JPH051957U - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH051957U
JPH051957U JP233191U JP233191U JPH051957U JP H051957 U JPH051957 U JP H051957U JP 233191 U JP233191 U JP 233191U JP 233191 U JP233191 U JP 233191U JP H051957 U JPH051957 U JP H051957U
Authority
JP
Japan
Prior art keywords
refrigerant
gas
compressor
liquid separator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP233191U
Other languages
Japanese (ja)
Inventor
誠夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP233191U priority Critical patent/JPH051957U/en
Publication of JPH051957U publication Critical patent/JPH051957U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 気液分離器を1個で済ませ、省スペース化と
コストの低減および圧縮機の故障防止ができる。 【構成】 運転時に圧縮機から吐出される冷媒を凝縮器
で液化し、膨張弁で減圧し、蒸発器で蒸発した後、吸入
側逆止弁を経て、吐出側と吸入側の兼用の気液分離器で
ガス冷媒と分離した液冷媒を第1の電磁弁を通して圧縮
機に戻し、停止後の起動時には、圧縮機から吐出された
冷媒を三方弁、気液分離器吸入側逆止弁を経て凝縮器に
導き、膨張弁、蒸発器および第2の電磁弁を経て圧縮機
に戻すようにしたことを特徴としている。 【効果】 コストの低減と省スペース化および圧縮機の
損傷防止を可能とする。
(57) [Abstract] [Purpose] A single gas-liquid separator is enough to save space, reduce costs, and prevent compressor failures. [Structure] Refrigerant discharged from the compressor during operation is liquefied by a condenser, decompressed by an expansion valve, evaporated by an evaporator, and then passed through a check valve on the suction side, and then used as gas on both the discharge and suction sides. The liquid refrigerant separated from the gas refrigerant in the separator is returned to the compressor through the first solenoid valve, and when starting after the stop, the refrigerant discharged from the compressor is passed through the three-way valve and the gas-liquid separator suction side check valve. It is characterized in that it is led to a condenser and returned to a compressor via an expansion valve, an evaporator and a second electromagnetic valve. [Effect] It is possible to reduce cost, save space, and prevent damage to the compressor.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、スクロール式圧縮機を使用した冷凍装置の起動時の冷媒寝込みに おける、油の減少による圧縮機の損傷を防止できるようにした冷凍装置に関する ものである。 The present invention relates to a refrigeration system capable of preventing the compressor from being damaged due to a decrease in oil when the refrigeration system using a scroll type compressor is sunk in the refrigerant at startup.

【0002】[0002]

【従来の技術】[Prior Art]

図3は例えば実開昭53−35459号公報に示された従来の冷凍装置の冷媒 回路図であり、圧縮機台数を1台にして図に示している。 この図2において、1は圧縮機、2は吐出配管、3は吐出側気液分離器、4は 吐出配管、5は凝縮器、6は液管、7は膨張弁、8は蒸発器、9,11は吸入配 管、10は吸入側気液分離器であり、これらにより冷凍サイクルを構成している 。また12は油戻し管、13は電磁弁である。 FIG. 3 is a refrigerant circuit diagram of a conventional refrigeration system disclosed in, for example, Japanese Utility Model Laid-Open No. 53-35459, in which the number of compressors is one. In FIG. 2, 1 is a compressor, 2 is a discharge pipe, 3 is a discharge side gas-liquid separator, 4 is a discharge pipe, 5 is a condenser, 6 is a liquid pipe, 7 is an expansion valve, 8 is an evaporator, 9 , 11 are suction pipes, 10 is a gas-liquid separator on the suction side, which constitute a refrigeration cycle. Further, 12 is an oil return pipe, and 13 is a solenoid valve.

【0003】 次に動作について説明する。圧縮機1で圧縮された冷媒は吐出配管2を経て吐 出側気液分離器3で、油を分離し、吐出配管4を経て、凝縮器5で液化し、配管 6を経て膨張弁7で減圧され、蒸発器8で蒸発し、吸入配管と吸入側気液分離器 10、吸入配管11を経て圧縮機1に吸入される。 吐出側気液分離器3で溜まった油は電磁弁13を開くことにより、油戻し配管 12およびこの電磁弁13を経て、吸入配管11から圧縮機1へ戻る。Next, the operation will be described. The refrigerant compressed in the compressor 1 passes through the discharge pipe 2 to separate the oil in the discharge side gas-liquid separator 3, is liquefied in the condenser 5 via the discharge pipe 4, and is liquefied in the condenser 6 via the pipe 6. It is decompressed, evaporated in the evaporator 8, and sucked into the compressor 1 through the suction pipe, the suction side gas-liquid separator 10 and the suction pipe 11. The oil accumulated in the discharge side gas-liquid separator 3 returns to the compressor 1 from the suction pipe 11 through the oil return pipe 12 and this solenoid valve 13 by opening the solenoid valve 13.

