JP2679932B2 - Method for manufacturing ultra low iron loss unidirectional silicon steel sheet - Google Patents
Method for manufacturing ultra low iron loss unidirectional silicon steel sheetInfo
- Publication number
- JP2679932B2 JP2679932B2 JP5043811A JP4381193A JP2679932B2 JP 2679932 B2 JP2679932 B2 JP 2679932B2 JP 5043811 A JP5043811 A JP 5043811A JP 4381193 A JP4381193 A JP 4381193A JP 2679932 B2 JP2679932 B2 JP 2679932B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- sio
- iron loss
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される一方向性珪素鋼板の
製造方法に関するものである。特に、その表面を効果的
に仕上げることにより、鉄損特性の向上を図ろうとする
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional silicon steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, it is intended to improve iron loss characteristics by effectively finishing the surface.
【0002】[0002]
【従来の技術】一方向性珪素鋼板は、磁気鉄心として多
くの電気機器に用いられている。一方向性珪素鋼板は、
Siを0.8〜4.8%含有し製品の結晶粒の方位を
{110}〈001〉方位に高度に集積させた鋼板であ
る。その磁気特性として磁束密度が高く(B8 値で代表
される)、鉄損が低い(W17/50 値で代表される)こと
が要求される。特に、最近では省エネルギーの見地から
電力損失の低減に対する要求が高まっている。この要求
に応え、一方向性珪素鋼板の鉄損を低減させる手段とし
て、磁区を細分化する技術が開発された。2. Description of the Related Art Oriented silicon steel sheets are used as magnetic iron cores in many electric appliances. Unidirectional silicon steel sheet
It is a steel sheet containing 0.8 to 4.8% of Si and having the crystal grains of the product highly integrated in the {110} <001> orientation. The magnetic properties are required to have a high magnetic flux density (represented by a B 8 value) and low iron loss (represented by a W 17/50 value). In particular, recently, there has been an increasing demand for reduction of power loss from the viewpoint of energy saving. In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of a unidirectional silicon steel sheet.
【0003】積み鉄心の場合、仕上げ焼鈍後の鋼板にレ
ーザービームを照射して局部的な微少歪を与えることに
より、磁区を細分化して鉄損を低減させる方法が、例え
ば特開昭58−26405号公報に開示されている。ま
た、巻き鉄心の場合には、鉄心に加工した後、歪取り焼
鈍を施しても磁区細分化効果の消失しない方法も、例え
ば特開昭62−8617号公報に開示されている。これ
らの技術的手段により磁区を細分化することにより鉄損
は大きく低減されるようになってきている。In the case of a laminated iron core, a method of subdividing magnetic domains to reduce iron loss by irradiating a steel plate after finish annealing with a laser beam to give a local minute strain is disclosed, for example, in Japanese Patent Laid-Open No. 58-26505. It is disclosed in the publication. Further, in the case of a wound core, a method in which the magnetic domain refining effect is not lost even if strain relief annealing is performed after processing the core is also disclosed in, for example, Japanese Patent Application Laid-Open No. 62-8617. Iron loss has been greatly reduced by subdividing magnetic domains by these technical means.
【0004】しかしながら、これらの磁区の動きを観察
すると動かない磁区も存在していることが分かり、一方
向性珪素鋼板の鉄損値を更に低減させるためには、磁区
細分化と合わせて磁区の動きを阻害する鋼板表面のグラ
ス皮膜からのピン止め効果をなくすことが重要であるこ
とが分かった。However, by observing the movement of these magnetic domains, it is found that some magnetic domains do not move. Therefore, in order to further reduce the iron loss value of the unidirectional silicon steel sheet, it is necessary to combine the magnetic domain refinement with the magnetic domain subdivision. It was found that it is important to eliminate the pinning effect from the glass film on the surface of the steel plate that hinders movement.
【0005】そのためには、磁区の動きを阻害する鋼板
表面のグラス皮膜を形成させないことが有効である。そ
の手段として、焼鈍分離材として粗大高純アルミナを用
いることによりグラス皮膜を形成させない方法が、例え
ばU.S.Patent3,785,882に開示され
ている。しかしながらこの方法では表面直下の介在物を
なくすことができず、鉄損の向上代はW15/60 で高々2
%に過ぎない。For that purpose, it is effective not to form a glass film on the surface of the steel sheet which hinders the movement of magnetic domains. As a means, a method which does not form a glass coating film by using a coarse high pure alumina as an annealing separator material, for example, U. S. Patent 3,785,882. However, with this method, it is not possible to eliminate the inclusions just below the surface, and the improvement in iron loss is W 15/60 at most 2.
