JPH05195062A - Production of grain-oriented silicon steel sheet having ultralow iron loss - Google Patents

Production of grain-oriented silicon steel sheet having ultralow iron loss

Info

Publication number
JPH05195062A
JPH05195062A JP4004178A JP417892A JPH05195062A JP H05195062 A JPH05195062 A JP H05195062A JP 4004178 A JP4004178 A JP 4004178A JP 417892 A JP417892 A JP 417892A JP H05195062 A JPH05195062 A JP H05195062A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
iron loss
finish annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4004178A
Other languages
Japanese (ja)
Other versions
JP2678850B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Takeo Nagashima
武雄 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4004178A priority Critical patent/JP2678850B2/en
Publication of JPH05195062A publication Critical patent/JPH05195062A/en
Application granted granted Critical
Publication of JP2678850B2 publication Critical patent/JP2678850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet reduced in isolated inclusions under the surface by electrostatically applying a specific separation agent at annealing at the time of laminating primarily recrystallized sheets and then performing secondary recrystallization and purification at the time of finish annealing. CONSTITUTION:A strip of a silicon steel has a composition consisting of, by weight, 0.8-4.8% Si, 0.012-0.05% acid-soluble Al, <=0.01% N, and the balance Fe with inevitable impurities. This strip is cold-rolled once or is cold-rolled twice or more while process- annealed between the cold rolling stages so as to be formed to the prescribed sheet thickness, followed by primary recrystallization annealing and finish annealing. At the time of laminating the primarily recrystallized sheets before finish annealing, a powder mixture of Al2O3 and TiO2 is electrostatically applied as a separation agent at annealing, and, at the time of finish annealing secondary recrystallization and purification are done while keeping the surface in a mirror-finished state. By using Al2O3, as an essential component of the separation agent at annealing and also adding TiO2 by 5-30%, the ruggedness in the steel sheet surface causing deterioration in iron loss characteristics can be smoothed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される一方向性珪素鋼板の
製造方法に関するものである。特に、その表面を効果的
に仕上ることにより、鉄損特性の向上を図ろうとするも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional silicon steel sheet which is mainly used as an iron core for transformers and other electric devices. In particular, it is intended to improve iron loss characteristics by effectively finishing the surface.

【0002】[0002]

【従来の技術】一方向性珪素鋼板は、磁気鉄心として多
くの電気機器に用いられている。一方向性珪素鋼板は、
製品の結晶粒の方位を{110}<001>方位に高度
に集積させたものであり、磁気特性として磁束密度が高
く(B8値で代表される)、鉄損が低い(W17/50 値で
代表される)ことが要求される。特に、最近では省エネ
ルギーの見地から電力損失の低減に対する要求が高まっ
ている。
2. Description of the Related Art Unidirectional silicon steel sheets are used as magnetic iron cores in many electric devices. Unidirectional silicon steel sheet,
The orientation of the crystal grains of the product is highly integrated in the {110} <001> orientation. The magnetic characteristics are high magnetic flux density (represented by B 8 value) and low iron loss (W 17/50). Represented by a value) is required. In particular, recently, there is an increasing demand for reduction of power loss from the viewpoint of energy saving.

【0003】この要求にこたえ、一方向性珪素鋼板の鉄
損を低減させる手段として、磁区を細分化する技術が開
発された。仕上焼鈍後の鋼板にレーザービームを照射し
て局部的な微少歪を与えることにより磁区を細分化して
鉄損を低減させる方法が、例えば特開昭58−2640
5号公報に開示されている。また、巻き鉄心の場合、鉄
心に加工した後、歪取焼鈍(応力除去焼鈍)を施しても
磁区細分化効果の消失しない方法も、例えば特開昭62
−8617号公報に開示されている。これらの技術的手
段により磁区を細分化することにより鉄損は大きく低減
されるようになってきている。
In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of a unidirectional silicon steel sheet. A method of irradiating a laser beam to a steel sheet after finish annealing to locally apply a minute strain to subdivide a magnetic domain to reduce iron loss is disclosed in, for example, JP-A-58-2640.
No. 5 publication. Further, in the case of a wound core, a method in which the magnetic domain refinement effect is not lost even if strain relief annealing (stress relief annealing) is performed after processing the core is disclosed in, for example, JP-A-62-62.
No. 8617 is disclosed. By subdividing the magnetic domains by these technical means, iron loss has been greatly reduced.