【0004】 停止中は、液冷媒が圧縮機1内に寝込み、起動時には、液冷媒と油の混合した ものが吐出され、圧縮機1内の油が持ち出されるため、吐出側気液分離器3によ り、油液冷媒を分離して圧縮機へ戻す。 なお、圧縮機1の性能改善により運転中の油上り量は0.5wt%以下にまで低下 するが、停止中の寝込みは解決されていない。The liquid refrigerant lies in the compressor 1 during the stop, and a mixture of the liquid refrigerant and oil is discharged at the time of start, and the oil in the compressor 1 is taken out, so that the gas-liquid separator 3 on the discharge side is discharged. To separate the oil-liquid refrigerant and return it to the compressor. Although the amount of oil rising during operation will drop to 0.5 wt% or less due to the performance improvement of the compressor 1, the stagnation during stoppage has not been solved.

【0005】 吸入側の気液分離器10は運転中の液バック{膨張弁7の故障,蒸発器8の送 風機(図示せず)停止などによる}を防止するものである。The gas-liquid separator 10 on the suction side prevents a liquid bag {due to a failure of the expansion valve 7, a blower (not shown) of the evaporator 8 is stopped, etc.) during operation.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

従来の冷凍装置は以上のように構成されているので、吐出側と吸入側に気液分 離器を設ける必要があり、取付けスペースが大きく必要になり、装置をコンパク トにできないばかりでなく、コスト的にも高くなり、かつ、電磁弁の故障時には 、油が圧縮機1に戻らなくなるため、圧縮機1が故障するという課題があった。 Since the conventional refrigeration system is configured as described above, it is necessary to provide a gas-liquid separator on the discharge side and the suction side, which requires a large installation space, and the device cannot be made compact. There is a problem that the cost becomes high and the compressor 1 fails because the oil does not return to the compressor 1 when the solenoid valve fails.

【0007】 この考案は上記のような課題を解消するためになされたもので、気液分離器を 1個で済み、取付スペースが小さくなり、コンパクトにできる冷凍装置を得るこ とを目的とする。The present invention has been made in order to solve the above problems, and an object thereof is to obtain a refrigerating apparatus which requires only one gas-liquid separator, has a small mounting space, and can be made compact. ..

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

この考案に係る冷凍装置は、圧縮機の吐出側用と吸入側用を兼用に設けられた 気液分離器と、通常の運転時には圧縮機から吐出される冷媒を凝縮器側に導き、 かつ停止後の起動時には圧縮機から吐出された冷媒を気液分離器側に導くように 切り換わる冷媒切換手段と、通常運転時には開弁し、停止後の起動時には閉弁す る第1の電磁弁と、通常運転時には閉弁し、停止後の起動時に開弁する第2の電 磁弁とを設けたものである。 The refrigerating apparatus according to the present invention comprises a gas-liquid separator provided for both the discharge side and the suction side of the compressor, and the refrigerant discharged from the compressor during normal operation, guided to the condenser side, and stopped. Refrigerant switching means for switching the refrigerant discharged from the compressor to the gas-liquid separator side at the time of subsequent startup, and the first solenoid valve that opens during normal operation and closes at startup after shutdown. A second electromagnetic valve is provided which is closed during normal operation and opened during startup after stop.

