JPH04175713A - Scanning type optical microscope - Google Patents

Scanning type optical microscope

Info

Publication number
JPH04175713A
JPH04175713A JP30449490A JP30449490A JPH04175713A JP H04175713 A JPH04175713 A JP H04175713A JP 30449490 A JP30449490 A JP 30449490A JP 30449490 A JP30449490 A JP 30449490A JP H04175713 A JPH04175713 A JP H04175713A
Authority
JP
Japan
Prior art keywords
light
optical microscope
scanning
deflection
deflection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30449490A
Other languages
Japanese (ja)
Inventor
Shingo Kashima
伸悟 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30449490A priority Critical patent/JPH04175713A/en
Publication of JPH04175713A publication Critical patent/JPH04175713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To observe a fluorescent image at real time and detect the confocal point even for the transmission type by providing at least one light deflecting member in the optical path guiding the light from an object to a detecting means, and driving the deflecting member synchronously with the first and second deflecting members. CONSTITUTION:In a scanning type optical microscope having an objective lens 7 projecting the light deflected by deflecting members 2, 4 to an object 8 and a photoelectric detecting means 14 detecting the light from the object 8, light deflecting members 9, 10 are provided in the optical path guiding the light from the object 8 to the detecting means 14, and the deflecting members 9, 10 are driven synchronously with the first and second deflecting members 2, 4 respectively. An image can be formed at real time in the fluorescent observation having different wavelengths of the incidence light and the detected light. The confocal point can be detected in a transmission type scanning optical microscope, and the real-time observation can be performed for fluorescent observation in both the transmission type and reflection type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー光により試料を走査照明し、その透
過光1反射光或いは蛍光を光電検出し、その検出信号に
基づいて画像を形成する走査型光学顕微鏡に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention scans and illuminates a sample with laser light, photoelectrically detects the transmitted light, reflected light, or fluorescence, and forms an image based on the detection signal. It relates to a scanning optical microscope.

〔従来の技術〕[Conventional technology]

従来、走査型光学顕微鏡としては、光ビームをガルバノ
メータミラー、ポリゴンミラー(回転多面鏡)等の光学
部材を使用して試料に二次元的に偏向走査するようにし
たものが知られていたが、このような走査顕微鏡は光学
部材による光ビームの偏向が機械的に行なわれるため走
査速度が遅いという欠点があり、そのため、特開昭61
−219919号、特開昭61−264314号公報等
において、偏向光学部材として音響光学偏向素子(以下
、AODという)を使用した走査型光学顕微鏡が提案さ
れている。
Conventionally, scanning optical microscopes have been known that use optical members such as galvanometer mirrors and polygon mirrors (rotating polygon mirrors) to deflect and scan a light beam two-dimensionally across a sample. Such a scanning microscope has the disadvantage that the scanning speed is slow because the optical beam is mechanically deflected by the optical member.
BACKGROUND ART Scanning optical microscopes using an acousto-optic deflection element (hereinafter referred to as AOD) as a deflection optical member have been proposed in Japanese Patent Application Laid-open No. 219919 and Japanese Patent Application Laid-Open No. 61-264314.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し乍らこれらの従来例では、AODを用いることによ
りリアルタイムで画像を形成することは出来るが、反射
型走査光学顕微鏡では、AODに波長特性があるため、
試料への入射光と検出光の波長が異なる蛍光観察は8来
ず、又、透過型走査光学顕微鏡では、入射側にしか偏向
光学部材がないため共焦点(confocal)検出か
出来ないという問題かあった。
However, in these conventional examples, images can be formed in real time by using an AOD, but in a reflection scanning optical microscope, since the AOD has wavelength characteristics,
Fluorescence observation, where the wavelengths of the incident light and detection light on the sample are different, is not possible, and transmission scanning optical microscopes only have a deflecting optical member on the incident side, so confocal detection is the only option available. there were.

本発明は、上記従来技術の有する問題点に鑑みてなされ
たもので、その目的とするところは、リアルタイムで蛍
光像の観察が可能な走査型光学顕微鏡、或いは透過型で
あっても共焦点検出を行なうなことの出来る走査型光学
顕微鏡を提供することである。
The present invention has been made in view of the problems of the prior art described above, and its purpose is to provide a scanning optical microscope capable of observing fluorescent images in real time, or even a transmission type optical microscope capable of confocal detection. An object of the present invention is to provide a scanning optical microscope capable of performing the following operations.