Only%.
【0006】また、鉄損を向上させるためには材質の方
位集積度を高めることが有効であり、その方法として田
口・坂倉(特公昭40−15644号公報)、小松等
(特公昭62−45285号公報)等によりインヒビタ
ーとしてAlの窒化物を使用する方法が開示されてい
る。しかしながら、アルミナを焼鈍分離材とするU.
S.Patent3,785,882の方法をAlの窒
化物をインヒビターとするこれらの方法に適用した場
合、二次再結晶が不安定になってしまい、鉄損の向上を
達成できない。Further, in order to improve iron loss, it is effective to increase the orientational integration degree of the material, and as a method therefor, Taguchi / Sakakura (Japanese Patent Publication No. 40-15644), Komatsu et al. (Japanese Patent Publication No. 62-45285). Japanese Patent Laid-Open Publication) discloses a method using Al nitride as an inhibitor. However, U. to annealing separator material alumina
S. When the method of Patent 3,785,882 is applied to these methods using Al nitride as an inhibitor, secondary recrystallization becomes unstable, and improvement of iron loss cannot be achieved.
【0007】一方、表面直下の介在物を制御し、かつ表
面の鏡面化を達成する方法として、仕上げ焼鈍後に化学
研磨或いは電解研磨を行う方法が、例えば特開昭64−
83620号公報に開示されている。しかしながら、化
学研磨・電解研磨等の方法は、研究室レベルでの小試料
の材料を加工することは可能であるが、工業的規模で行
うには薬液の濃度管理、温度管理、公害設備の付与等の
点で大きな問題があり、いまだ実用化されるに至ってい
ない。On the other hand, as a method of controlling inclusions just under the surface and achieving a mirror-finished surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, Japanese Patent Laid-Open No. 64-64-
No. 83620. However, chemical polishing, electrolytic polishing, and other methods can process small sample materials at the laboratory level, but for industrial scale processing, chemical concentration control, temperature control, and provision of pollution equipment are required. There is a big problem in terms of such things, and it has not yet been put to practical use.
【0008】[0008]
【発明が解決しようとする課題】本発明は、グラス皮膜
を形成させない方法(例えば、U.S.Patent
3,785,882)を基に、先に述べた問題点(1)
田口・坂倉(特公昭40−15644号公報)、小松等
(特公昭62−45285号公報)等のAlの窒化物を
インヒビターとして使用する高磁束密度材の二次再結晶
が不安定であること、及び(2)表面下の介在物が存在
することを解決することにより鉄損の向上を図る方法を
提供するものである。DISCLOSURE OF THE INVENTION The present invention is directed to a method which does not form a glass film (for example, US Pat.
3), 785, 882), the above-mentioned problem (1)
Instability in secondary recrystallization of high magnetic flux density materials such as Taguchi and Sakakura (Japanese Patent Publication No. 40-15644) and Komatsu (Japanese Patent Publication No. 62-45285) that use Al nitrides as inhibitors And (2) a method for improving iron loss by solving the presence of inclusions under the surface.
【0009】[0009]
【課題を解決するための手段】本発明者等はまず、問題
点(1)田口・坂倉(特公昭40−15644号公
報)、小松等(特公昭62−45285号公報)等のA
lの窒化物をインヒビターとして使用する高磁束密度材
の二次再結晶が不安定であることの原因の調査を行っ
た。その結果、グラス皮膜を形成させない場合では、仕
上げ焼鈍中のインヒビターが急激に弱体化することが二
次再結晶が不安定になる原因であることをつきとめた。[Means for Solving the Problems] The present inventors first of all solve the problem (1) A of Taguchi / Sakakura (Japanese Patent Publication No. 40-15644), Komatsu et al. (Japanese Patent Publication No. 62-45285), etc.
The cause of the unstable secondary recrystallization of the high magnetic flux density material using the nitride of 1 as an inhibitor was investigated. As a result, it was found that the rapid weakening of the inhibitor during finish annealing was the cause of the unstable secondary recrystallization when the glass film was not formed.