【0009】[0009]

【作用】[Action]

この考案においては、通常運転時には、圧縮機から吐出される冷媒を冷媒切換 手段により凝縮器側に導き、第1の電磁弁を開弁するとともに、第2の電磁弁を 閉弁して、気液分離器からの冷媒を第1の電磁弁と通して圧縮機に戻し、停止後 の起動時には、第1の電磁弁を閉弁し、第2の電磁弁を開弁するとともに、冷媒 切換手段を気液分離器側切り換えて、圧縮機から吐出される冷媒を気液分離器に 導き、気液分離器の冷媒は凝縮器および第2の電磁弁を経由して圧縮機に戻る。 In this invention, during normal operation, the refrigerant discharged from the compressor is guided to the condenser side by the refrigerant switching means, the first solenoid valve is opened, and the second solenoid valve is closed, so Refrigerant from the liquid separator is returned to the compressor through the first solenoid valve, and when starting after stop, the first solenoid valve is closed, the second solenoid valve is opened, and the refrigerant switching means Is switched to the gas-liquid separator side to guide the refrigerant discharged from the compressor to the gas-liquid separator, and the refrigerant in the gas-liquid separator returns to the compressor via the condenser and the second electromagnetic valve.

【0010】[0010]

【実施例】 以下、この考案の冷凍装置の実施例を図について説明する。図1はその一実施 例の構成を示す冷媒回路図である。この図1において、構成の説明に際し、図3 と同一部分には同一符号を付して、その重複説明を避け、図3とは異なる部分を 主体に述べる。 この図1を図3と比較しても明らかなように、図1では符号1,2,4〜11 で示す部分は図3と同様であり、以下に述べる部分が図3とは異なり、この図1 の実施例の特徴をなす部分である。Embodiment An embodiment of the refrigerating apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing the configuration of the embodiment. In the description of the configuration in FIG. 1, the same parts as those in FIG. 3 are designated by the same reference numerals to avoid redundant description, and the parts different from those in FIG. 3 will be mainly described. As is apparent from a comparison of FIG. 1 with FIG. 3, the portions denoted by reference numerals 1, 2, 4 to 11 in FIG. 1 are the same as those in FIG. 3, and the portions described below are different from those in FIG. This is a characteristic part of the embodiment shown in FIG.

【0011】 すなわち、14は吐出配管2に設けられた冷媒切換手段としての三方弁であり 、通常運転時には、吐出配管2と4間を連通し、停止後の起動時には、吐出配管 2と配管15を連通させるようになっている。That is, 14 is a three-way valve provided in the discharge pipe 2 as a refrigerant switching means, which connects the discharge pipes 2 and 4 during normal operation, and discharge pipe 2 and pipe 15 at the time of start-up after stoppage. To communicate.

【0012】 この配管15には、気液分離器10の構造を示す図2から明らかなように、気 液分離器10の入口管10aに連結され、かつ吸入側逆止弁19を介して吸入管 9に連結されている。入口管10aは気液分離器10の胴部分に連結されている 。また吸入管9はバイパス配管17と蒸発器8の出口側との間に接続されており 、この吸入管9から上記バイパス配管17が分岐して、圧縮機1の入口側に連結 され、このバイパス配管17の途中に電磁弁18が設けられている。As is apparent from FIG. 2 showing the structure of the gas-liquid separator 10, this pipe 15 is connected to the inlet pipe 10 a of the gas-liquid separator 10 and is sucked via a suction side check valve 19. It is connected to the pipe 9. The inlet pipe 10a is connected to the body portion of the gas-liquid separator 10. The suction pipe 9 is connected between the bypass pipe 17 and the outlet side of the evaporator 8. The bypass pipe 17 branches off from the suction pipe 9 and is connected to the inlet side of the compressor 1. A solenoid valve 18 is provided in the middle of the pipe 17.

【0013】 また上記三方弁14に連結された吐出配管4と液管6との間には凝縮器5が設 けられ、この凝縮器5は液管6を介して蒸発器8に接続されており、液管6には 膨張弁7が設けられている。A condenser 5 is provided between the discharge pipe 4 connected to the three-way valve 14 and the liquid pipe 6, and the condenser 5 is connected to the evaporator 8 via the liquid pipe 6. The liquid pipe 6 is provided with an expansion valve 7.

【0014】 さらに、圧縮機1の吸入側と気液分離器10間は、吸入配管11で連結されて おり、この吸入配管11には、電磁弁16に設けられている。 この電磁弁16と気液分離器10の出口側の吸入配管11から分岐して、吐出 配管4との間には、吐出側バイパス配管20が連結されており、この吐出側バイ パス配管20の途中には、吐出側逆止弁21が設けられている。 なお、22は気液分離器10からの細管(例えば、6.35Dなど)である。Further, the suction side of the compressor 1 and the gas-liquid separator 10 are connected by a suction pipe 11, and the suction pipe 11 is provided with a solenoid valve 16. A discharge side bypass pipe 20 is connected between the electromagnetic valve 16 and the suction pipe 11 on the outlet side of the gas-liquid separator 10 and is connected to the discharge pipe 4. A discharge-side check valve 21 is provided midway. Reference numeral 22 is a thin tube (for example, 6.35D) from the gas-liquid separator 10.