〔課題を解決するための手段及び作用〕本発明の走査型
光学顕微鏡は、光源と、光源から発した光を偏向させる
第一の偏向部材と、第一の偏向部材と共役な位置に設け
られた第一の偏向部材とは異なる方向に光を偏向させる
第二の偏向部材と、偏向部材により偏向された光を物体
に投射する対物L/レンズ、物体からの光を検出する光
電検出手段とを備えた走査型光学顕微鏡において、物体
からの光を検出手段に導く光路中に少なくとも一つの光
偏向部材を設けて、この偏向部材を上記第一、第二の偏
向部材と同期して駆動するよう構成されている。
[Means and effects for solving the problems] The scanning optical microscope of the present invention includes a light source, a first deflection member that deflects light emitted from the light source, and a position that is conjugate with the first deflection member. a second deflection member that deflects light in a direction different from that of the first deflection member; an objective L/lens that projects the light deflected by the deflection member onto an object; and a photoelectric detection means that detects light from the object. In a scanning optical microscope equipped with a scanning optical microscope, at least one optical deflection member is provided in the optical path that guides the light from the object to the detection means, and this deflection member is driven in synchronization with the first and second deflection members. It is configured like this.

即ち、一般にAODの偏向角θは、 λ θ−−−・f         ・・・・(1)■ 但し、λは光波長、■は音速、): fは駆動周波数である。    ′□ で表わされ、(1)式より、一つの、A ODでは光の
波長が異なると偏向角が変わってしまうので複数の波長
には対応できないが、駆動周波数を変えれば種々の波長
の光に対して同じ偏向角を与えられることがわかる。従
って、本発明では、入射レーサー光の波長をλ。、試料
から出てくる蛍光の波長をλ、として、λ。に対応した
AOD6とλ、に対応したAOD、を用いて、入射レー
ザー光路にはAOD、を二個用いてX−Y方向に偏向走
査し、更に蛍光検出光路(入射レーサー光路と蛍光検出
光路はダイクロイックミラー等の光路分割部材を用いて
分ける)にもX−Y方向に偏向走査し得る、A OD 
、を二個設置し、偏向走査方向が同じAOD。、AOD
、の夫々の駆動周波数の変化を同期させることにより、
入射光と検出光の波長が異なる蛍光観察においてもリア
ルタイムで像を形成することか可能となる。又、偏向速
度の遅いY方向の偏向走査は、A、 ODの代わりに、
ガルバノメータミラーやポリゴンミラーを用いて、ミラ
ーの偏向走査を電気・機械的に制御し、入射光と検出光
の同期をとるようにしても蛍光観察におけるリアルタイ
ムでの像の形成か可能である。更に、Y方向の偏向走査
をミラーを用いて行なうものは、入射光と検出光で夫々
Y方向の偏向走査をする二枚のミラーを同期させる代わ
りに、複数咬の反射部材を用いて検出光路を屈折させて
入射光路に戻し、−枚のミラーで兼用させることも可能
である。
That is, in general, the deflection angle θ of the AOD is λ θ−−·f (1) (1) (where λ is the wavelength of light, (2) is the speed of sound, and f is the driving frequency. '□, and from equation (1), one AOD cannot handle multiple wavelengths because the deflection angle changes when the wavelength of light differs, but if the driving frequency is changed, it can handle various wavelengths. It can be seen that the same deflection angle can be given to the light. Therefore, in the present invention, the wavelength of the incident laser light is λ. , where λ is the wavelength of fluorescence emitted from the sample. Using an AOD6 corresponding to λ and an AOD corresponding to (separated using an optical path splitting member such as a dichroic mirror) can also be deflected and scanned in the X-Y direction.
, two AODs with the same deflection and scanning direction. , AOD
By synchronizing the changes in the driving frequency of each of ,
It becomes possible to form images in real time even in fluorescence observation where the wavelengths of incident light and detection light are different. Also, for deflection scanning in the Y direction where the deflection speed is slow, instead of A and OD,
It is also possible to form images in real time in fluorescence observation by using a galvanometer mirror or a polygon mirror and electrically and mechanically controlling the deflection and scanning of the mirror to synchronize the incident light and the detected light. Furthermore, in a device that performs deflection scanning in the Y direction using a mirror, instead of synchronizing two mirrors that perform deflection scanning in the Y direction with incident light and detection light, a multi-piece reflective member is used to change the detection optical path. It is also possible to refract the beam and return it to the incident optical path, and to use two mirrors for the same purpose.