【0010】これは、グラス皮膜がないと鋼中の固溶窒
素が系外に容易に出てしまうからである。そこで、この
脱窒を抑制する手段を種々検討し、鋼中にSn,Sb等
を添加して二次再結晶前にこれらの元素を表面に濃化さ
せることが有効であることを見いだした(特願平4−1
16453号)。This is because solid solution nitrogen in steel easily escapes from the system without a glass film. Then, various means for suppressing this denitrification were studied, and it was found that it is effective to add Sn, Sb, etc. to the steel to concentrate these elements on the surface before secondary recrystallization ( Japanese Patent Application 4-1
16453).
【0011】その後、更に検討をすすめPbを鋼中に添
加することが二次再結晶を安定化することに有効である
ことを新たに見いだした。また、問題点(2)表面直下
の介在物の制御に関する研究を行った結果、脱炭焼鈍で
形成された酸化層がこの介在物に大きな影響を及ぼすこ
とを見いだした。この介在物をなくす方策を種々検討し
た結果、脱炭後の板の酸化層を除去することが非常に有
効で、鉄損が格段に良くなることを見いだした。After that, further investigation was made and it was newly found that the addition of Pb to the steel is effective in stabilizing the secondary recrystallization. Further, as a result of research on the problem (2) of inclusions just below the surface, it was found that the oxide layer formed by decarburization annealing has a great influence on the inclusions. As a result of various studies on the method of eliminating the inclusions, it was found that it is very effective to remove the oxide layer of the plate after decarburization, and the iron loss is remarkably improved.
【0012】以下に本発明を詳細に説明する。重量で、
Si:3.3%、Mn:0.14%、C:0.05%、
S:0.007%、酸可溶性Al:0.028%、N:
0.008%、Pb:0〜0.1%の珪素鋼スラブを1
150℃で加熱した後、板厚2.0mmに熱延した。この
熱延板を1100℃で2分間焼鈍した後最終板厚0.2
3mmに冷延した。この冷延板を湿潤ガス中で脱炭を兼ね
850℃で70秒焼鈍し一次再結晶させた。The present invention will be described in detail below. By weight,
Si: 3.3%, Mn: 0.14%, C: 0.05%,
S: 0.007%, acid-soluble Al: 0.028%, N:
0.008%, Pb: 0-0.1% silicon steel slab 1
After heating at 150 ° C., it was hot rolled to a plate thickness of 2.0 mm. This hot-rolled sheet was annealed at 1100 ° C for 2 minutes, and then the final sheet thickness was 0.2.
Cold rolled to 3 mm. This cold-rolled sheet was annealed at 850 ° C. for 70 seconds in a wet gas for decarburization to carry out primary recrystallization.
【0013】その後、アンモニア窒化により窒素量を
0.02%まで高めインヒビターを強化し、その後酸洗
により表面酸化層を除去した。この試料にアルミナを主
成分とする焼鈍分離材を静電塗布した後、仕上げ焼鈍を
施した。仕上げ焼鈍は1200℃まではN2 :25%−
H2 :75%の雰囲気ガス中で10℃/hrの昇温速度で
行い、1200℃でH2 :100%に切りかえ20時間
純化焼鈍を行った。Then, the amount of nitrogen was increased to 0.02% by ammonia nitriding to strengthen the inhibitor, and then the surface oxide layer was removed by pickling. After the annealing separator material containing alumina as a main component was applied electrostatically to the samples were subjected to finish annealing. Finish annealing is N 2 : 25% -up to 1200 ° C.
H 2 was performed at a temperature rising rate of 10 ° C./hr in an atmosphere gas of 75% and switched to H 2 : 100% at 1200 ° C. and purified annealing was performed for 20 hours.
【0014】これらの試料について、張力コーティング
処理とレーザー照射による磁区細分化処理を行った後の
磁気特性及び製品の二次再結晶組織を図1及び図2に示
す。図1及び図2より、Pb:0.001%以上添加し
た試料で二次再結晶が安定化して行われたことが分か
る。これは、図3に示すように、インヒビター(Al
N,(Al,Si)N等)の劣化が抑制されるためであ
ると考えられる。またこれは、Pbが表面に濃化するこ
とにより脱窒素のバリアーになるためであると考えられ
る。1 and 2 show the magnetic properties and the secondary recrystallized structure of the products of these samples after the tension coating treatment and the magnetic domain refinement treatment by laser irradiation. From FIG. 1 and FIG. 2, it can be seen that the secondary recrystallization was stabilized in the sample in which Pb: 0.001% or more was added. This is due to the inhibitor (Al
It is considered that this is because deterioration of N, (Al, Si) N, etc. is suppressed. It is also considered that this is because Pb becomes a barrier of denitrification by concentrating on the surface.