【0015】 次に動作について説明する。一般に圧縮機1へ冷媒が寝込んだ場合は油と冷媒 液か液状で吐出される。この場合の気液分離器の構造としては、吸入側の気液分 離器で採用されているような、図2で示すごとく、入口管10aの方向を気液分 離器10の胴部の壁面に連結する方法が効果がある。このような気液分離器10 の構造は吐出も吸入も同一になる。Next, the operation will be described. Generally, when the refrigerant stagnates in the compressor 1, it is discharged in the form of oil and refrigerant liquid or liquid. As the structure of the gas-liquid separator in this case, as shown in FIG. 2, which is adopted in the suction-side gas-liquid separator, the direction of the inlet pipe 10a is changed to the body part of the gas-liquid separator 10. The method of connecting to the wall surface is effective. The structure of such a gas-liquid separator 10 is the same for both discharge and suction.

【0016】 冷凍装置の運転中、三方弁14は吐出配管2と4が連通するように切り換え、 電磁弁16を開弁するとともに、電磁弁18を閉弁する。この状態で圧縮機1か ら吐出されるた高温度の冷媒は吐出配管2−三方弁14−吐出配管4を経て凝縮 器5に導入され、この凝縮器5で液化され、液管6を経て膨張弁7で減圧され、 蒸発器8で蒸発し、吸入配管9より吸入側逆止弁19を通り、気液分離器10の 入口管10aから気液分離器10に入り、この気液分離器10で冷媒液がガス冷 媒と分離され、気液分離器10から吸入配管11および電磁弁16を経て、圧縮 機1に戻る。During operation of the refrigeration system, the three-way valve 14 is switched so that the discharge pipes 2 and 4 communicate with each other, the solenoid valve 16 is opened, and the solenoid valve 18 is closed. The high temperature refrigerant discharged from the compressor 1 in this state is introduced into the condenser 5 through the discharge pipe 2-three-way valve 14-discharge pipe 4, is liquefied in the condenser 5, and then passes through the liquid pipe 6. The pressure is reduced by the expansion valve 7, evaporated by the evaporator 8, passes through the suction pipe 9 through the suction side check valve 19, enters the gas-liquid separator 10 through the inlet pipe 10a of the gas-liquid separator 10, and the gas-liquid separator At 10, the refrigerant liquid is separated from the gas cooling medium, and returns from the gas-liquid separator 10 to the compressor 1 through the suction pipe 11 and the solenoid valve 16.

【0017】 運転中の膨張弁7の故障、蒸発器8の送風機(図示せず)の故障またはホット ガスデフロスト(図示せず)などの液バックに対し、気液分離器10で冷媒液を 分離して、液バックから保護を行なう。The gas-liquid separator 10 separates the refrigerant liquid against the malfunction of the expansion valve 7 during operation, the malfunction of the blower (not shown) of the evaporator 8 or the liquid bag such as hot gas defrost (not shown). Then, the liquid bag is protected.

【0018】 次に、停止後の起動時の動作について説明する。この場合は冷媒切換手段とし ての三方弁14は吐出配管2と配管15とが連通するように切り換えるとともに 、電磁弁16を閉弁し、かつ電磁弁18を開弁する。Next, the operation at the time of starting after the stop will be described. In this case, the three-way valve 14 serving as the refrigerant switching means is switched so that the discharge pipe 2 and the pipe 15 are communicated with each other, the solenoid valve 16 is closed, and the solenoid valve 18 is opened.

【0019】 この状態において、圧縮機1内に寝込んだ液冷媒と油は混合し、起動時に吐出 配管2へ吐出(液状)され、三方弁14より配管15を入口管10aから通って 気液分離器10に入る。このとき、吸入側逆止弁19は逆圧により閉になる。In this state, the liquid refrigerant and oil sunk in the compressor 1 are mixed and discharged (liquid) to the discharge pipe 2 at the time of start-up, and the three-way valve 14 passes through the pipe 15 from the inlet pipe 10a to separate gas and liquid. Enter vessel 10. At this time, the suction side check valve 19 is closed by the reverse pressure.

