to change the relative position of the object and the laser beam, (1) the object is moved, or (2) a galvano mirror or a rotation is provided between the laser light source and the objective lens. Arranging a polyhedron or a quartz plate to change the focusing position of the light beam on the object, or (3) combining the optical deflecting element shown in (2) above with an acousto-optic optical deflecting element using anisotropic Bragg diffraction. Then, the method of changing the focusing position of the light flux on the object has been adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、(1)
の方法では、走査範囲の大きさは任意に選ぶことができ
るが、物体を高速で移動させることは到底不可能なの
で、所定の走査領域の信号を得るのに極めて長い時間を
要すると言う問題があった。また、(2)の方法では、
走査速度はかなり速くなるが、充分とは言い難く、例え
ば、TVモニター画面上にリアルタイムで物体像を表示
することはできないと言う問題があった。
[Problems to be Solved by the Invention] However, (1)
In this method, the size of the scanning range can be arbitrarily selected, but since it is impossible to move the object at high speed, it takes a very long time to obtain a signal in a predetermined scanning region. there were. Also, in the method of (2),
The scanning speed is considerably high, but it is not sufficient. For example, there is a problem that an object image cannot be displayed in real time on a TV monitor screen.

【0005】さらに、(3)の方法では、水平方向走査
(主走査)に上記の音響光学光偏向素子用い、垂直方向
走査(副走査)にガルバノミラー等を用いることによ
り、走査速度は表示のリアルタイム性を保つには充分と
なったが、上記音響光学光偏向素子の異方性によりこの
偏光素子を出射した光が楕円偏光になるため、物体から
の散乱光を照射光路から分けて検出光路へ導く偏光ビー
ムスプリッターにより相当部分減衰を受けて、物体に達
する集束光の強度が低下してしまい、結果的に顕微鏡が
暗くなってしまうと言う問題点があった。
Further, in the method (3), the above-mentioned acousto-optic light deflecting element is used for horizontal scanning (main scanning), and a galvano mirror or the like is used for vertical scanning (sub scanning), so that the scanning speed is set to display. This is sufficient to maintain real-time properties, but the anisotropy of the acousto-optic light deflection element causes the light emitted from this polarization element to be elliptically polarized, so the scattered light from the object is separated from the irradiation light path and the detection light path is separated. There is a problem in that the intensity of the focused light that reaches the object is reduced by a considerable amount of attenuation by the polarization beam splitter that leads to, and consequently the microscope becomes dark.

【0006】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、異方ブラッグ回折音響光学光
偏向素子とガルバノミラー等の光偏向素子とを組み合わ
せて集束レーザー光束を物体上で2次元的に走査する走
査型レーザー顕微鏡において、異方ブラッグ回折音響光
学光偏向素子から出射する偏向光束を損失なく物体上に
導いて、効率よく物体を観察できるようにすることであ
る。
The present invention has been made in view of such a situation, and an object thereof is to combine a focused laser light flux on an object by combining an anisotropic Bragg diffractive acousto-optic light deflecting element and a light deflecting element such as a galvanometer mirror. In a scanning laser microscope which two-dimensionally scans with, the deflected light flux emitted from the anisotropic Bragg diffractive acousto-optic light deflecting element is guided onto the object without loss so that the object can be efficiently observed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の走査型レーザー顕微鏡は、光源からの光が進む順
に、少なくとも、異方ブラッグ回折音響光学光偏向素子
と、ビームスプリッターと、第2の光偏向素子とを配置
して、物体上で集束光束を2次元的に走査し、物体から
散乱された光を第2の光偏向素子を介してビームスプリ
ッターにより光源とは別の方向に向け、その強度を検出
する走査型レーザー顕微鏡において、ビームスプリッタ
ーとして偏光ビームスプリッターを用い、異方ブラッグ
回折音響光学光偏向素子と偏光ビームスプリッターの間
に4分の1波長板を配置したことを特徴とするものであ
る。
A scanning laser microscope according to the present invention that achieves the above object has at least an anisotropic Bragg diffractive acousto-optical deflector, a beam splitter, and a second splitter in the order in which light from a light source travels. And a light deflecting element for scanning the focused light flux two-dimensionally on the object, and the light scattered from the object is directed to a direction different from the light source by the beam splitter via the second light deflecting element. In a scanning laser microscope that detects the intensity, a polarization beam splitter is used as a beam splitter, and a quarter wavelength plate is arranged between the anisotropic Bragg diffractive acousto-optic light deflector and the polarization beam splitter. To do.