【0015】次に実施形態を述べる。鋼板の磁束密度を
高めるためには、田口・坂倉等によるAlNとMnSを
主インヒビターとして用いる製造法(例えば特公昭40
−15644号公報)、または小松等による(Al,S
i)Nを主インヒビターとして用いる製造法(例えば特
公昭62−45285号公報)を適用すれば良い。この
場合、Pbを添加して二次再結晶前に表面に濃化させ、
界面からの脱窒素を抑制して、Alの窒化物のインヒビ
ターを安定化することが必須の要件となる。Next, an embodiment will be described. In order to increase the magnetic flux density of a steel sheet, a manufacturing method using AlN and MnS as main inhibitors by Taguchi, Sakakura et al.
No. 15644) or by Komatsu et al. (Al, S
i) A production method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285) may be applied. In this case, Pb was added to thicken the surface before secondary recrystallization,
It is essential to suppress denitrification from the interface and stabilize the Al nitride inhibitor.
【0016】Pbの添加量としては、仕上げ焼鈍時に表
面に濃化させ、脱窒素を抑制するためには0.001%
以上、好ましくは0.005%以上添加する必要があ
る。上限値としては、磁束密度の点からは0.005%
以上0.1%までほぼ同程度の値が得られているが、
0.05%超添加すると形状(熱延エッジ部)が悪化す
るので、0.05%以下とすることが望ましい。The amount of Pb added is 0.001% in order to thicken the surface during finish annealing and suppress denitrification.
Above, preferably 0.005% or more needs to be added. In terms of magnetic flux density, the upper limit is 0.005%
Although almost the same value was obtained up to 0.1%,
If added in excess of 0.05%, the shape (hot rolled edge portion) deteriorates, so it is desirable to set it to 0.05% or less.
【0017】また、脱炭焼鈍板を積層する際の焼鈍分離
材としては鋼板表面のシリカと反応しない物質もしくは
反応しにくい物質を用いれば良い。(1)Al2 O3 ,
SiO2 ,ZrO2 ,BaO,CaO,SrO,Mg2
SiO4 等の物質の粉末を、静電塗布法等の方法で水和
水分を持ち込まない状態で用いること、または(2)A
l2 O3 ,SiO2 ,ZrO2 ,BaO,CaO,Sr
O,Mg2 SiO4 等の物質が表面に存在している板を
用いること、または(3)0.5〜10μmの平均粒径
のAl2 O3 ,SiO2 ,ZrO2 ,BaO,CaO,
SrO,Mg2SiO4 等の物質の粉末を水スラリー状
にして塗布した後乾燥して水和水分を除去する方法が有
効である。Annealing separation when stacking decarburized annealing plates
As the material, a material that does not react with silica on the surface of the steel sheet or a material that does not easily react may be used. (1) Al 2 O 3 ,
SiO 2 , ZrO 2 , BaO, CaO, SrO, Mg 2
Use a powder of a substance such as SiO 4 in a state where hydrated water is not brought in by a method such as electrostatic coating, or (2) A
l 2 O 3 , SiO 2 , ZrO 2 , BaO, CaO, Sr
Using a plate on the surface of which a substance such as O or Mg 2 SiO 4 is present, or (3) Al 2 O 3 , SiO 2 , ZrO 2 , BaO, CaO having an average particle size of 0.5 to 10 μm ,
An effective method is to remove the hydrated water by applying a powder of a substance such as SrO or Mg 2 SiO 4 in the form of a water slurry and then drying it.
【0018】水スラリーとして塗布する場合、粒径が1
0μm以上だと鋼板に粗大アルミナが食い込んでしま
う、また、0.5μm以下だと活性で鋼板に焼き付き易
くなってしまう。仕上げ焼鈍後の製品は、張力コーティ
ング処理及びレーザー照射等の磁区細分化処理を行う。When applied as a water slurry, the particle size is 1
If it is 0 μm or more, coarse alumina will bite into the steel sheet, and if it is 0.5 μm or less, it will be active and will easily seize on the steel sheet. The product after finish annealing is subjected to tension coating treatment and magnetic domain refinement treatment such as laser irradiation.