【0020】 気液分離器10に入った液冷媒と油は気液分離器10内の壁面に衝突し、気液 分離器10の下部に液冷媒が溜まる。ガス冷媒は吸入配管11からバイパス配管 20および吐出側逆止弁21、吐出配管4を通って凝縮器5へ送られる。 以下、上記通常の運転中と同様にして、凝縮器5で液化された冷媒は液管6を 経て膨張弁7で減圧され、蒸発器8で蒸発し、吸入配管9、バイパス配管17、 電磁弁18を経て、分離された油と液冷媒の混合物は、圧縮機1へ圧力差(気液 分離器10の高圧と圧縮機1の吸入側の低圧との圧力差)により戻り、圧縮機1 内の油面の低下を防止する。 この動作は1〜3分位で安定するので、三方弁14、電磁弁16,18を通常 の運転中に切り換えて定常運転になる。The liquid refrigerant and oil that have entered the gas-liquid separator 10 collide with the wall surface inside the gas-liquid separator 10, and the liquid refrigerant accumulates in the lower part of the gas-liquid separator 10. The gas refrigerant is sent from the suction pipe 11 to the condenser 5 through the bypass pipe 20, the discharge side check valve 21, and the discharge pipe 4. Thereafter, in the same manner as in the above-mentioned normal operation, the refrigerant liquefied in the condenser 5 is decompressed by the expansion valve 7 via the liquid pipe 6, evaporated in the evaporator 8, and sucked in the pipe 9, the bypass pipe 17, the solenoid valve. After passing through 18, the separated mixture of oil and liquid refrigerant returns to the compressor 1 due to the pressure difference (the pressure difference between the high pressure of the gas-liquid separator 10 and the low pressure on the suction side of the compressor 1), and the inside of the compressor 1 To prevent the oil level from dropping. Since this operation stabilizes in about 1 to 3 minutes, the three-way valve 14 and the solenoid valves 16 and 18 are switched during the normal operation, and the normal operation is performed.

【0021】 また、上記実施例では、三方弁14を使用した場合の実施例を例示したが、冷 媒切換手段として、この三方弁14に代えて、二方弁を2使用してもよい。Further, in the above-mentioned embodiment, the embodiment in which the three-way valve 14 is used has been illustrated, but as the cooling medium switching means, two two-way valves may be used instead of the three-way valve 14.

【0022】 さらに、吸入管の電磁弁16の代りに細管(圧縮機の出力により異なる)で行 なうようにしてもよく、また、電磁弁16を起動時1分間位閉にして、吸入から の冷媒を停止して、寝込み冷媒のみで運転する方法でもよい。Further, instead of the solenoid valve 16 of the suction pipe, a thin pipe (depending on the output of the compressor) may be used. Further, the solenoid valve 16 is closed for about 1 minute at the start, and the suction valve It is also possible to stop the refrigerant of No. 3 and operate only with the sleeping refrigerant.

【0023】[0023]

【考案の効果】[Effect of the device]

以上のように、この考案によれば、圧縮機に対する吐出と吸入の気液分離器を 1個で行なうように構成したので、取付スペースが小さくなり、装置がコンパク トになるばかりでなく、気液分離器からの細管には電磁弁が不要となり、故障に よる油不足などのおそれがなくなり、かつ、安価になるとの効果がある。 As described above, according to the present invention, since the gas-liquid separator for discharging and suctioning the compressor is constituted by one unit, the mounting space is reduced and the device is not only compact but also A solenoid valve is not required for the thin tube from the liquid separator, so there is no risk of oil shortage due to a failure, and the cost will be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例による冷凍装置の冷媒回路
図である。
FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus according to an embodiment of the present invention.

【図2】図1の冷凍装置における気液分離器の構造説明
図である。
2 is a structural explanatory view of a gas-liquid separator in the refrigerating apparatus of FIG.