【0008】[0008]

【作用】本発明においては、異方ブラッグ回折音響光学
光偏向素子と偏光ビームスプリッターの間に4分の1波
長板を配置したので、この4分の1波長板により、異方
ブラッグ回折音響光学光偏向素子により楕円偏光になっ
た偏向光束を偏光ビームスプリッターを通過するような
直線偏光に変換することができ、異方ブラッグ回折音響
光学光偏向素子を出た偏向光束がほぼ減衰なしに偏光ビ
ームスプリッターを通過して試料に達し、その散乱光が
検出器により検出されるので、検出光量は大幅に増加
し、観察像は明るいものになる。
In the present invention, since the quarter-wave plate is arranged between the anisotropic Bragg diffractive acousto-optic light deflecting element and the polarization beam splitter, this quarter-wave plate allows the anisotropic Bragg diffractive acousto-optic device. The deflected light beam, which has become elliptically polarized by the light deflection element, can be converted into linearly polarized light that passes through the polarization beam splitter, and the deflected light beam emitted from the anisotropic Bragg diffractive acousto-optic light deflection element has almost no attenuation. Since the light passes through the splitter and reaches the sample, and the scattered light is detected by the detector, the amount of detected light is greatly increased and the observed image becomes bright.

【0009】[0009]

【実施例】以下、図示した1実施例に基づき本発明の走
査型レーザー顕微鏡を詳細に説明する。図1は本発明の
1実施例の光学系を示す図であり、1はレーザー光源、
2はレーザー光源1を発した光を平行光束にしビーム径
を拡げるビームエキスパンダーである。ビームエキスパ
ンダー2の後方には、第1の光偏向素子である異方ブラ
ッグ回折音響光学光偏向素子(以下、AODと言う。)
3が配置されており、図の紙面内に高速で出射光を偏向
する(主走査)。その後方にAOD3を出た楕円偏光を
直線偏光に変換する4分の1波長板4が配置されてい
る。なお、AOD3を出た光は偏向角に応じてその楕円
偏光状態が多少変わるので、4分の1波長板4は、例え
ば、中心偏向角において楕円偏光を直線偏光に変換し、
偏向角両端においては偏光成分の大部分がその直線偏光
方向に分布するような角度に設定される。AOD3の後
方には、その偏向面を前側焦点に一致させて第1正レン
ズ5が配置され、その後方にレーザー1からの光束と物
体Sからの散乱光を弁別する偏光ビームスプリッター6
が配置されている。偏光ビームスプリッター6の分割・
合成面は、4分の1波長板4によって直線偏光に変換さ
れた光束が通過するように光軸の周りで角度を調節して
設定されるので、必ずしも紙面に垂直になるものではな
い。偏光ビームスプリッター6の後方に、第1正レンズ
5と共焦点に第2正レンズ7が配置されており、第1正
レンズ5と第2正レンズ7はテレセントリックリレーレ
ンズ系を構成しており、第2正レンズ7の後側焦点に一
致するように、第2の光偏向素子であるガルバノミラー
9が配置されており、その入射光束を紙面に垂直に偏向
する(副走査)。なお、偏光ビームスプリッター6を出
た直線偏光を円偏光に変換し、物体Sからの戻る円偏光
をその直線偏光方向と直角な直線偏光に変換する別の4
分の1波長板8が第2正レンズ7とガルバノミラー9の
間に配置されているが、この4分の1波長板8の配置位
置は必ずしもこの位置に限られるものではなく、偏光ビ
ームスプリッター6と物体Sの間の何れかの位置であっ
てもよい。ガルバノミラー9を出た紙面内及び紙面に垂
直な2方向に偏向される光束は、第2のテレセントリッ
クリレーレンズ系を構成している共焦点な第3正レンズ
10、第4正レンズ11を経て、対物レンズ12に導か
れるが、第3正レンズ10の前側焦点はガルバノミラー
9の回転軸に一致し、第4正レンズ11の後側焦点は対
物レンズ12の入射瞳に一致するように配置されてい
る。偏光ビームスプリッター6の分割・合成面で反射さ
れた物体Sからの散乱光を集束するように結像レンズ1
3が配置され、その結像位置に物体S上の集束光との共
焦点性を成立させるためのスリット14が、スリット方
向を図示のように主走査方向に向けて配置されており、
スリット14を通過した光を検出する検出器15がその
後方に設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The scanning laser microscope of the present invention will be described in detail below with reference to the illustrated embodiment. FIG. 1 is a diagram showing an optical system of one embodiment of the present invention, in which 1 is a laser light source,
A beam expander 2 expands the beam diameter by converting the light emitted from the laser light source 1 into a parallel light beam. Behind the beam expander 2, an anisotropic Bragg diffractive acousto-optic light deflection element (hereinafter referred to as AOD) which is a first light deflection element.