【0019】[0019]
実施例1 重量でSi:3.3%、Mn:0.12%、C:0.0
5%、S:0.007%、酸可溶性Al:0.026
%、N:0.008%、Pb:0.01%の珪素鋼スラ
ブを1150℃で加熱した後、板厚1.8mmに熱延し
た。この熱延板を1100℃で2分間焼鈍した後最終板
厚0.2mmに冷延した。この冷延板を湿潤ガス中で脱炭
を兼ね850℃で70秒焼鈍し一次再結晶させた。次い
でアンモニア雰囲気中で750℃で焼鈍することによ
り、窒素量を0.02%に増加して、インヒビターの強
化を行った。Example 1 Si: 3.3% by weight, Mn: 0.12%, C: 0.0
5%, S: 0.007%, acid-soluble Al: 0.026
%, N: 0.008%, Pb: 0.01%, a silicon steel slab was heated at 1150 ° C., and then hot rolled to a plate thickness of 1.8 mm. The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.2 mm. This cold-rolled sheet was annealed at 850 ° C. for 70 seconds in a wet gas for decarburization to carry out primary recrystallization. Then, by annealing at 750 ° C. in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor.
【0020】その後酸洗により表面の酸化層を除去した
後、この板を一部は(1)平均粒径1μmのアルミナを
水スラリーで塗布し、一部は(2)マグネシアを水スラ
リー状にして塗布し積層して、仕上げ焼鈍を施した。仕
上げ焼鈍は1200℃まではN2 :100%の雰囲気ガ
ス中で10℃/hrの昇温速度で行い、1200℃で
H2 :100%に切りかえ20時間純化焼鈍を行った。
これらの試料を張力コーティング処理を施した後、レー
ザー照射して磁区細分化した。得られた製品の磁気特性
を表1に示す。After removing the oxide layer on the surface by pickling, the plate is partially coated with (1) alumina having an average particle size of 1 μm in a water slurry, and (2) magnesia in a water slurry state. Was applied, laminated, and finish-annealed. The finish annealing was performed up to 1200 ° C. in an atmosphere gas of N 2 : 100% at a temperature rising rate of 10 ° C./hr, and the annealing was switched to H 2 : 100% at 1200 ° C. for 20 hours for purification annealing.
After subjecting these samples to a tension coating treatment, the samples were subjected to laser irradiation to refine magnetic domains. Table 1 shows the magnetic properties of the obtained products.
【0021】[0021]
【表1】 [Table 1]
【0022】アルミナを塗布すると、マグネシアを水ス
ラリー状で塗布した場合に比べて、鉄損値が約10%低
い(良い)ことが分かる。It can be seen that when the alumina is applied, the iron loss value is about 10% lower (good) than when the magnesia is applied in the form of a water slurry.
【0023】実施例2 重量で、Si:3.2%、Mn:0.08%、C:0.
08%、S:0.025%、酸可溶性Al:0.025
%、N:0.009%、Pb:0.008%の珪素鋼ス
ラブを1320℃で加熱した後、板厚2.3mmに熱延し
た。この熱延板を1050℃で2分間焼鈍した後0.2
0mm厚に冷延した。Example 2 By weight, Si: 3.2%, Mn: 0.08%, C: 0.
08%, S: 0.025%, acid-soluble Al: 0.025
%, N: 0.009%, Pb: 0.008% of a silicon steel slab was heated at 1320 ° C. and then hot-rolled to a plate thickness of 2.3 mm. This hot-rolled sheet was annealed at 1050 ° C. for 2 minutes and then 0.2
Cold rolled to a thickness of 0 mm.
【0024】この冷延板を湿潤ガス中で脱炭を兼ね85
0℃で90秒焼鈍し一次再結晶させた。この鋼板を
(A)一部は酸洗して表面の酸化層を除去し、(B)一
部はそのまま平均粒径1.0μmのアルミナを水スラリ
ーで塗布・乾燥して、仕上げ焼鈍を施した。This cold-rolled sheet also serves as decarburizer in wet gas.
It was annealed at 0 ° C. for 90 seconds for primary recrystallization. Part (A) of this steel sheet is pickled to remove the oxide layer on the surface, and part (B) is directly coated with alumina having an average particle size of 1.0 μm in a water slurry and dried, followed by finish annealing. did.