又、透過型走査光学顕微鏡に関しては、検出光路中に光
偏向部材であるX−Yスキャナを設け、入射光路中のX
−Yスキャナと、検出光路中に設けられたX−Yスキャ
ナの夫々の偏向走査を電気・機械的に制御して同期させ
ることにより、透過型でも共焦点検出が可能となる。更
にX−YスキャナとしてAODを用いればリアルタイム
で像の形成が可能となり、入射、検出光路に用いるA0
1〕の対応波長を変えることにより、透過蛍光でもリア
ルタイムでの像の形成か61能である1、〔実施例〕 以下図示した実施例に基つき本発明の詳細な説明する。
In addition, regarding a transmission type scanning optical microscope, an X-Y scanner, which is a light deflection member, is installed in the detection optical path, and
By electrically and mechanically controlling and synchronizing the deflection scans of the -Y scanner and the X-Y scanner provided in the detection optical path, confocal detection is possible even with a transmission type. Furthermore, if an AOD is used as an X-Y scanner, images can be formed in real time, and the A0 used for the incident and detection optical paths
1] By changing the corresponding wavelength, it is possible to form an image in real time even with transmitted fluorescence. 1. [Example] The present invention will be described in detail below based on the illustrated example.

第1図は、本発明による、入射光路と検出光路に夫々−
個のAODを用いて落射蛍光でのリアルタイム観察を可
能とした走査型光学顕微鏡の第1実施例の構成を示して
おり、第1図において、レーザー光源より出た光はビー
ムエクスパンダ−1で適当な大きさの光ビームにされて
AOD2に入射し、Y’(X)方向に偏向走査される。
FIG. 1 shows the incident optical path and the detection optical path, respectively, according to the present invention.
This figure shows the configuration of a first embodiment of a scanning optical microscope that enables real-time epifluorescence observation using multiple AODs. The light beam is made into a light beam of an appropriate size, enters the AOD 2, and is deflected and scanned in the Y' (X) direction.

Y (X)方向に偏向走査された光ビームは瞳伝送レン
ズ3で作られた共役な瞳位置に配置したAOD4でX(
Y)方向に偏向走査し、ダイクロイックミラー5を通し
て瞳レンズ6で対物系7の像位置に結像させると同時に
、AOD4の位置を対物系7の瞳位置に投影する。試料
面8より出た蛍光は、対物系7.瞳レンズ6でアフォー
カル光にされた後ダイクロイックミラー5で反射され、
周波数変調器1】により入射光路中のAOD4と同期変
調しているAOD9.瞳伝送レンズ129周波数変調器
13によりAOD 2と同期変調しているAOD 10
を介して測光系14に導かれる。共焦点検出は、測光系
14の中に集光レンズ系と共焦点絞りを設けることで可
能である。尚、AOD2.AOD4は入射レーザー光(
励起光)の波長(例えば488 nm)に対応したもの
であり、AOD9.AODlOは蛍光の波長(例えば5
90 nm)に対応したものである。
The light beam deflected and scanned in the Y (X) direction is converted to X (
The AOD 4 is deflected and scanned in the Y) direction, and is imaged at the image position of the objective system 7 by the pupil lens 6 through the dichroic mirror 5, and at the same time, the position of the AOD 4 is projected onto the pupil position of the objective system 7. The fluorescence emitted from the sample surface 8 is transmitted to the objective system 7. After being converted into afocal light by the pupil lens 6, it is reflected by the dichroic mirror 5,
AOD 9. which is synchronously modulated with AOD 4 in the incident optical path by frequency modulator 1]. Pupil transmission lens 129 AOD 10 synchronously modulated with AOD 2 by frequency modulator 13
The light is guided to the photometry system 14 via. Confocal detection is possible by providing a condensing lens system and a confocal aperture in the photometry system 14. In addition, AOD2. AOD4 is the incident laser beam (
excitation light) (for example, 488 nm), and has an AOD of 9. AODlO is the wavelength of fluorescence (e.g. 5
90 nm).