3 is arranged, and the emitted light is deflected at high speed within the plane of the drawing (main scanning). A quarter-wave plate 4 for converting the elliptically polarized light emitted from the AOD 3 into linearly polarized light is disposed behind it. Since the elliptically polarized state of the light emitted from the AOD 3 changes slightly according to the deflection angle, the quarter-wave plate 4 converts the elliptically polarized light into the linearly polarized light at the central deflection angle, for example.
At both ends of the deflection angle, the angles are set such that most of the polarization components are distributed in the linear polarization direction. A first positive lens 5 is disposed behind the AOD 3 with its deflecting surface aligned with the front focal point, and behind the AOD 3, a polarizing beam splitter 6 for discriminating between the light flux from the laser 1 and the scattered light from the object S.
Are arranged. Splitting the polarization beam splitter 6
Since the synthetic plane is set by adjusting the angle around the optical axis so that the light beam converted into the linearly polarized light by the quarter-wave plate 4 passes, it is not necessarily perpendicular to the paper surface. A second positive lens 7 is disposed confocal with the first positive lens 5 behind the polarization beam splitter 6, and the first positive lens 5 and the second positive lens 7 constitute a telecentric relay lens system. A galvanometer mirror 9 which is a second light deflecting element is arranged so as to match the rear focal point of the second positive lens 7, and the incident light beam is deflected perpendicularly to the paper surface (sub scanning). It should be noted that another linearly polarized light emitted from the polarization beam splitter 6 is converted into circularly polarized light, and the circularly polarized light returned from the object S is converted into linearly polarized light which is orthogonal to the linearly polarized light direction.
The quarter-wave plate 8 is arranged between the second positive lens 7 and the galvanometer mirror 9, but the arrangement position of the quarter-wave plate 8 is not necessarily limited to this position, and the polarization beam splitter is used. It may be any position between 6 and the object S. The light flux exiting the galvanometer mirror 9 and deflected in two directions perpendicular to the paper surface passes through a confocal third positive lens 10 and a fourth positive lens 11 which form a second telecentric relay lens system. The front focus of the third positive lens 10 is aligned with the rotation axis of the galvanometer mirror 9, and the rear focus of the fourth positive lens 11 is aligned with the entrance pupil of the objective lens 12. Has been done. The imaging lens 1 so as to focus the scattered light from the object S reflected by the splitting / combining surface of the polarization beam splitter 6.
3 is arranged, and a slit 14 for establishing a confocal property with the focused light on the object S is arranged at the image forming position with the slit direction oriented in the main scanning direction as shown in the figure,
A detector 15 that detects the light that has passed through the slit 14 is provided behind it.