【0025】仕上げ焼鈍は1200℃まではAr:10
0%の雰囲気ガス中で15℃/hrの昇温速度で行い、1
200℃でH2 :100%に切りかえ20時間純化焼鈍
を行った。これらの試料を張力コーティング処理を施し
た後、レーザー照射して磁区細分化した。得られた製品
の磁気特性を表2に示す。The finish annealing is Ar: 10 up to 1200 ° C.
In a 0% atmosphere gas at a heating rate of 15 ° C./hr,
Purification annealing was performed at 200 ° C. for 20 hours by switching to H 2 : 100%. After subjecting these samples to a tension coating treatment, the samples were subjected to laser irradiation to refine magnetic domains. Table 2 shows the magnetic properties of the obtained products.
【0026】[0026]
【表2】 [Table 2]
【0027】脱炭焼鈍により形成された酸化層を除去す
ることにより、鉄損が更に向上(低くなる)することが
分かる。It can be seen that iron loss is further improved (lowered) by removing the oxide layer formed by decarburization annealing.
【0028】実施例3 実施例2の脱炭板を酸洗した後、一部は(A)表面にフ
ォルステライト(Mg2 SiO4 )の付いた鋼板を挿入
し、(B)平均粒径3μmのシリカを静電塗布、(C)
平均粒径3.3μmジルコニアを静電塗布、(D)平均
粒径3.0μmの酸化ストロンチウムを静電塗布し積層
した。その後、仕上げ焼鈍を施し、二次再結晶・表面の
鏡面化を達成した。これらの試料に張力コーティング処
理を施した後、レーザー照射して磁区細分化した。得ら
れた製品の磁気特性を表3に示す。Example 3 After the pickling of the decarburized plate of Example 2, a part of (A) a steel plate with forsterite (Mg 2 SiO 4 ) on the surface was inserted, and (B) an average particle size of 3 μm. Electrostatic coating of silica, (C)
Zirconia having an average particle size of 3.3 μm was electrostatically applied, and (D) strontium oxide having an average particle size of 3.0 μm was electrostatically applied and laminated. After that, finish annealing was performed to achieve secondary recrystallization and surface mirror finishing. After subjecting these samples to tension coating, laser irradiation was performed to subdivide the magnetic domains. Table 3 shows the magnetic properties of the obtained products.
【0029】[0029]
【表3】 [Table 3]
【0030】[0030]
【発明の効果】本発明により、仕上げ焼鈍中に(1)鉄
損特性を劣化させる要因である鋼板表面の凸凹の平滑化
と(2)磁束密度を向上させる二次再結晶による結晶の
方位制御を同時に達成できるので、磁気特性の良い一方
向性珪素鋼板を低コストで製造することができる。According to the present invention, during finish annealing, (1) smoothing of irregularities on the surface of a steel sheet, which is a factor of deteriorating iron loss characteristics, and (2) crystal orientation control by secondary recrystallization for improving magnetic flux density. Can be simultaneously achieved, so that a unidirectional silicon steel sheet having good magnetic properties can be manufactured at low cost.
【図面の簡単な説明】[Brief description of the drawings]
【図1】Pb添加量と製品の磁気特性(B8 )の関係を
示す図表である。FIG. 1 is a table showing the relationship between the amount of Pb added and the magnetic properties (B 8 ) of products.
【図2】(a),(b),(c)は仕上げ焼鈍後のマク
ロ組織の模式図である(縦160mm×横60mm)。2 (a), (b) and (c) are schematic views of a macrostructure after finish annealing (length 160 mm × width 60 mm).
【図3】仕上げ焼鈍時のインヒビターの変化(窒素量で
示す)に及ぼす鋼中Pb添加の影響を示す図表である。FIG. 3 is a table showing the effect of Pb addition in steel on the change of the inhibitor (indicated by the amount of nitrogen) during finish annealing.