【0004】しかしながら、これらの磁区の動きを観察
すると動かない磁区も存在していることが分かり、一方
向性珪素鋼板の鉄損値をさらに低減させるためには、磁
区細分化と合わせて磁区の動きを阻害する鋼板表面のグ
ラス皮膜からのピン止め効果をなくすことが重要である
ことが分かった。そのための手段として、仕上焼鈍後の
材料の表面を化学研磨あるいは電解研磨により平滑化す
る方法が、例えば特開昭64−83620号公報に開示
されている。
However, by observing the movement of these magnetic domains, it is found that some magnetic domains do not move, and in order to further reduce the iron loss value of the unidirectional silicon steel sheet, it is necessary to combine the magnetic domain refinement with the magnetic domain subdivision. It was found that it is important to eliminate the pinning effect from the glass film on the surface of the steel plate that hinders movement. As a means for this, a method of smoothing the surface of the material after finish annealing by chemical polishing or electrolytic polishing is disclosed in, for example, Japanese Patent Laid-Open No. 64-83620.

【0005】ところが、これら化学研磨・電解研磨等の
方法は、研究室レベルでの少試料の材料を加工すること
は可能であるが、工業的規模で行うには薬液の濃度管
理、温度管理、公害設備の付与等の点で大きな問題があ
る。本発明者等の一部は、この問題を解決すべく、特願
平2−409378号において、製品のグラス皮膜を除
去し、地鉄を露出させた鋼板を水素を含有するガスを含
む雰囲気ガス中で1000℃以上の温度で焼鈍すること
により、表面を平滑化させる方法を提案している。
However, although these chemical polishing / electrolytic polishing methods are capable of processing a small sample material at the laboratory level, in order to carry out on an industrial scale, concentration control of chemical solution, temperature control, There is a big problem in terms of providing pollution equipment. In order to solve this problem, some of the inventors of the present invention, in Japanese Patent Application No. 2-409378, remove the glass film of the product and expose the base steel to a steel sheet in which an atmosphere gas containing a gas containing hydrogen. It proposes a method of smoothing the surface by annealing at a temperature of 1000 ° C. or higher.

【0006】[0006]

【発明が解決しようとする課題】上記の方法によると、
一旦仕上焼鈍で生成させたグラス皮膜を仕上焼鈍後に除
去する工程と、平滑化処理する工程を新たに設ける必要
がある。従って、工程的にコストアップとなり、工業的
に採用するには問題がある。本発明の目的は、仕上焼鈍
中に、(1)二次再結晶による方位の制御と(2)表面
の平滑化を同時に達成することである。
According to the above method,
It is necessary to newly provide a step of removing the glass film once produced by finish annealing after the finish annealing and a step of smoothing treatment. Therefore, the cost is increased in the process, and there is a problem in industrial application. An object of the present invention is to simultaneously achieve (1) orientation control by secondary recrystallization and (2) surface smoothing during finish annealing.

【0007】[0007]

【課題を解決するための手段】本発明者等はまず界面に
関して種々検討した結果、仕上焼鈍前の一次再結晶板を
積層する際、アルミナ等の鋼板表面に存在する酸化層
(シリカ)と反応しないか、あるいは反応しにくい物質
を焼鈍分離剤として用い、かつこの焼鈍分離剤を従来の
ように水スラリーではなく、水分を持ち込まないように
塗布することにより表面の平滑化が可能であることを見
出した。
Means for Solving the Problems The present inventors first conducted various studies on the interface, and as a result, when laminating a primary recrystallized plate before finish annealing, reaction with an oxide layer (silica) existing on the surface of a steel plate such as alumina Do not use, or use a substance that does not react easily as an annealing separator, and apply this annealing separator instead of water slurry as in the past, so that the surface can be smoothed. I found it.