第2図は、Y方向の偏向走査をAODの代わりに用いる
一枚のミラーの偏向走査を電気・機械的に同期制御して
落射蛍光でのリアルタイム観察を可能とした走査型光学
顕微鏡の第2実施例の構成を示しており、第2図におい
て、レーザー光源より出た光はビームエクスパンダ−1
5で適当な大きさの光ビームにされて反射ミラー16.
ダイクロイックミラー17を介してミラースキャナ18
に入射しY方向に偏向走査される。Y方向に偏向走査さ
れた光ビームは、ダイクロイックミラー19を介して瞳
伝送レンズ20で作られた共役な瞳位置に配したAOD
21によりX方向に偏向走査され、ダイクロイックミラ
ー22を通して瞳レンズ23で対物系24の像位置に結
像させると同時に、AOD21の位置を対物系24の瞳
位置に投影する。試料面25より出た蛍光は、対物系2
4゜瞳レンズ23でアフォーカル光にされた後ダイクロ
イックミラー22で反射されて周波数変調器31により
AOD21と同期変調しているAOD 26、反射ミラ
ー27.瞳伝送レンズ281反射ミラー29.ダイクロ
イックミラー19を介してミラースキャナ18に導かれ
る。その後頁にダイクロイックミラー17で反射され測
光系30に導かれる。共焦点横比は、測光系30の中に
集光レンズ系と共焦点絞りを設けることで可能である。
Figure 2 shows the second example of a scanning optical microscope that uses deflection scanning in the Y direction instead of an AOD and electrically and mechanically synchronously controls the deflection scanning of a single mirror to enable real-time observation using epifluorescence. The structure of the embodiment is shown, and in Fig. 2, the light emitted from the laser light source is transmitted through beam expander 1.
5, the light beam is converted into a light beam of an appropriate size and passed through a reflecting mirror 16.
Mirror scanner 18 via dichroic mirror 17
The beam enters the beam and is deflected and scanned in the Y direction. The light beam deflected and scanned in the Y direction passes through a dichroic mirror 19 to an AOD placed at a conjugate pupil position created by a pupil transmission lens 20.
21 is deflected and scanned in the X direction, and the pupil lens 23 forms an image at the image position of the objective system 24 through the dichroic mirror 22. At the same time, the position of the AOD 21 is projected onto the pupil position of the objective system 24. The fluorescence emitted from the sample surface 25 is transmitted to the objective system 2.
The AOD 26, which is converted into afocal light by the 4° pupil lens 23, reflected by the dichroic mirror 22, and modulated in synchronization with the AOD 21 by the frequency modulator 31, and the reflecting mirror 27. Pupil transmission lens 281 reflection mirror 29. The light is guided to a mirror scanner 18 via a dichroic mirror 19. After that, the light is reflected by the dichroic mirror 17 and guided to the photometry system 30. The confocal aspect ratio can be achieved by providing a condensing lens system and a confocal diaphragm in the photometry system 30.

尚、AOD21は入射レーザー光(励起光)の波長(例
えば488 nm)に対応したものであり、AOD26
は蛍光の波長(例えば590 nm)に対応したもので
ある。
Note that AOD21 corresponds to the wavelength (for example, 488 nm) of the incident laser light (excitation light), and AOD26
corresponds to the wavelength of fluorescence (for example, 590 nm).