【0010】本発明の走査型レーザー顕微鏡は以上のよ
うな構成になっているので、レーザー光源1から出た光
束は、ビームエキスパンダー2により拡大したビーム径
の平行光束に変換され、AOD3により紙面内の主走査
方向に印加超音波波長に応じた角度偏向される。この偏
向光束は楕円偏光になっているが、4分の1波長板4に
より所定方向の直線偏光又はそれに近い楕円偏光に変換
される。この平行光束は、第1正レンズ5により集束さ
れ、偏光ビームスプリッター6に入射するが、その偏光
状態がその分割・合成面をほぼ通過するように4分の1
波長板4により変換されているので、ほとんど減衰を受
けることなく偏光ビームスプリッター6を通過し、第2
正レンズ7により平行光束に変換される。この直線偏光
光束は、別の4分の1波長板8に入射し、円偏光に変換
され、AOD3と共役な位置に配置されたガルバノミラ
ー9により、主走査方向と直交する紙面に垂直な副走査
方向に偏向される。このようにして、紙面内の主走査方
向及び紙面に垂直な副走査方向に2次元的に偏向された
光束は、第2のテレセントリックリレーレンズ系を構成
している第3正レンズ10と第4正レンズ11により、
対物レンズ12の入射瞳に入射するが、この入射瞳はA
OD3及びガルバノミラー9と共役になっているので、
入射瞳に入射する光束は、偏向角に依存しない一定位置
に入射する。この光束は、対物レンズ12により物体S
上で2次元走査する集光点としてその面上に集束され
る。物体Sの集光点の情報を含んだ散乱光束は、上記と
逆の光路を偏光ビームスプリッター6までたどるが、4
分の1波長板8により偏光ビームスプリッター6を通過
した光束と直交する直線偏光に変換されるので、この物
体Sからの散乱光束は偏光ビームスプリッター6の分割
・合成面で反射され、結像レンズ13に入射し、スリッ
ト14上に集光され、検出器15によりその強度が光電
検出される。この戻り光束は、一方の光偏向素子9しか
通過していないので、他方の走査方向すなわち主走査方
向に集光点が移動する。そのため、検出器15の検出面
前方の物体Sと共役な位置にこの主走査方向にスリット
が向いて配置されたスリット14を介して、副走査方向
の検出光スポットのサイドローブ(ハロ)が取り除かれ
て検出される。
Since the scanning laser microscope of the present invention is constructed as described above, the light beam emitted from the laser light source 1 is converted into a parallel light beam having a beam diameter enlarged by the beam expander 2, and the AOD 3 is provided on the paper surface. Is angularly deflected in the main scanning direction according to the wavelength of the applied ultrasonic wave. This deflected light flux is elliptically polarized light, but is converted into linearly polarized light in a predetermined direction or elliptically polarized light close to it by the quarter-wave plate 4. The parallel light flux is focused by the first positive lens 5 and is incident on the polarization beam splitter 6, but is ¼ so that its polarization state almost passes through the splitting / combining surface.
Since it is converted by the wave plate 4, it passes through the polarization beam splitter 6 with almost no attenuation and
It is converted into a parallel light flux by the positive lens 7. This linearly polarized light beam is incident on another quarter-wave plate 8 and converted into circularly polarized light. A galvano mirror 9 arranged at a position conjugate with the AOD 3 sub-scans the light perpendicular to the main scanning direction. It is deflected in the scanning direction. In this way, the luminous flux that is two-dimensionally deflected in the main scanning direction within the plane of the paper and the sub-scanning direction perpendicular to the plane of the paper is the third positive lens 10 and the fourth positive lens 10 constituting the second telecentric relay lens system. With the positive lens 11,
It is incident on the entrance pupil of the objective lens 12, and this entrance pupil is A
Since it is conjugated with OD3 and galvanometer mirror 9,
The light beam that enters the entrance pupil enters a fixed position that does not depend on the deflection angle. This light beam is transmitted to the object S by the objective lens 12.
It is focused on the surface as a converging point that is two-dimensionally scanned above. The scattered light flux including the information of the condensing point of the object S follows the optical path opposite to the above to the polarization beam splitter 6, but
Since the half-wave plate 8 converts the light beam that has passed through the polarization beam splitter 6 into a linearly polarized light which is orthogonal to the light beam, the scattered light beam from this object S is reflected by the splitting / combining surface of the polarization beam splitter 6 to form an imaging lens. The light enters the slit 13, is condensed on the slit 14, and its intensity is photoelectrically detected by the detector 15. Since only one of the light deflecting elements 9 passes through this return light beam, the condensing point moves in the other scanning direction, that is, the main scanning direction. Therefore, the side lobe (halo) of the detection light spot in the sub-scanning direction is removed via the slit 14 in which the slit is oriented in the main scanning direction at a position conjugate with the object S in front of the detection surface of the detector 15. Detected.