【0008】ところが、このような焼鈍分離剤を用いた
場合、鋼板中のインヒビターは温度を上げるに従って早
く弱まってしまい、二次再結晶による方位制御が充分に
行われにくいことが分かった。その対策として、アルミ
ナにTiO2 を添加することにより、インヒビターの弱
まりかたを遅くし、高い磁束密度の製品を得ることがで
きることを見出した。
However, it has been found that when such an annealing separator is used, the inhibitor in the steel sheet weakens quickly as the temperature rises, and it is difficult to sufficiently control the orientation by secondary recrystallization. As a countermeasure against this, it has been found that by adding TiO 2 to alumina, the weakening of the inhibitor can be delayed and a product having a high magnetic flux density can be obtained.

【0009】以下に本発明を詳細に説明する。現在、通
常の方向性珪素鋼板は、一次再結晶焼鈍後にマグネシア
を主成分とする焼鈍分離剤をスラリー状で塗布し、仕上
焼鈍を行っている。この製造法では、一次再結晶焼鈍後
の鋼板表面に存在するSiO2 を主成分とする酸化層と
焼鈍分離剤としてスラリー状で塗布したMgOとが反応
して、グラス(フォルステライト)皮膜を形成したり、
インヒビター構成元素として鋼中に存在するアルミニウ
ムがマグネシアにより持ち込まれた水分と反応して鋼中
に介在物を形成することにより、表面が平滑にならない
ことが分かった。すなわち、これらのグラス皮膜や介在
物が磁区のピン止めサイトとなってしまう。
The present invention will be described in detail below. Currently, ordinary grain-oriented silicon steel sheets are subjected to finish annealing by applying a annealing separating agent containing magnesia as a main component in a slurry form after primary recrystallization annealing. In this manufacturing method, an oxide layer containing SiO 2 as a main component present on the surface of the steel sheet after primary recrystallization annealing reacts with MgO applied in a slurry form as an annealing separator to form a glass (forsterite) film. Or
It was found that the surface of aluminum does not become smooth because aluminum existing in the steel as an inhibitor constituent element reacts with the water introduced by magnesia to form inclusions in the steel. That is, these glass films and inclusions become pinning sites for magnetic domains.

【0010】フォルステライトを形成させないために、
焼鈍分離剤としてアルミナ等のシリカと反応しないか、
もしくは反応しにくい物質を用いることが有効である。
また、鋼中にインヒビター構成元素として添加したアル
ミニウムを鋼中介在物として析出させないためには仕上
焼鈍の酸素分圧を低く保つことが重要であることを見出
した。この実行手段としては、水分を持ち込まない静電
塗布法が有効である。
In order to prevent the formation of forsterite,
Does it react with silica such as alumina as an annealing separator?
Alternatively, it is effective to use a substance that does not easily react.
It was also found that it is important to keep the oxygen partial pressure of the finish annealing low in order to prevent precipitation of aluminum added as an inhibitor constituent element in the steel as inclusions in the steel. An electrostatic coating method that does not bring in moisture is effective as a means for performing this.

【0011】このような焼鈍分離剤を用いて、一次再結
晶板を積層して仕上焼鈍を施す際にTiO2 を添加する
と二次再結晶が安定し、磁気密度が向上することが分か
った。重量で、Si:3.3%、Mn:0.14%、
C:0.05%、S:0.007%、酸可溶性Al:
0.028%、N:0.008%、残部Feおよび不可
避的不純物からなる珪素鋼スラブを1150℃で加熱し
た後、板厚1.6mmに熱延した。この熱延板を110
0℃で2分間焼鈍した後、最終板厚0.15mmに冷延
した。この冷延板を湿潤ガス中で脱炭を兼ね、(1)8
30℃および(2)850℃で70秒焼鈍し、一次再結
晶させた。
It has been found that the secondary recrystallization is stabilized and the magnetic density is improved by adding TiO 2 when the primary recrystallized sheets are laminated and finish annealing is performed by using such an annealing separator. By weight, Si: 3.3%, Mn: 0.14%,
C: 0.05%, S: 0.007%, acid-soluble Al:
A silicon steel slab consisting of 0.028%, N: 0.008%, the balance Fe and unavoidable impurities was heated at 1150 ° C., and then hot-rolled to a plate thickness of 1.6 mm. This hot rolled sheet is
After annealing at 0 ° C for 2 minutes, it was cold-rolled to a final plate thickness of 0.15 mm. This cold-rolled sheet also serves as decarburization in wet gas, and (1) 8
It was annealed at 30 ° C. and (2) 850 ° C. for 70 seconds to carry out primary recrystallization.