【図3】従来の冷凍装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2,4 吐出配管 5 凝縮器 7 膨張弁 8 蒸発器 10 気液分離器 14 三方弁 16,18 電磁弁 19 吸入側逆止弁 21 吐出側逆止弁 1 Compressor 2,4 Discharge pipe 5 Condenser 7 Expansion valve 8 Evaporator 10 Gas-liquid separator 14 Three-way valve 16,18 Solenoid valve 19 Suction side check valve 21 Discharge side check valve

Claims (1)

【実用新案登録請求の範囲】 【請求項1】 圧縮性の吸入側用と吐出側用と兼用に設
けられ液冷媒とガス冷媒に冷媒を分離する気液分離管
と、上記圧縮機の吐出配管に設けられ運転中は上記圧縮
機から吐出される冷媒を凝縮器に導きかつ停止後の起動
時には上記圧縮機から吐出された冷媒を上記気液分離器
に導くように切り換わる冷媒切換手段と、上記凝縮器で
液化された冷媒を膨張弁で減圧した後蒸発させる蒸発器
と、上記運転中に開弁して上記蒸発器で蒸発して上記気
液分離器に貯留された液冷媒を上記圧縮機に導き上記停
止後の起動時には閉弁する第1の電磁弁と、上記運転中
にのみ上記蒸発器から出る冷媒を上記気液分離器に導く
吸入側逆止弁と、上記停止後の起動時にのみ上記冷媒切
換手段を経て上記気液分離器に導入された冷媒をこの気
液分離器から上記凝縮器に導く吐出側逆止弁と、上記運
転中は閉弁されかつ上記停止後の起動時に開弁して上記
蒸発器から出る冷媒を上記圧縮機に戻す第2の電磁弁と
を備えた冷凍装置。
[Claims for utility model registration] Claims: 1. A gas-liquid separation pipe for separating the refrigerant into a liquid refrigerant and a gas refrigerant, which is provided for both the suction side and the discharge side of the compressibility, and the discharge piping of the compressor. In operation, a refrigerant switching unit that guides the refrigerant discharged from the compressor to the condenser and switches to guide the refrigerant discharged from the compressor to the gas-liquid separator at the time of start after stop, An evaporator that decompresses the refrigerant liquefied by the condenser after it is decompressed by an expansion valve and an evaporator that opens during the operation and evaporates by the evaporator, and compresses the liquid refrigerant stored in the gas-liquid separator. First solenoid valve that is guided to the machine and closes at the time of startup after the stop, a suction side check valve that guides the refrigerant discharged from the evaporator to the gas-liquid separator only during the operation, and a start after the stop Refrigerant introduced into the gas-liquid separator through the refrigerant switching means only at times A discharge-side check valve that leads from the gas-liquid separator to the condenser, and a valve that is closed during the operation and opened at the time of startup after the stop to return the refrigerant that exits from the evaporator to the compressor. Refrigerating device equipped with the solenoid valve.
JP233191U 1991-01-29 1991-01-29 Refrigeration equipment Pending JPH051957U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP233191U JPH051957U (en) 1991-01-29 1991-01-29 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP233191U JPH051957U (en) 1991-01-29 1991-01-29 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JPH051957U true JPH051957U (en) 1993-01-14

Family

ID=11526334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP233191U Pending JPH051957U (en) 1991-01-29 1991-01-29 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH051957U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR890006727Y1 (en) Heat pump with multiple compressors
EP1795832A1 (en) Refrigerating apparatus
JP6301101B2 (en) Two-stage compression cycle
JP3152454B2 (en) Two-stage compression refrigeration system
JP2001056156A (en) Air conditioning apparatus
JPH051957U (en) Refrigeration equipment
JP3788309B2 (en) Refrigeration equipment
JPH01196462A (en) Heat pump device
JP2001263832A (en) Refrigerating cycle of refrigerator
JPH04313647A (en) Heat pump type air conditioner
JPH0526526A (en) Two-stage compression type freezing device
JP3638976B2 (en) Refrigeration equipment
JPH02154946A (en) Refrigerating system
JPH07318176A (en) Freezer
JP2506141B2 (en) Refrigeration equipment
KR100675797B1 (en) Air conditioner
JPS6225642Y2 (en)
JP2003269812A (en) Compression mechanism of refrigeration device
KR100239476B1 (en) Refrigerating cycle for multi type air conditioner
KR101688152B1 (en) Refrigerator
JPH06159826A (en) Multistage compression refrigerating apparatus
JPH05766Y2 (en)
KR910000678B1 (en) Refrigeration system
JPH116657A (en) Air-conditioner
JPH073248Y2 (en) Compressor unit