【0011】ここで、上記したように第1の光偏向素子
3として、例えば、二酸化テルルの単結晶から<110
>軸から傾けた方向に横波超音波を伝搬させて音響光学
効果によりレーザー光束を偏向させるオフ<110>型
異方ブラッグ回折音響光学光偏向素子が用いられてい
る。この素子3は、偏向角が大きいので、実用上充分な
走査範囲と走査速度を有する走査型レーザー顕微鏡を実
現することができるが、直線偏光光束を楕円偏光光束に
変化させるので、その後方に4分の1波長板4を配置し
ない場合、偏光ビームスプリッター6によりAOD3を
出た光の大きな部分が、その分割・合成面で反射され、
試料Sに達しないため、検出器15により検出される光
量が大幅に減少し、観察像は極めて暗いものになってし
まう。しかしながら、上記したように、4分の1波長板
4により、AOD3を出た楕円偏光を偏光ビームスプリ
ッター6を通過するような直線偏光に変換することによ
り、AOD3を出た偏向光束はほぼ減衰なしに偏光ビー
ムスプリッター6を通過し、試料Sに達し、その散乱光
が検出器15により検出されるので、検出光量は大幅に
増加し、観察像は明るいものになる。
Here, as described above, as the first light deflection element 3, for example, from a single crystal of tellurium dioxide, <110.
An off <110> type anisotropic Bragg diffractive acousto-optic light deflector is used which propagates transverse ultrasonic waves in a direction tilted from the> axis and deflects a laser beam by an acousto-optic effect. Since the element 3 has a large deflection angle, it is possible to realize a scanning laser microscope having a practically sufficient scanning range and scanning speed. If the 1/4 wavelength plate 4 is not arranged, a large part of the light emitted from the AOD 3 by the polarization beam splitter 6 is reflected by the splitting / combining surface,
Since it does not reach the sample S, the amount of light detected by the detector 15 is greatly reduced, and the observed image becomes extremely dark. However, as described above, the quarter-wave plate 4 converts the elliptically polarized light emitted from the AOD 3 into the linearly polarized light that passes through the polarization beam splitter 6, so that the deflected light flux emitted from the AOD 3 is hardly attenuated. After passing through the polarization beam splitter 6 to reach the sample S and the scattered light is detected by the detector 15, the amount of detected light is greatly increased and the observed image becomes bright.

【0012】次に、各光偏向素子の駆動及び検出信号の
処理について簡単に説明する。AOD3及びガルバノミ
ラー9による偏向角を同期して連続的、アナログ的に変
え、集光点をラスター走査して物体Sの表面像を得るこ
とも有効であるが、照射する位置を特定することが困難
であり、また、照射位置とそこから得られる情報の対応
がとり難い等の問題もある。そこで、これらの光偏向素
子3、9の偏向角を相互に同期して所定間隔でデジタル
的に変え、検出面を直交する2方向に所定間隔で碁盤の
目状に区切り、各画素からその位置の情報をデジタル情
報として検出すうようにする。図1にこのための構成も
示してある。すなわち、AOD3のドライバ21、ガル
バノミラー9の駆動コイル22のドライバ23はCPU
20により制御されるようになっており、図に偏向角を
示すように、AOD3は画面の主走査方向を一定間隔で
飛び飛びに偏向するように制御される。また、ガルバノ
ミラー9は、AOD3が画面の主走査方向1辺を走査す
る毎に副走査方向に一定間隔分だけ偏向角を増加するよ
うに制御される。そして、検出器15からの検出信号
は、A/D変換器24により所定数の諧調、例えば25
6諧調(8ビット諧調)のデジタル濃度情報に変換さ
れ、CPU20を経てフレームメモリ25に各画素の番
地と対応して記憶される。そして、このフレームメモリ
25に記憶された物体Sの形態情報又はCPU20によ
り所定の画像処理された情報がTVモニタ26に表示さ
れるようになっている。
Next, the driving of each light deflection element and the processing of the detection signal will be briefly described. It is also effective to change the deflection angles of the AOD 3 and the galvano mirror 9 in a continuous and analog manner synchronously to obtain a surface image of the object S by raster scanning the converging point, but it is possible to specify the irradiation position. There is also a problem that it is difficult and it is difficult to associate the irradiation position with the information obtained from it. Therefore, the deflection angles of these optical deflection elements 3 and 9 are digitally changed at a predetermined interval in synchronization with each other, and the detection surface is divided into two directions orthogonal to each other at a predetermined interval in a grid pattern, and the position of each pixel is changed. The information of is detected as digital information. FIG. 1 also shows a configuration for this purpose. That is, the driver 21 of the AOD 3 and the driver 23 of the drive coil 22 of the galvanometer mirror 9 are the CPU
The AOD 3 is controlled so as to be deflected at regular intervals in the main scanning direction of the screen as shown by the deflection angle. Further, the galvano mirror 9 is controlled so that the deflection angle is increased by a constant interval in the sub-scanning direction every time the AOD 3 scans one side of the screen in the main scanning direction. The detection signal from the detector 15 is output by the A / D converter 24 to a predetermined number of gray levels, for example 25
It is converted into 6-tone (8-bit tone) digital density information and stored in the frame memory 25 through the CPU 20 in association with the address of each pixel. Then, the morphological information of the object S stored in the frame memory 25 or the information subjected to the predetermined image processing by the CPU 20 is displayed on the TV monitor 26.