第3図は、検出光路中にX−Yスキャナを設け、入射光
路中に設けられたX−Yスキャナと検出光路中に設けら
れたX−Yスキャナの夫々の偏向走査を電気・機械的に
同期制御させて共焦点検出を可能とした透過型走査光学
顕微鏡の構成を示しており、第3図において、レーザー
光源より出た光はビームエクスパンダ32で適当な大き
さの光ビームにされてスキャナ33に入射しY (X)
方向に偏向走査される。Y (X)方向に走査された光
ビームは、瞳伝送レンズ34で作られた共役な瞳位置に
配したスキャナ35でX (Y)方向に偏向走査され、
瞳レンズ36で対物系37の像位置に結像させると同時
にスキャナ35の位置を対物系37の瞳位置に投影する
。試料面38を透過、若しくは試料面38から出た蛍光
は、コンデンサレンズ39.瞳レンズ40でアフォーカ
ル光にされた後、スキャナ41.瞳伝送レンズ42.ス
キャナ43を介して集光レンズ44で共焦点絞り45の
位置に集光され、ディテクター46に導く。尚、スキャ
ナ33とスキャナ43、スキャナ35とスキャナ41の
偏向走査は夫々電気・機械的に制御して同期させる。本
実施例は上述の如く、検出光路中に入射光路中のものと
同期制御され得る光偏向部材を設けたので共焦点検出か
可能である。又、X方向を偏向走査するスキャナとして
AODを用いればリアルタイムで像の形成が可能であり
、更に入射、検出光路に対応波長の異なるAODを用い
れば、透過蛍光でもリアルタイムで像の形成が可能であ
る。
In Figure 3, an X-Y scanner is installed in the detection optical path, and the deflection scanning of the X-Y scanner installed in the incident optical path and the X-Y scanner installed in the detection optical path is performed electrically and mechanically. This shows the configuration of a transmission scanning optical microscope that enables confocal detection through synchronous control. In Figure 3, the light emitted from the laser light source is made into a light beam of an appropriate size by the beam expander 32. Y (X) enters the scanner 33
deflection scanned in the direction. The light beam scanned in the Y (X) direction is deflected and scanned in the X (Y) direction by a scanner 35 placed at a conjugate pupil position created by the pupil transmission lens 34.
The pupil lens 36 forms an image at the image position of the objective system 37 and simultaneously projects the position of the scanner 35 onto the pupil position of the objective system 37. Fluorescence transmitted through the sample surface 38 or emitted from the sample surface 38 is passed through a condenser lens 39. After the pupil lens 40 converts the light into afocal light, the scanner 41. Pupil transmission lens 42. The light passes through a scanner 43 and is focused by a condensing lens 44 at a confocal diaphragm 45 and guided to a detector 46 . Incidentally, the deflection scanning of the scanner 33 and the scanner 43, and the deflection scanning of the scanner 35 and the scanner 41 are electrically and mechanically controlled and synchronized, respectively. In this embodiment, as described above, confocal detection is possible because an optical deflection member that can be controlled in synchronization with that in the incident optical path is provided in the detection optical path. Furthermore, if an AOD is used as a scanner that deflects and scans in the X direction, it is possible to form images in real time, and if AODs with different corresponding wavelengths are used for the incident and detection optical paths, it is possible to form images in real time even with transmitted fluorescence. be.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による走査型光学顕微鏡は、透過型
走査光学顕微鏡で共焦点検出か出来、且つ透過型・反射
型を問わず蛍光観察時もリアルタイム観察が出来るとい
う実用上重要な利点を有している。
As mentioned above, the scanning optical microscope according to the present invention has the important practical advantages of being able to perform confocal detection with a transmission scanning optical microscope, and also being able to perform real-time observation during fluorescence observation regardless of whether it is a transmission type or a reflection type. are doing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による走査型光学顕微鏡の第1実施例の
光学系を示す図、第2図は第2実施例の光学系を示す図
、第3図は第3実施例の光学系を示す図である。 1.1.5.32・・・・ビームエクスパンダ−12゜
4.9,10.21..26・・・・音響光学偏向素子
(八〇D)、 3. 12. 20. 28. 34.
 42・・・・瞳伝送レンズ、5.17,19.22・
・・・ダイクロイックミラー、6,23,36..40
・・・・瞳レンズ、7,24.37・・・・対物系、8
,25゜38・・・・試料面、14.30・・・・測光
系、11゜1.3.31・・・・周波数変調器、16,
27.29・・・・反射ミラー、18・・・・ミラース
キャナ、33゜35.4.i、43・・・・スキャナ、
39・・・・コンデンサlノノズ、44・・・・集光レ
ンズ、・45・・・・共蕉点絞り、46・・・・ディテ
クター。 ・=:シ
FIG. 1 shows the optical system of the first embodiment of the scanning optical microscope according to the present invention, FIG. 2 shows the optical system of the second embodiment, and FIG. 3 shows the optical system of the third embodiment. FIG. 1.1.5.32...Beam expander-12°4.9, 10.21. .. 26... Acousto-optic deflection element (80D), 3. 12. 20. 28. 34.
42...pupil transmission lens, 5.17, 19.22.
...Dichroic mirror, 6, 23, 36. .. 40
...pupil lens, 7,24.37...objective system, 8
,25゜38...Sample surface, 14.30...Photometry system, 11゜1.3.31...Frequency modulator, 16,
27.29...Reflection mirror, 18...Mirror scanner, 33°35.4. i, 43...Scanner,
39...Condenser l nozzle, 44...Condenser lens, 45...Common point aperture, 46...Detector.・=:shi

Claims (1)