【0012】その後、アンモニア窒化により窒素量を
0.02%まで高め、インヒビターを強化した。この試
料を一部は(A)アルミナを静電塗布し、一部は(B)
アルミナにTiO2 を20%添加して静電塗布して積層
した後、仕上焼鈍を施した。仕上焼鈍は1200℃まで
はN2 :100%の雰囲気ガス中で15℃/hrの昇温
速度で行い、1200℃でH2 :100%に切り替え、
20時間純化焼鈍を行った。
Thereafter, the amount of nitrogen was increased to 0.02% by ammonia nitriding to strengthen the inhibitor. Part of this sample was electrostatically coated with (A) alumina, and partly with (B)
20% of TiO 2 was added to alumina, electrostatically applied and laminated, and then finish annealed. The finish annealing is performed at a temperature rising rate of 15 ° C./hr in an atmosphere gas of N 2 : 100% up to 1200 ° C., and switched to H 2 : 100% at 1200 ° C.
Purification annealing was performed for 20 hours.

【0013】これらの試料について、張力コーティング
処理とレーザー照射による磁区細分化処理を行った後の
磁気特性を表1に示す。TiO2 を添加しないと、85
0℃で一次再結晶焼鈍を行った場合、二次再結晶がうま
く進行せず、磁束密度が低いままであることが分かる。
Table 1 shows the magnetic characteristics of these samples after the tension coating treatment and the magnetic domain refinement treatment by laser irradiation. 85% if TiO 2 is not added
It can be seen that when the primary recrystallization annealing is performed at 0 ° C., the secondary recrystallization does not proceed well and the magnetic flux density remains low.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より、TiO2 を添加することによ
り、磁束密度が向上し、かつ二次再結晶が安定化するこ
とが分かる。これは、焼鈍分離剤としてスラリーを用い
ない場合、インヒビター(AlN、(Al、Si)N
等)の劣化は、従来のようにAlの酸化ではなく、表面
からの脱窒により起こるので、鋼板の表面にシリカの濃
化層を形成させることにより、窒素のぬける速度が遅く
なるためであると考えられる。図1に上記の試料を10
75℃で20時間焼鈍して、インヒビター(窒素、酸可
溶性アルミニウム)の量を化学分析した結果を示す。図
1より、TiO2 を添加することによりインヒビターの
弱まりかたが遅くなることが分かる。
From Table 1, it can be seen that the addition of TiO 2 improves the magnetic flux density and stabilizes the secondary recrystallization. This is because the inhibitor (AlN, (Al, Si) N) is used when the slurry is not used as the annealing separator.
This is because the deterioration of (), etc. occurs by denitrification from the surface, not by the oxidation of Al as in the conventional case. Therefore, by forming a concentrated layer of silica on the surface of the steel sheet, the rate at which nitrogen passes through becomes slow. it is conceivable that. The above sample is shown in FIG.
The results of chemical analysis of the amounts of inhibitors (nitrogen, acid-soluble aluminum) after annealing at 75 ° C. for 20 hours are shown. From FIG. 1, it can be seen that the weakening of the inhibitor is delayed by adding TiO 2 .