【0013】このように、走査型レーザー顕微鏡の2次
元走査を所定間隔でデジタル化し、また、検出情報を所
定の諧調数にデジタル化することにより、視野が自由に
選択でき、レーザー光の照射位置とそこからの情報の対
応を簡単に行うことができ、物体の測長、測積等が容易
になると共に、得られた形態情報に簡単に画像処理を行
うことができるようになる。
As described above, the two-dimensional scanning of the scanning laser microscope is digitized at a predetermined interval, and the detection information is digitized in a predetermined number of gradations so that the visual field can be freely selected and the irradiation position of the laser beam can be selected. It is possible to easily deal with the information from there, and it becomes easy to measure the length and the product of the object, and it is possible to easily perform image processing on the obtained morphological information.

【0014】以上、本発明の走査型レーザー顕微鏡を実
施例に基づいて説明してきたが、本発明はこれら実施例
に限定されず種々の変形が可能である。
The scanning laser microscope of the present invention has been described above based on the embodiments, but the present invention is not limited to these embodiments and various modifications can be made.

【0015】[0015]

【発明の効果】以上の説明から明らかなように、本発明
の走査型レーザー顕微鏡によると、異方ブラッグ回折音
響光学光偏向素子と偏光ビームスプリッターの間に4分
の1波長板を配置したので、この4分の1波長板によ
り、異方ブラッグ回折音響光学光偏向素子により楕円偏
光になった偏向光束を偏光ビームスプリッターを通過す
るような直線偏光に変換することができ、異方ブラッグ
回折音響光学光偏向素子を出た偏向光束がほぼ減衰なし
に偏光ビームスプリッターを通過して試料に達し、その
散乱光が検出器により検出されるので、検出光量は大幅
に増加し、観察像は明るいものになる。
As is apparent from the above description, according to the scanning laser microscope of the present invention, the quarter wavelength plate is arranged between the anisotropic Bragg diffractive acousto-optic light deflecting element and the polarization beam splitter. With this quarter-wave plate, it is possible to convert the deflected light beam, which has been elliptically polarized by the anisotropic Bragg diffractive acousto-optic light deflection element, into linearly polarized light that passes through the polarization beam splitter. The deflected light flux emitted from the optical light deflector passes through the polarizing beam splitter with almost no attenuation and reaches the sample, and the scattered light is detected by the detector, so the detected light amount greatly increases and the observed image is bright. become.

【0016】なお、異方ブラック回析音響光学光偏向素
子を用いることにより、リアルタイムで試料の形態像を
取り出すことが可能であり、検出器の前にスリットを用
いることにより共焦点性を高めることができる。そのた
め、試料のオプチカルスライシングが非常に精度よくで
きる。また、試料に集束光を照射するため、焦点深度が
浅く、試料の任意の層の画像を捉えることができる。
By using an anisotropic black diffraction acousto-optic light deflection element, it is possible to take out a morphological image of the sample in real time, and a slit is used in front of the detector to enhance the confocal property. You can Therefore, the optical slicing of the sample can be performed very accurately. Further, since the sample is irradiated with the focused light, the depth of focus is shallow and an image of an arbitrary layer of the sample can be captured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の走査型レーザー顕微鏡の1実施例の光
学系を示す図である。
FIG. 1 is a diagram showing an optical system of one embodiment of a scanning laser microscope of the present invention.