【特許請求の範囲】  光源と、該光源から発した光を偏向させる第一の偏向
部材と、該第一の偏向部材と共役な位置に設けられ前記
第一の偏向部材とは異なる方向に光を偏向させる第二の
偏向部材と、前記偏向部材により偏向された光を物体に
投射する対物レンズと、前記物体からの光を検出する光
電検出手段とを備えた走査型光学顕微鏡において、 前記物体からの光を前記検出手段に導く光路中に少なく
とも一つの光偏向部材を設け、該偏向部材を前記第一、
第二の偏向部材と同期して駆動するようにしたことを特
徴とする走査型光学顕微鏡。
[Scope of Claims] A light source, a first deflection member that deflects light emitted from the light source, and a first deflection member that is provided at a position conjugate with the first deflection member and that deflects light in a direction different from that of the first deflection member. A scanning optical microscope comprising: a second deflection member that deflects the light; an objective lens that projects the light deflected by the deflection member onto an object; and a photoelectric detection means that detects light from the object; At least one optical deflection member is provided in the optical path that guides the light from the first to the detection means, and the deflection member is connected to the first
A scanning optical microscope characterized in that it is driven in synchronization with a second deflection member.
JP30449490A 1990-11-09 1990-11-09 Scanning type optical microscope Pending JPH04175713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30449490A JPH04175713A (en) 1990-11-09 1990-11-09 Scanning type optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30449490A JPH04175713A (en) 1990-11-09 1990-11-09 Scanning type optical microscope

Publications (1)

Publication Number Publication Date
JPH04175713A true JPH04175713A (en) 1992-06-23

Family

ID=17933711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30449490A Pending JPH04175713A (en) 1990-11-09 1990-11-09 Scanning type optical microscope

Country Status (1)

Country Link
JP (1) JPH04175713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903329B2 (en) * 2006-12-22 2011-03-08 Nikon Corporation Laser scan confocal microscope
WO2014132604A1 (en) * 2013-02-28 2014-09-04 パナソニック株式会社 Confocal microscope
JP2021529349A (en) * 2018-07-02 2021-10-28 ウニベルシタ デ バルセローナ Programmable multipoint illuminators, confocal filters, confocal microscopes, and how to operate confocal microscopes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903329B2 (en) * 2006-12-22 2011-03-08 Nikon Corporation Laser scan confocal microscope
US8400709B2 (en) 2006-12-22 2013-03-19 Nikon, Corporation Laser scan confocal microscope
US8786945B2 (en) 2006-12-22 2014-07-22 Nikon Corporation Laser scan confocal microscope
US9645373B2 (en) 2006-12-22 2017-05-09 Nikon Corporation Laser scan confocal microscope
WO2014132604A1 (en) * 2013-02-28 2014-09-04 パナソニック株式会社 Confocal microscope
CN104813215A (en) * 2013-02-28 2015-07-29 松下知识产权经营株式会社 Confocal microscope
JPWO2014132604A1 (en) * 2013-02-28 2017-02-02 パナソニックIpマネジメント株式会社 Confocal microscope
US9843719B2 (en) 2013-02-28 2017-12-12 Panasonic Intellectual Property Management Co., Ltd. Confocal microscope
CN104813215B (en) * 2013-02-28 2018-03-09 松下知识产权经营株式会社 Laser Scanning Confocal Microscope
JP2021529349A (en) * 2018-07-02 2021-10-28 ウニベルシタ デ バルセローナ Programmable multipoint illuminators, confocal filters, confocal microscopes, and how to operate confocal microscopes
US11860349B2 (en) 2018-07-02 2024-01-02 Universitat De Barcelona Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope

Similar Documents

Publication Publication Date Title
US4893008A (en) Scanning optical microscope
US4251129A (en) Photoelectric detecting device
EP0284136B1 (en) Confocal laser scanning microscope
JP5259154B2 (en) Scanning laser microscope
US5386112A (en) Apparatus and method for transmitted-light and reflected-light imaging
US5737121A (en) Real time scanning optical macroscope
JPH05509417A (en) Confocal scanning optical microscope
EP0541625B1 (en) Confocal imaging system for microscopy
JP2561160B2 (en) Scanning microscope
JP2004509360A (en) Arrangement configuration for confocal autofocusing
JPS63765B2 (en)
JPS61219919A (en) Scan type optical microscope
JPH04175713A (en) Scanning type optical microscope
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP2002040329A (en) Confocal microscope
JPH05288992A (en) Transmission type microscope
EP0718656B1 (en) Transmission type confocal laser microscope
JPS61272714A (en) Scanning type optical microscope
JPH0427909A (en) Transmission type microscope
JPH03131811A (en) Confocal scanning type transmission microscope
JPH10232352A (en) Laser scan microscope
JPH09243920A (en) Scanning type optical microscope
JP2576021B2 (en) Transmission confocal laser microscope
JPH0391709A (en) Scanning differential interference microscope
JPH1195114A (en) Scanning optical microscope device