【0016】焼鈍分離剤として、シリカと反応しにくい
物質としては、コスト的にはAl2 3 が望ましいと考
えられるが、その他SiO2 、ZrO2 、BaO、Ca
O、SrO等を用いることもできる。次に構成要件およ
び実施態様について述べる。本発明における鋼成分とし
ては、重量でSi:0.8〜4.8%、酸可溶性Al:
0.012〜0.050%、N≦0.01%、残部Fe
および不可避的不純物であり、これらを必須成分とし
て、それ以外は特に限定しない。
As the annealing separator, Al 2 O 3 is considered to be desirable as a substance that does not easily react with silica, but other substances such as SiO 2 , ZrO 2 , BaO and Ca are considered.
O, SrO, etc. can also be used. Next, constituent elements and embodiments will be described. As the steel component in the present invention, Si: 0.8 to 4.8% by weight and acid-soluble Al:
0.012-0.050%, N ≦ 0.01%, balance Fe
And unavoidable impurities, and these are essential components with no particular limitation.

【0017】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、Si量を下げると仕上焼鈍時にα→γ変態を生じ、
結晶の方向性が損なわれるので、実質的に結晶の方向性
に影響を及ぼさない0.8%を下限とする。酸可溶性A
lはNと結合してAlNまたは(Al、Si)Nとして
インヒビターとして機能するために必須の元素である。
磁束密度が高くなる0.012〜0.050%を限定範
囲とする。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is likely to crack during cold rolling, making rolling impossible. On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing,
Since the crystal orientation is impaired, the lower limit is 0.8%, which does not substantially affect the crystal orientation. Acid soluble A
l is an essential element for binding to N and functioning as an inhibitor as AlN or (Al, Si) N.
The range of 0.012 to 0.050% at which the magnetic flux density becomes high is set as the limited range.

【0018】Nは製鋼時に0.01%超添加すると鋼板
中にブリスターとよばれる空孔を生じるので0.01%
を上限とする。他のインヒビター構成元素として、M
n、S、Se、B、Bi、Pb、Sn、Ti等を添加す
ることもできる。上記成分の溶鋼は、通常の工程により
熱延板とされるか、もしくは溶鋼を連続鋳造して薄帯と
する。
If N is added in excess of 0.01% during steel making, holes called blisters are generated in the steel sheet, so 0.01% is added.
Is the upper limit. As another inhibitor constituent element, M
It is also possible to add n, S, Se, B, Bi, Pb, Sn, Ti and the like. The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon.

【0019】前記熱延板または連続鋳造薄帯は直ちに、
もしくは短時間焼鈍を経て冷間圧延される。上記焼鈍は
750〜1200℃の温度域で30秒〜30分間行わ
れ、この焼鈍は製品の磁気特性を高めるために有効であ
る。望む製品の特性レベルとコストを勘案して採否を決
めるとよい。
The hot-rolled sheet or continuously cast ribbon is immediately
Alternatively, it is annealed for a short time and cold rolled. The annealing is performed in the temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether or not to accept the product, taking into consideration the characteristic level and cost of the desired product.

【0020】冷間圧延は、基本的には特公昭40−15
644号公報に開示されているように最終冷延圧下率8
0%以上とすればよい。冷間圧延後の材料は、通常鋼中
に含まれる炭素を除去するために必要に応じて湿水素雰
囲気中で、750〜900℃の温度域で一次再結晶焼鈍
させる。この一次再結晶板にインヒビターを強化するた
めに窒化処理を施す。窒化処理の方法については特に限
定するものではなく、アンモニア等の窒化能のある雰囲
気ガス中で行う方法等がある。量的には0.005%以
上、望ましくは鋼中のAl当量以上窒化すればよい。
Cold rolling is basically carried out in Japanese Examined Patent Publication No. 40-15.
Final cold rolling reduction of 8 as disclosed in Japanese Patent No. 644
It may be 0% or more. The material after cold rolling is usually subjected to primary recrystallization annealing in a temperature range of 750 to 900 ° C. in a wet hydrogen atmosphere in order to remove carbon contained in steel. This primary recrystallized plate is subjected to a nitriding treatment to strengthen the inhibitor. The method of nitriding is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia. The amount of nitriding should be 0.005% or more, preferably Al equivalent or more in steel.

【0021】この一次再結晶板を仕上焼鈍するために積
層するための焼鈍分離剤として、アルミナ等の鋼板の表
面酸化物と反応しない物質を用い、かつ仕上焼鈍時の酸
素ポテンシャルを下げるために、上記焼鈍分離剤を使用
する際に水分を持ち込まないようにすることが重要であ
る。このための手段として、上記の物質を粉体で静電塗
布する方法が有効である。この焼鈍分離剤のなかにTi
2 を添加することが本発明の特徴である。
As an annealing separator for laminating the primary recrystallized sheet for finish annealing, a substance such as alumina which does not react with the surface oxide of the steel sheet is used, and in order to reduce the oxygen potential during finish annealing, It is important that no water is brought in when using the annealing separator. As a means for this, a method of electrostatically applying the above substances in powder is effective. Ti in the annealing separator
The addition of O 2 is a feature of the present invention.

【0022】また、一次再結晶板を積層する前に、表面
の酸化物を除去することは、製品の表面の平滑化を行う
上で有効である。この積層した板を仕上焼鈍して、二次
再結晶と窒化物の純化を行う。二次再結晶を特開平2−
258929号公報に開示されるように一定の温度で保
持する等の手段により所定の温度域で行うことは磁束密
度を上げる上で有効である。
Further, it is effective to remove the oxide on the surface before laminating the primary recrystallized plate in order to smooth the surface of the product. This laminated plate is finish annealed to carry out secondary recrystallization and purification of nitride. Secondary recrystallization is described in JP-A-2-
As disclosed in Japanese Patent No. 258929, it is effective to increase the magnetic flux density by using a means such as holding at a constant temperature in a predetermined temperature range.

【0023】二次再結晶完了後、窒化物の純化と表面の
平滑化を行うために100%水素で1100℃以上の温
度で焼鈍する。仕上焼鈍後、表面は既に平滑化されてい
るので、張力コーティング処理を行い、必要に応じてレ
ーザー照射等の磁区細分化処理を施せばよい。
After the completion of secondary recrystallization, annealing is performed at a temperature of 1100 ° C. or higher with 100% hydrogen in order to purify the nitride and smooth the surface. Since the surface has already been smoothed after the finish annealing, tension coating treatment may be performed and, if necessary, magnetic domain subdivision treatment such as laser irradiation may be performed.

【0024】[0024]

【実施例】【Example】

実施例1 重量で、Si:3.3%、Mn:0.14%、C:0.
05%、S:0.007%、酸可溶性Al:0.028
%、N:0.008%、残部Feおよび不可避的不純物
からなる珪素鋼スラブを1150℃で加熱した後、板厚
1.6mmに熱延した。この熱延板を1100℃で2分
間焼鈍した後、最終板厚0.15mmに冷延した。この
冷延板を湿潤ガス中で脱炭を兼ね、850℃で70秒焼
鈍し、一次再結晶させた。次いでアンモニア雰囲気中で
750℃で焼鈍することにより、窒素量を0.02%に
増加して、インヒビターの強化を行った。
Example 1 By weight, Si: 3.3%, Mn: 0.14%, C: 0.
05%, S: 0.007%, acid-soluble Al: 0.028
%, N: 0.008%, the balance Fe and unavoidable impurities were heated at 1150 ° C. and then hot rolled to a plate thickness of 1.6 mm. The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.15 mm. This cold-rolled sheet was also decarburized in a wet gas, annealed at 850 ° C. for 70 seconds, and primary recrystallized. Then, by annealing at 750 ° C. in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor.

【0025】これらの鋼板に、アルミナにTiO2 を0
〜50%添加した焼鈍分離剤を静電塗布し、積層した
後、仕上焼鈍を施した。仕上焼鈍は1200℃まではN
2 :50%+H2 :50%の雰囲気ガス中で15℃/h
rの昇温速度で行い、1200℃でH2 :100%に切
り替えて10時間純化焼鈍を行った。
On these steel sheets, 0% TiO 2 was added to alumina.
The annealing separator added by ˜50% was electrostatically applied, laminated, and then finish annealed. Finish annealing is N up to 1200 ℃
2 : 50% + H 2 : 50% in ambient gas at 15 ° C / h
The heating was carried out at a heating rate of r and the temperature was switched to H 2 : 100% at 1200 ° C. for 10 hours for purification annealing.

【0026】これらの試料を張力コーティング処理を施
した後、レーザー照射して磁区細分化した。得られた製
品の磁気特性を表2に示す。TiO2 添加量を増加させ
ると次第に磁束密度が高まり、鉄損も低くなるが、40
%以上で逆に悪くなっていくことが分かる。これは、鋼
板表面の酸素ポテンシャルが高くなりすぎて、逆にアル
ミニウムと反応して、インヒビターを弱めるためである
と考えられる。
These samples were subjected to tension coating treatment and then irradiated with laser to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 2. When the amount of TiO 2 added is increased, the magnetic flux density is gradually increased and the iron loss is also reduced.
On the contrary, it can be seen that when it exceeds%, it gets worse. It is considered that this is because the oxygen potential on the surface of the steel sheet becomes too high and, conversely, it reacts with aluminum to weaken the inhibitor.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例2 実施例1と同一の窒化処理した板を酸洗し、次いでTi
2 を20%添加したアルミナを主成分とする焼鈍分離
剤を静電塗布して積層した後、仕上焼鈍を施した。仕上
焼鈍は1200℃まではN2 :50%+H2 :50%の
雰囲気ガス中で15℃/hrの昇温速度で行い、120
0℃でH2 :100%に切り替えて10時間純化焼鈍を
行った。
Example 2 The same nitrided plate as in Example 1 was pickled and then Ti
An annealing separator containing alumina as a main component and containing 20% of O 2 was electrostatically applied and laminated, and then finish annealing was performed. The finish annealing is performed up to 1200 ° C. in an atmosphere gas of N 2 : 50% + H 2 : 50% at a temperature rising rate of 15 ° C./hr and is 120
Purification annealing was carried out for 10 hours by switching to H 2 : 100% at 0 ° C.

【0029】これらの試料を、張力コーティング処理を
施した後、レーザー照射して磁区細分化した。得られた
製品の磁気特性を表3に示す。
These samples were subjected to tension coating treatment and then laser-irradiated to subdivide the magnetic domains. Table 3 shows the magnetic properties of the obtained product.

【0030】[0030]

【表3】 [Table 3]

【0031】この鉄損値は、実施例1の結果と比べると
さらによい。これは、一次再結晶板の数μmの酸化層を
除去することにより、さらに表面の平滑度がよくなるこ
とを示している。
This iron loss value is better than the result of Example 1. This indicates that the smoothness of the surface is further improved by removing the oxide layer of several μm of the primary recrystallized plate.

【0032】[0032]

【発明の効果】本発明により、鉄損特性を劣化させる要
因である鋼板表面の凸凹を平滑化し、かつ表面下の孤立
介在物を低減させた一方向性珪素鋼板を低コストで製造
することができる。
According to the present invention, a unidirectional silicon steel sheet can be manufactured at low cost, in which unevenness on the surface of the steel sheet, which is a factor that deteriorates iron loss characteristics, is smoothed and isolated inclusions under the surface are reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼鈍分離剤に添加したTiO2 の量のインヒビ
ターの劣化挙動に及ぼす影響を示す図である。
FIG. 1 is a diagram showing the influence of the amount of TiO 2 added to an annealing separator on the deterioration behavior of an inhibitor.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月3日[Submission date] April 3, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 38/06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量で、Si:0.8〜4.8%、酸可
溶性Al:0.012〜0.050%、N≦0.01
%、残部Feおよび不可避的不純物からなる珪素鋼帯
を、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延
により所定の板厚とし、一次再結晶焼鈍・仕上焼鈍を行
う一方向性珪素鋼板の製造方法において、仕上焼鈍前の
一次再結晶板を積層する際に、焼鈍分離剤としてA12
3 とTiO2 の混合粉末を静電塗布することにより、
仕上焼鈍において表面を鏡面化した状態で二次再結晶・
純化を行うことを特徴とする超低鉄損一方向性珪素鋼板
の製造方法。
1. By weight, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.050%, N ≦ 0.01.
%, The balance Fe and unavoidable impurities, and a unidirectional silicon steel sheet that is subjected to primary recrystallization annealing / finish annealing to a predetermined thickness by cold rolling once or twice or more with intermediate annealing. In the manufacturing method of No. 1, when a primary recrystallized sheet before finish annealing is laminated, A1 2 is used as an annealing separator.
By electrostatically applying a mixed powder of O 3 and TiO 2 ,
Secondary recrystallization with the surface mirror-finished during finish annealing.
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized by performing purification.
【請求項2】 焼鈍分離剤の主成分をAl2 3 とし、
TiO2 を5〜30%添加する請求項1記載の超低鉄損
一方向性珪素鋼板の製造方法。方法。
2. The main component of the annealing separator is Al 2 O 3 ,
The method for producing an ultra-low iron loss unidirectional silicon steel sheet according to claim 1, wherein TiO 2 is added in an amount of 5 to 30%. Method.
【請求項3】 焼鈍分離剤の主成分として、Al2 3
の代わりにSiO2 、ZrO2 、BaO、CaO、Sr
O等のSiO2 と反応しないか、もしくは反応しにくい
物質の粉末を用いる請求項1または2記載の超低鉄損一
方向性珪素鋼板の製造方法。
3. Al 2 O 3 as a main component of the annealing separator.
Instead of SiO 2 , ZrO 2 , BaO, CaO, Sr
The method for producing an ultra-low iron loss unidirectional silicon steel sheet according to claim 1 or 2, wherein a powder of a substance that does not react with or is difficult to react with SiO 2 such as O is used.
【請求項4】 一次再結晶板の表面酸化層を除去する請
求項1〜3のいずれかに記載の超低鉄損一方向性珪素鋼
板の製造方法。方法。
4. The method for producing an ultra-low iron loss unidirectional silicon steel sheet according to claim 1, wherein the surface oxide layer of the primary recrystallized plate is removed. Method.
JP4004178A 1992-01-13 1992-01-13 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet Expired - Lifetime JP2678850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004178A JP2678850B2 (en) 1992-01-13 1992-01-13 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004178A JP2678850B2 (en) 1992-01-13 1992-01-13 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH05195062A true JPH05195062A (en) 1993-08-03
JP2678850B2 JP2678850B2 (en) 1997-11-19

Family

ID=11577460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004178A Expired - Lifetime JP2678850B2 (en) 1992-01-13 1992-01-13 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2678850B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187941A (en) * 2003-12-03 2005-07-14 Jfe Steel Kk Annealing-separation agent for grain-oriented electromagnetic steel sheet, method for annealing grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
KR100946070B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon electrical steel sheet
WO2024002209A1 (en) * 2022-06-29 2024-01-04 宝山钢铁股份有限公司 Oriented silicon steel and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946070B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon electrical steel sheet
JP2005187941A (en) * 2003-12-03 2005-07-14 Jfe Steel Kk Annealing-separation agent for grain-oriented electromagnetic steel sheet, method for annealing grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2024002209A1 (en) * 2022-06-29 2024-01-04 宝山钢铁股份有限公司 Oriented silicon steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP2678850B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
EP0607440B1 (en) Process for producing a grain-orientated electical steel sheet having mirror surface
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2679931B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with extremely low iron loss
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2003268451A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3178887B2 (en) Manufacturing method of ultra low iron loss unidirectional silicon steel sheet
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2706020B2 (en) Method for producing grain-oriented silicon steel sheet
JP2678858B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH08269554A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JPH0693336A (en) Production of ultraflow core loss grain oriented silicon steel sheet
JP2679932B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP3182667B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2003247021A (en) Method of producing mirror-finished, grain oriented silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15