【符号の説明】[Explanation of symbols]

S…物体(試料) 1…レーザー光源 2…ビームエキスパンダー 3…異方ブラッグ回折音響光学光偏向素子(AOD) 4…4分の1波長板 5…第1正レンズ 6…偏光ビームスプリッター 7…第2正レンズ 8…4分の1波長板 9…ガルバノミラー 10…第3正レンズ 11…第4正レンズ 12…対物レンズ 13…結像レンズ 14…スリット 15…検出器 20…CPU 21…AODドライバ 22…駆動コイル 23…ガルバノミラードライバ 24…A/D変換器 25…フレームメモリ 26…TVモニタ S ... Object (sample) 1 ... Laser light source 2 ... Beam expander 3 ... Anisotropic Bragg diffraction acousto-optic light deflection element (AOD) 4 ... Quarter wave plate 5 ... First positive lens 6 ... Polarization beam splitter 7 ... 2 Positive lens 8 ... Quarter wave plate 9 ... Galvano mirror 10 ... Third positive lens 11 ... Fourth positive lens 12 ... Objective lens 13 ... Imaging lens 14 ... Slit 15 ... Detector 20 ... CPU 21 ... AOD driver 22 ... Drive coil 23 ... Galvano mirror driver 24 ... A / D converter 25 ... Frame memory 26 ... TV monitor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光が進む順に、少なくとも、
異方ブラッグ回折音響光学光偏向素子と、ビームスプリ
ッターと、第2の光偏向素子とを配置して、物体上で集
束光束を2次元的に走査し、物体から散乱された光を第
2の光偏向素子を介してビームスプリッターにより光源
とは別の方向に向け、その強度を検出する走査型レーザ
ー顕微鏡において、ビームスプリッターとして偏光ビー
ムスプリッターを用い、異方ブラッグ回折音響光学光偏
向素子と偏光ビームスプリッターの間に4分の1波長板
を配置したことを特徴とする走査型レーザー顕微鏡。
1. A light source in the order of travel of light, at least:
An anisotropic Bragg diffractive acousto-optic light deflector, a beam splitter, and a second light deflector are arranged to two-dimensionally scan a focused light beam on the object, and the light scattered from the object is reflected by the second light deflector. In a scanning laser microscope that detects the intensity of a beam from a light source through a beam splitter through a beam deflector, a polarizing beam splitter is used as the beam splitter, and an anisotropic Bragg diffraction acousto-optic beam deflector and a polarized beam are used. A scanning laser microscope having a quarter-wave plate arranged between splitters.
JP987392A 1992-01-23 1992-01-23 Scanning type laser microscope Withdrawn JPH05196870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP987392A JPH05196870A (en) 1992-01-23 1992-01-23 Scanning type laser microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP987392A JPH05196870A (en) 1992-01-23 1992-01-23 Scanning type laser microscope

Publications (1)

Publication Number Publication Date
JPH05196870A true JPH05196870A (en) 1993-08-06

Family

ID=11732269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP987392A Withdrawn JPH05196870A (en) 1992-01-23 1992-01-23 Scanning type laser microscope

Country Status (1)

Country Link
JP (1) JPH05196870A (en)

Similar Documents

Publication Publication Date Title
JPH11135U (en) Confocal laser scanning microscope
US5355252A (en) Scanning laser microscope
US3705755A (en) Microscopy apparatus
US4893008A (en) Scanning optical microscope
JP3343276B2 (en) Laser scanning optical microscope
US5081349A (en) Scanning microscope and scanning mechanism for the same
JPS61219919A (en) Scan type optical microscope
JPH05288992A (en) Transmission type microscope
JPH05196870A (en) Scanning type laser microscope
JP2002040329A (en) Confocal microscope
JPH01282515A (en) Beam scanning type optical microscope
US7274498B2 (en) Post-objective scanning device
JPH05196871A (en) Scanning type laser microscope
Awamura et al. Color laser microscope
JP2989330B2 (en) Microscope observation device
JPH05196872A (en) Scanning type laser microscope
JPS61272714A (en) Scanning type optical microscope
JPH07139931A (en) Apparatus for irradiating laser in laser scan microscope
JP3331175B2 (en) Microscope observation device
JPH01316715A (en) Beam scan type optical microscope
CN113534448B (en) Composite scanner for high speed imaging of multiple regions of interest
JPH03131811A (en) Confocal scanning type transmission microscope
JP4460690B2 (en) Scanning laser microscope
JP2000321502A (en) Laser scanning microscope
JPH04175713A (en) Scanning type optical microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408