Claims (5)
延鋼帯を、焼鈍した後或いは焼鈍を行わずに、一回もし
くは中間焼鈍を挟む二回以上の冷間圧延により最終板厚
とし、次いで脱炭焼鈍・増窒素処理を行った後、該鋼板
を積層する際の板間の焼鈍分離材としてシリカと反応し
ない、もしくは反応しにくい物質を用いることにより、
仕上げ焼鈍後に表面を鏡面にする鏡面方向性珪素鋼板の
製造方法において、鋼中元素としてPbを重量で0.0
01%以上添加することにより、二次再結晶を安定化せ
しめることを特徴とする超低鉄損一方向性珪素鋼板の製
造方法。1. By weight: Si: 0.8 to 4.8%, acid soluble Al: 0.012 to 0.05%, N ≤ 0.01%, balance, substantially from Fe and unavoidable impurities. Become silicon heat
After the steel strip is annealed or not annealed, it is cold rolled once or twice or more with intermediate annealing to obtain a final sheet thickness, and then decarburization annealed and nitrogen-enhanced, and then the steel sheet. By using a substance that does not react with silica or is difficult to react as an annealing separator between plates when stacking
In the method for producing a mirror-oriented silicon steel sheet having a mirror-finished surface after finish annealing, Pb is 0.0 by weight as an element in the steel.
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized by stabilizing secondary recrystallization by adding at least 01%.
酸化層を除去することを特徴とする請求項1記載の方
法。2. The method according to claim 1 , wherein after the decarburization annealing, the oxide layer formed by the decarburization annealing is removed.
2 ,ZrO2 ,BaO,CaO,SrO,Mg2 SiO
4 の1種または2種以上からなる粉末を水和水分を持ち
込まない状態で用いることを特徴とする請求項1または
2に記載の方法。3. An annealing separator, Al 2 O 3 , SiO
2 , ZrO 2 , BaO, CaO, SrO, Mg 2 SiO
Claim is characterized by using 4 one or a powder composed of two or more in a state of not bring hydration water 1 or
3. The method according to 2 .
2 ,ZrO2 ,BaO,CaO,SrO,Mg2 SiO
4 の1種または2種以上からなる物質を表面に有する板
を用いることを特徴とする請求項1または2に記載の方
法。4. An annealing separator, Al 2 O 3 , SiO
2 , ZrO 2 , BaO, CaO, SrO, Mg 2 SiO
The method according to claim 1 or 2 , wherein a plate having on its surface a substance consisting of one or more of 4 is used.
平均粒径のAl2 O3 ,SiO2 ,ZrO2 ,BaO,
CaO,SrO,Mg2 SiO4 の1種または2種以上
からなる粉末をスラリー状にして鋼板に塗布することを
特徴とする請求項1または2に記載の方法。5. As an annealing separator, Al 2 O 3 , SiO 2 , ZrO 2 , BaO having an average particle size of 0.5 to 10 μm ,
The method according to claim 1 or 2 , wherein a powder of one or more of CaO, SrO, and Mg 2 SiO 4 is made into a slurry and applied to the steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5043811A JP2679932B2 (en) | 1993-03-04 | 1993-03-04 | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5043811A JP2679932B2 (en) | 1993-03-04 | 1993-03-04 | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06256849A JPH06256849A (en) | 1994-09-13 |
JP2679932B2 true JP2679932B2 (en) | 1997-11-19 |
Family
ID=12674131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5043811A Expired - Lifetime JP2679932B2 (en) | 1993-03-04 | 1993-03-04 | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2679932B2 (en) |
-
1993
- 1993-03-04 JP JP5043811A patent/JP2679932B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06256849A (en) | 1994-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4288054B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP2679944B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
EP0607440B1 (en) | Process for producing a grain-orientated electical steel sheet having mirror surface | |
JP2653638B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JP2679931B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with extremely low iron loss | |
JP3474837B2 (en) | Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more | |
JP2679932B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP4331886B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP2680987B2 (en) | Method for producing grain-oriented silicon steel sheet with low iron loss | |
JP4119635B2 (en) | Method for producing mirror-oriented electrical steel sheet with good decarburization | |
JP2680532B2 (en) | Method for producing grain-oriented electrical steel sheet with low iron loss | |
JP2678850B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP2678855B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP3182666B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JP2679933B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP2719266B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JP3148092B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP2678858B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP3148096B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3178887B2 (en) | Manufacturing method of ultra low iron loss unidirectional silicon steel sheet | |
JPH07278669A (en) | Manufacture of mirror surface oriented silicon steel sheet with low iron loss | |
JP2003268451A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane | |
JPH05311239A (en) | Manufacture of super low core loss grain-oriented magnetic foil strip | |
JP3182667B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JP3148095B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970624 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100801 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100801 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |