JPH0519029A - Composite equivalent test circuit of circuit breaker - Google Patents

Composite equivalent test circuit of circuit breaker

Info

Publication number
JPH0519029A
JPH0519029A JP3172158A JP17215891A JPH0519029A JP H0519029 A JPH0519029 A JP H0519029A JP 3172158 A JP3172158 A JP 3172158A JP 17215891 A JP17215891 A JP 17215891A JP H0519029 A JPH0519029 A JP H0519029A
Authority
JP
Japan
Prior art keywords
current
circuit
breaker
circuit breaker
auxiliary switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3172158A
Other languages
Japanese (ja)
Inventor
Osamu Koyanagi
修 小柳
Katsuichi Kashimura
勝一 樫村
Yoichi Oshita
陽一 大下
Yukio Kurosawa
幸夫 黒沢
Minoru Sato
稔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3172158A priority Critical patent/JPH0519029A/en
Publication of JPH0519029A publication Critical patent/JPH0519029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To enable maintenance inspection operation such as exchange of parts at a circuit breaker portion of an auxiliary switch to be reduced drastically by allowing a current source current to flow to only a series circuit of a circuit breaker under test and an auxiliary circuit breaker without flowing to the auxiliary switch. CONSTITUTION:A current source current 1c allows current to flow to only a circuit breaker 1 under test and an auxiliary circuit breaker 5 and a small short-circuiting current ia which is at least approximately 1/10-1/100 of the current source current ic is supplied to an auxiliary switch 6 from another power supply. Furthermore, a current superposition circuit consisting of a capacitor 9 which is precharged, a control gap 8, and a resistor is provided at a circuit side of the short-circuiting small current ia, thus enabling a phase difference of zero point of a current source current ic and the short-circuiting small current ia near a current-breaking zero point which is generated due to arc voltage, etc., generated according to circuit conditions and the circuit breaker and the short-circuiting small current ia to be controlled. No current source current ic is allowed to flow to the switch 6 and a small amount of current for maintaining an arc of the switch 6 is simply broken, thus preventing damage due to the arc at the circuit-breaking portion and eliminating a need for maintenance inspection such as exchange of parts at the circuit-breaking portion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力用遮断器の大電流遮
断性能を検証するための合成等価試験回路に係り、特
に、四パラメータ過渡回復電圧(Transient Recovery V
oltage;以下、TRVと略す。)発生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic equivalent test circuit for verifying a large-current breaking performance of a power circuit breaker, and more particularly to a four-parameter transient recovery voltage (Transient Recovery V
oltage; hereinafter abbreviated as TRV. ) Regarding the generation circuit.

【0002】[0002]

【従来の技術】近年、大容量電力用遮断器の高電圧化が
図られ、定格電圧362〜550kVの遮断器が一相当
り一遮断点で構成出来るようになってきている。
2. Description of the Related Art In recent years, the breakers for large-capacity electric power have been increased in voltage, and breakers having a rated voltage of 362 to 550 kV can now be constructed at one break point.

【0003】一方、電力用遮断器の遮断試験に関する国
際規格(International Electrotec-hnical Commission)
や、電気規格調査会標準規格(Japanese Electrotechni
calCommittee;以下、JECと略す。)では、電流遮断
後に供試遮断器の極間に印加する電圧波形として、電圧
波高値が遅れて現われる、いわゆる、四パラメータTR
Vを規定している。これは、TRV電圧波形の初期波高
時間と波高時間、及びそのそれぞれの時間に対応する初
期波高値と波高値との四つのパラメータを規定し、この
四パラメータTRVに耐圧すれば供試遮断器は所望の遮
断性能をもつと判定するものである。これに対して、従
来から遮断性能の検証に広く用いられてきたワイル(W
eil)合成等価試験回路では、回路の発生するTRV
波形が単一周波の振動であって、波高時間と波高値で規
定する二パラメータTRVと呼ばれているものであるた
め、これを四パラメータTRVが発生出来るように改善
する多くの提案がなされた。しかし、遮断器の一遮断点
当りの高電圧化に伴う試験回路設備の経済性や技術的な
課題があって、一般的に広く普及するには至っていな
い。このため、波高時間の長い四パラメータTRVをよ
り経済的に、且つ、技術的に容易に発生出来る合成等価
試験回路の開発が望まれている。
On the other hand, an international standard (international electrotec-hnical commission) concerning a breaking test of a power circuit breaker.
Standards of the Electrical Standards Study Group (Japanese Electrotechni
calCommittee; hereinafter abbreviated as JEC. ), The so-called four-parameter TR, in which the voltage peak value appears with a delay as the voltage waveform applied between the poles of the test breaker after the current is cut off.
V is specified. This defines four parameters of the initial peak time and the peak time of the TRV voltage waveform, and the initial peak value and the peak value corresponding to each time, and the withstand voltage of the four parameters TRV causes the test breaker to operate. It is determined to have a desired breaking performance. On the other hand, weil (W
eil) In the synthetic equivalent test circuit, the TRV generated by the circuit
Since the waveform is a vibration of a single frequency and is called a two-parameter TRV defined by a crest time and a crest value, many proposals have been made to improve this so that a four-parameter TRV can be generated. . However, due to the economical and technical problems of the test circuit equipment associated with the increase in the voltage per break point of the circuit breaker, it has not been widely spread in general. Therefore, it is desired to develop a synthetic equivalent test circuit that can generate a four-parameter TRV having a long crest time more economically and technically easily.

【0004】図3は従来の四パラメータTRV発生回路
の一実施例で、図4は図3の回路現象説明図である。こ
の四パラメータTRV発生回路は、1988年1月発行
の文献アイ・イー・イー,トランザクション,オン,パ
ワー,デリベリー,3巻1号(IEEE Transaction on Po
wer Delivery,Vol.3,No.1)に開示されている。
FIG. 3 shows an embodiment of a conventional four-parameter TRV generating circuit, and FIG. 4 is an explanatory view of the circuit phenomenon of FIG. This four-parameter TRV generation circuit is disclosed in the article issued in January 1988, iE, Transaction, On, Power, Delivery, Vol. 3, No. 1 (IEEE Transaction on Po
wer Delivery, Vol.3, No.1).

【0005】図3において、図示の供試遮断器1より右
側は高電圧の電圧源回路、左側は低電圧の電流源回路で
ある。商用周波数の電源2から電流調整用のリアクトル
3,短絡変圧器4,補助遮断器5,補助スイッチ6、及
び供試遮断器1を通して電流源電流icを供給する。こ
こで、サージアブソーバ7が電流源の保護用として図示
の位置に接続されることが多い。
In FIG. 3, the right side of the illustrated circuit breaker 1 is a high voltage voltage source circuit, and the left side is a low voltage current source circuit. A current source current ic is supplied from a commercial frequency power source 2 through a reactor 3 for current adjustment, a short-circuit transformer 4, an auxiliary circuit breaker 5, an auxiliary switch 6, and a test circuit breaker 1. Here, the surge absorber 7 is often connected to the position shown for protection of the current source.

【0006】電流源電流icを通電後、例えば、ほぼ同
時に供試遮断器1,補助遮断器5、及び補助スイッチ6
を開極する。図4に示すように、電流源電流icの最終
零点直前で制御ギャップ8を放電して、予め充電してあ
るコンデンサ9から制御ギャップ8,リアクトル10,
補助スイッチ6、及び供試遮断器1を介して電圧源電流
ivを電流源電流icに重畳する。例えば、JEC規格
によれば、電流重畳法による電圧源電流ivの重畳時点
は、電流源電流icの零時点より前であり、且つ、iv
のみの期間t0 は、電圧源電流ivの周期Tの1/8〜
1/4の範囲になければならないと規定されている。
After passing the current source current ic, for example, the test breaker 1, the auxiliary breaker 5, and the auxiliary switch 6 are almost simultaneously.
Open. As shown in FIG. 4, the control gap 8 is discharged immediately before the final zero point of the current source current ic, and the precharged capacitor 9 to the control gap 8, the reactor 10,
The voltage source current iv is superimposed on the current source current ic via the auxiliary switch 6 and the test breaker 1. For example, according to the JEC standard, the superposition time point of the voltage source current iv by the current superposition method is before the zero time point of the current source current ic, and iv
The period t 0 is only ⅛ of the cycle T of the voltage source current iv.
It is specified that it must be in the range of 1/4.

【0007】供試遮断器1が最終的に電圧源電流ivの
遮断に成功すると、コンデンサ9の残留電圧によって図
3,図4に示すように、電流i1は抵抗11,コンデンサ
12b、電流i2は抵抗13,コンデンサ14、さらに電流
3はリアクトル15,抵抗16の直列回路をそれぞれ
流れる。結局、コンデンサ12aには(i1−i3)、コン
デンサ17には(i2+i3)の電流が流れる。ここで、
コンデンサ14の静電容量はコンデンサ12と17に比
べてかなり小さく設定している。このため、電圧源電流
ivが供試遮断器1により遮断されると、電流i2とコ
ンデンサ14,17の電圧降下として、図4に示される
ような目標TRVの初期部分であるTRV1が発生する。回
路条件を適切に選ぶと電流i2 の零点t20を電流i1
零点t10より早い時点に発生することが出来る。補助ス
イッチ6が電流i2 を零点t20で遮断すると、もし、リ
アクトル15と抵抗16の直列回路が無ければ、図4に
一点鎖線で示すように供試遮断器1の端子電圧は初期波
高値U1 に近い一定値を保ち続ける。電圧の大部分はコ
ンデンサ14の端子間で分担されており、コンデンサ1
7の端子間電圧は十分低い。電流i2 の遮断後に、引き
続き電流 i3によってコンデンサ17が充電されるた
め、TRV2 で示すように電圧が遅れて高められる。こ
の結果、供試遮断器1には(TRV1+TRV2)で示さ
れる四パラメータ表示に適したTRV波形を印加するこ
とが出来る。
When the circuit breaker 1 finally succeeds in interrupting the voltage source current iv, the current i 1 is caused by the residual voltage of the capacitor 9 as shown in FIGS.
12b, the current i 2 flows through the resistor 13 and the capacitor 14, and the current i 3 flows through the series circuit of the reactor 15 and the resistor 16. Eventually, a current of (i 1 −i 3 ) flows in the capacitor 12a and a current of (i 2 + i 3 ) flows in the capacitor 17. here,
The capacitance of the capacitor 14 is set to be considerably smaller than that of the capacitors 12 and 17. Therefore, when the voltage source current iv is cut off by the test breaker 1, TRV 1, which is the initial portion of the target TRV as shown in FIG. 4, is generated as a voltage drop between the current i 2 and the capacitors 14 and 17. To do. By properly selecting the circuit conditions, the zero point t 20 of the current i 2 can be generated earlier than the zero point t 10 of the current i 1 . When the auxiliary switch 6 cuts off the current i 2 at the zero point t 20 , if there is no series circuit of the reactor 15 and the resistor 16, the terminal voltage of the test breaker 1 has an initial peak value as shown by the one-dot chain line in FIG. Keep a constant value close to U 1 . Most of the voltage is shared between the terminals of the capacitor 14,
The voltage between terminals 7 is sufficiently low. After the current i 2 is cut off, the capacitor 17 is continuously charged by the current i 3 , so that the voltage is delayed and increased as indicated by TRV 2 . As a result, a TRV waveform suitable for the four-parameter display represented by (TRV 1 + TRV 2 ) can be applied to the test breaker 1.

【0008】以上のような四パラメータTRV発生回路
を実用化する際に最も問題になるのは補助スイッチ6で
あり、以下に述べる経済性の点,供試遮断器1の遮断性
能評価の点から、さらに改善が望まれていた。
The most problematic point when the above-mentioned four-parameter TRV generating circuit is put into practical use is the auxiliary switch 6, and from the viewpoint of the economical efficiency and the evaluation of the breaking performance of the test breaker 1 described below. , Further improvement was desired.

【0009】[0009]

【発明が解決しようとする課題】上記従来技術例は、補
助スイッチ6にも電流源電流icが通電する方式であ
り、補助スイッチ6の遮断部は大電流アークによって損
傷を受ける。このため、試験ごとに遮断部の部品交換等
の保守点検が必要であり、設備運用上の経済性の点で改
善が必要であった。また、補助スイッチ6は大電流アー
クの処理を必要とするため比較的大きな遮断性能が要求
される。補助スイッチ6でも電流源電流icを遮断する
ため、電流源電流icの減少や電流零点近傍の変歪等の
増大の原因となる。このため、直列に遮断する供試遮断
器1の遮断を助勢して遮断性能を過大に評価してしまう
懸念もあった。
The above-mentioned prior art example is a system in which the current source current ic also passes through the auxiliary switch 6, and the breaking portion of the auxiliary switch 6 is damaged by the large current arc. For this reason, maintenance and inspection such as replacement of parts of the breaker were required for each test, and improvement was necessary in terms of economic efficiency in equipment operation. Further, since the auxiliary switch 6 needs to process a large current arc, a relatively large breaking performance is required. Since the auxiliary switch 6 also interrupts the current source current ic, it causes a decrease in the current source current ic and an increase in distortion near the current zero point. For this reason, there is a concern that the breaking performance of the test circuit breaker 1 that breaks in series may be assisted and the breaking performance may be excessively evaluated.

【0010】本発明の目的は、補助スイッチ6の遮断部
の部品交換等の保守点検作業を大幅に軽減することにあ
る。本発明の他の目的は、電流源電流icが通電する補
助スイッチの数を最小限とし、電流源電流icの減少や
電流零点近傍の変歪等の増大を抑制することによって供
試遮断器1の遮断性能をより精度良く検証出来るように
することにある。さらに、本発明の他の目的は、四パラ
メータTRVが供試遮断器1に印加されないといった遮
断性能検証試験の失敗の無い効率の良い合成等価試験回
路を提供することにある。
An object of the present invention is to greatly reduce maintenance and inspection work such as replacement of parts of the breaker of the auxiliary switch 6. Another object of the present invention is to minimize the number of auxiliary switches to which the current source current ic is energized, and to suppress the decrease of the current source current ic and the increase of distortion near the current zero point. It is to make it possible to verify the breaking performance of the device with higher accuracy. Another object of the present invention is to provide an efficient synthetic equivalent test circuit without failure of the breaking performance verification test such that the four-parameter TRV is not applied to the test breaker 1.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、電流源電流icは供試遮断器1と補助遮断器5のみ
に通電し、補助スイッチ6には別電源から少なくとも電
流源電流icの1/10〜1/100程度の小さい短絡
小電流iaを供給するようにしたものである。さらに、
回路条件、遮断器で生じるアーク電圧等で発生する電流
遮断零点近傍での電流源電流icと短絡小電流iaの零
点の位相差の制御を目的として、短絡小電流ia回路側
に予め充電したコンデンサ,制御ギャップ,抵抗からな
る電流重畳回路とを備えたものである。
To achieve the above object, the current source current ic is supplied only to the circuit breaker 1 and the auxiliary circuit breaker 5, and the auxiliary switch 6 is supplied with at least the current source current ic from another power source. The short circuit small current ia of about 1/10 to 1/100 is supplied. further,
For the purpose of controlling the phase difference between the current source current ic in the vicinity of the current interruption zero point generated by the circuit condition, the arc voltage generated in the circuit breaker, etc. and the zero point of the short circuit small current ia, a capacitor precharged on the short circuit small current ia circuit side. , A control gap, and a current superposition circuit consisting of a resistor.

【0012】[0012]

【作用】補助スイッチ6には大電流の電流源電流icを
通電せず、補助スイッチ6のアークを維持する微小電流
を遮断するだけなので、遮断部はアークによって受ける
損傷がほとんど無く、試験ごとの遮断部の部品交換等の
保守点検が不要になる。また、補助スイッチ6は小電流
アークの処理をすれば良く、比較的遮断性能の低い遮断
器が使用可能になる。補助スイッチ6には電流源電流i
cは流れないので、電流源電流icの減少や電流零点近
傍の変歪等の発生を抑制出来る。よって、供試遮断器1
の遮断性能をより精度良く検証出来る。さらに、電流重
畳回路を備えて電流源電流icと短絡小電流iaの零点
の位相差制御を行うことにより、供試遮断器1へのTR
V印加を確実なものとすることが出来る。
A large current source current ic is not passed to the auxiliary switch 6 and only a minute current for maintaining the arc of the auxiliary switch 6 is cut off. Maintenance and inspection such as replacement of the parts of the shutoff part are not required. Further, the auxiliary switch 6 only needs to process a small current arc, and a circuit breaker having a relatively low breaking performance can be used. The auxiliary switch 6 has a current source current i
Since c does not flow, it is possible to suppress the decrease of the current source current ic and the occurrence of distortion near the current zero point. Therefore, the test breaker 1
The breaking performance of can be verified more accurately. Further, by providing a current superimposing circuit to control the phase difference between the zero points of the current source current ic and the short-circuit small current ia, TR to the circuit breaker 1 under test is controlled.
The V application can be ensured.

【0013】[0013]

【実施例】以下、本発明の実施例を図1,図2により説
明する。図1は本発明の合成等価試験回路の実施例で、
図2は、図1の回路の電流零点現象の説明図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows an embodiment of the synthetic equivalent test circuit of the present invention.
FIG. 2 is an explanatory diagram of the current zero phenomenon of the circuit of FIG.

【0014】図1に示した本発明の実施例と図3の従来
例との相違点は、電流源電流icを補助スイッチ6には
通電せず、供試遮断器1と補助遮断器5の直列回路にの
みに流すようにしたところにある。さらに、電源2に結
線した第二の短絡変圧器18、第二のリアクトル19か
らなる第二の電流源回路を新たに設け、第二の短絡変圧
器18の二次側の電流制限用リアクトル20,第二の補
助スイッチ21を介して少なくとも電流源電流icの1
/10〜1/100程度の小さい短絡小電流iaを補助
スイッチ6に供給するようにしたものである。短絡小電
流iaは、補助スイッチ6からさらに供試遮断器1と短
絡変圧器4のアース側を通って第二の短絡変圧器18に
帰るように流れる。第二の補助スイッチ21は、補助遮
断器5と同様に、電流を通電した後に電圧源回路側から
第二の電流源回路を切り離すためのものである。さら
に、第二の電流源回路には、供試遮断器1,補助スイッ
チ6,第二の補助スイッチ21の直列回路と閉回路を構
成するように設けた第二の制御ギャップ22,抵抗23
及び、図示していない充電装置を備えた第二のコンデン
サ24から成る電流重畳回路を設けている。ここで、短
絡変圧器4側のサージアブソーバ7と同様に、短絡変圧
器18側にもサージアブソーバ25を設けている。
The difference between the embodiment of the present invention shown in FIG. 1 and the conventional example shown in FIG. 3 is that the current source current ic is not supplied to the auxiliary switch 6 and the test breaker 1 and the auxiliary breaker 5 are connected. It is in the place where it was made to flow only to the series circuit. Further, a second current source circuit composed of a second short-circuit transformer 18 and a second reactor 19 connected to the power source 2 is newly provided, and a secondary-side current limiting reactor 20 of the second short-circuit transformer 18 is provided. , At least 1 of the current source current ic via the second auxiliary switch 21
A small short-circuit small current ia of about / 10 to 1/100 is supplied to the auxiliary switch 6. The short-circuit small current ia further flows from the auxiliary switch 6 to the second short-circuit transformer 18 through the test breaker 1 and the ground side of the short-circuit transformer 4. The second auxiliary switch 21 is, like the auxiliary circuit breaker 5, for disconnecting the second current source circuit from the voltage source circuit side after passing a current. Further, in the second current source circuit, a second control gap 22, a resistor 23, which is provided so as to form a closed circuit with a series circuit of the test breaker 1, the auxiliary switch 6, and the second auxiliary switch 21.
Also, a current superposition circuit including a second capacitor 24 having a charging device (not shown) is provided. Here, as with the surge absorber 7 on the short-circuit transformer 4 side, the surge absorber 25 is also provided on the short-circuit transformer 18 side.

【0015】試験時は、まず供試遮断器1,補助遮断器
5及び補助スイッチ6,第二の補助スイッチ21を閉じ
ている。第一の電流源回路からの電流源電流icを供試
遮断器1と補助遮断器5に、一方、第二の電流源回路か
らの短絡小電流iaを第二の補助スイッチ21,補助ス
イッチ6及び供試遮断器1に通電する。その後、例え
ば、ほぼ同時に供試遮断器1と補助遮断器5とを開き、
引き続き補助スイッチ6,第二の補助スイッチ21を開
く。そのときの電流零点近傍の各電流の関係を図2に示
している。各部の電流ic,iv,ib,(ia+i
b),(ic+iv+ia+ib)は、それぞれ図1に示し
た分流器26,27,28,29,30によって測定さ
れる。電流源電流icの最終零点直前で制御ギャップ8
を放電して、予め充電してあるコンデンサ9から制御ギ
ャップ8,リアクトル10,補助スイッチ6及び供試遮
断器1を介して電圧源電流ivを供給する。この時、短
絡小電流iaの零点は、供試遮断器1と補助遮断器5で
大電流の電流源電流icを遮断することによって生じる
アーク電圧が短絡変圧器4の一次側を介して短絡変圧器
18を励磁することが主な原因で、電流源電流icの零
点に対して時間taだけ遅れる。例えば、JEC規格に
よれば、電圧源電流ivのみの期間t0 は、電圧源電流
ivの周期Tの1/8〜1/4の範囲になければならな
いと規定されている。この時間taが時間t0 より大き
くなった場合には、電圧源電流ivの零点で第二の補助
スイッチ21が短絡小電流iaにより導通しているた
め、電圧源電流ivは、第二の補助スイッチ21,短絡
変圧器18及び短絡変圧器4のアース側を介してさらに
半波流れる。この場合には、電圧源電流ivの零点で供
試遮断器1にTRVが印加されないため、遮断性能検証
試験は失敗する。これを防止するため本実施例では、電
流重畳回路の第二の放電ギャップ22を電圧源電流iv
が重畳した直後の時間tbに放電させ、予め充電された
第二のコンデンサ24からの放電電流ibを短絡小電流
iaに対して逆方向に重畳して短絡小電流iaの零点を
強制的に進めるようにしたものである。電流(ia+i
b)は、ibの重畳直後に迎える零点で第二の補助スイ
ッチ21により遮断される。電流(ia+ib)遮断後
ibは、電流制限用リアクトル20,短絡変圧器18を
介して引き続き流れる。その後、補助遮断器5によって
電流icが遮断され、さらに供試遮断器1が電流ivを
遮断した後は、図3で示した従来例と同様に四パラメー
タ表示に適したTRV波形を供試遮断器1に印加するこ
とが出来る。ここで、第二の放電ギャップ22の放電時
期tbは、電圧源電流ivが短絡大電流icに重畳した
時点からivが遮断される時点の直前としなければなら
ない。しかし、電流重畳法による合成等価試験では、電
流零点に至る電流傾斜と、その後、印加されるTRVの
電圧上昇率を実系統での条件と一致させることが要求さ
れる。遮断性能を左右するivの電流零点に至る電流傾
斜に影響を与えないないようにするためには、その放電
時期tbは、ivがicに重畳した時点からicが遮断
される時点の範囲内とすることが望ましい。
During the test, first, the test breaker 1, the auxiliary breaker 5, the auxiliary switch 6, and the second auxiliary switch 21 are closed. The current source current ic from the first current source circuit is supplied to the test breaker 1 and the auxiliary circuit breaker 5, while the short circuit small current ia from the second current source circuit is supplied to the second auxiliary switch 21 and the auxiliary switch 6. And energize the test breaker 1. After that, for example, the test breaker 1 and the auxiliary breaker 5 are opened almost at the same time,
Subsequently, the auxiliary switch 6 and the second auxiliary switch 21 are opened. FIG. 2 shows the relationship of each current in the vicinity of the current zero point at that time. Current of each part ic, iv, ib, (ia + i
b) and (ic + iv + ia + ib) are measured by the flow dividers 26, 27, 28, 29 and 30 shown in FIG. 1, respectively. The control gap 8 immediately before the final zero point of the current source current ic
Is discharged, and the voltage source current iv is supplied from the precharged capacitor 9 through the control gap 8, the reactor 10, the auxiliary switch 6 and the test breaker 1. At this time, the zero point of the short circuit small current ia is the arc voltage generated by breaking the large current source current ic by the test breaker 1 and the auxiliary circuit breaker 5 through the primary side of the short circuit transformer 4. It is delayed by the time ta with respect to the zero point of the current source current ic, mainly due to the excitation of the device 18. For example, according to the JEC standard, the period t 0 of only the voltage source current iv must be in the range of ⅛ to ¼ of the cycle T of the voltage source current iv. When this time ta becomes longer than the time t 0 , the second auxiliary switch 21 is conducting due to the short-circuit small current ia at the zero point of the voltage source current iv. Therefore, the voltage source current iv is the second auxiliary switch 21. A further half-wave flows through the switch 21, the short-circuit transformer 18 and the ground side of the short-circuit transformer 4. In this case, since the TRV is not applied to the test breaker 1 at the zero point of the voltage source current iv, the breaking performance verification test fails. In order to prevent this, in the present embodiment, the second discharge gap 22 of the current superimposing circuit is connected to the voltage source current iv.
Is discharged at time tb immediately after superposition, and the discharge current ib from the second capacitor 24 charged in advance is superposed in the opposite direction to the short-circuit small current ia to forcibly advance the zero point of the short-circuit small current ia. It was done like this. Current (ia + i
The point b) is a zero point which is reached immediately after the superposition of ib and is cut off by the second auxiliary switch 21. After interruption of the current (ia + ib), ib continues to flow via the current limiting reactor 20 and the short-circuit transformer 18. After that, after the current ic is cut off by the auxiliary circuit breaker 5 and the test circuit breaker 1 cuts off the current iv, the TRV waveform suitable for four-parameter display is cut off as in the conventional example shown in FIG. Can be applied to the device 1. Here, the discharge timing tb of the second discharge gap 22 must be immediately before the time point when iv is cut off from the time point when the voltage source current iv is superimposed on the short circuit large current ic. However, in the synthetic equivalent test by the current superposition method, it is required that the current slope reaching the current zero point and the voltage increase rate of the TRV to be applied thereafter match the conditions in the actual system. In order not to affect the current gradient to the current zero point of iv that affects the cutoff performance, the discharge timing tb is within the range from the time when iv is superposed to the time when ic is cut off. It is desirable to do.

【0016】[0016]

【発明の効果】本実施例によれば、補助スイッチ6と第
二の補助スイッチ21には大電流の電流源電流icを通
電しないため、遮断部はアークによって受ける損傷がほ
とんど無く、試験ごとの遮断部の部品交換等の保守点検
が不要になる。よって設備運用上の経済性の点での改善
出来る効果がある。また、補助スイッチ6は小電流アー
クの処理をすれば良く、比較的遮断性能の低い遮断器が
使用可能になる。補助スイッチ6には電流源電流icは
流れないので、電流源電流icの減少や電流零点近傍の
変歪等の発生を抑制して供試遮断器1の遮断性能をより
精度良く検証出来る効果がある。さらに、電流重畳回路
を備えて電流源電流icと短絡小電流iaの零点の位相
差制御を行うことにより、供試遮断器1へのTRV印加
を確実なものとすることが出来る。
According to the present embodiment, since the large current source current ic is not passed through the auxiliary switch 6 and the second auxiliary switch 21, the breaker is hardly damaged by the arc, and the test is performed for each test. Maintenance and inspection such as replacement of the parts of the shutoff part are not required. Therefore, there is an effect that it is possible to improve the economical efficiency of equipment operation. Further, the auxiliary switch 6 only needs to process a small current arc, and a circuit breaker having a relatively low breaking performance can be used. Since the current source current ic does not flow through the auxiliary switch 6, there is an effect that the reduction of the current source current ic and the occurrence of distortion near the current zero point can be suppressed to more accurately verify the breaking performance of the test breaker 1. is there. Furthermore, by providing a current superimposing circuit to control the phase difference between the zero point of the current source current ic and the short circuit small current ia, TRV application to the test breaker 1 can be ensured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による遮断器の合成等価試験回
路図。
FIG. 1 is a synthetic equivalent test circuit diagram of a circuit breaker according to an embodiment of the present invention.

【図2】図1の実施例の電流零点現象の説明図。FIG. 2 is an explanatory diagram of a current zero point phenomenon of the embodiment of FIG.

【図3】従来の遮断器の合成等価試験回路図。FIG. 3 is a synthetic equivalent test circuit diagram of a conventional circuit breaker.

【図4】図3の従来例の電流現象の説明図。FIG. 4 is an explanatory diagram of a current phenomenon of the conventional example of FIG.

【符号の説明】[Explanation of symbols]

1…供試遮断器、2…電源、3,19…リアクトル、4
…短絡変圧器、5…補助遮断器、6…補助スイッチ、8
…制御ギャップ、9…コンデンサ、18…短絡変圧器、
20…電流制限用リアクトル、21…第二の補助スイッ
チ、22…第二の制御ギャップ、23…抵抗、24…第
二のコンデンサ。
1 ... Test breaker, 2 ... Power supply, 3, 19 ... Reactor, 4
… Short-circuit transformer, 5… Auxiliary circuit breaker, 6… Auxiliary switch, 8
… Control gap, 9… Capacitor, 18… Short-circuit transformer,
Reference numeral 20 ... Current limiting reactor, 21 ... Second auxiliary switch, 22 ... Second control gap, 23 ... Resistor, 24 ... Second capacitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 幸夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 佐藤 稔 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukio Kurosawa             4026 Kujimachi, Hitachi City, Ibaraki Japan             Tachi Works Hitachi Research Laboratory (72) Inventor Minoru Sato             1-1-1 Kokubuncho, Hitachi-shi, Ibaraki Stock             Hitachi, Ltd. Kokubu factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第一の電流源回路と、第一のコンデンサか
ら第一の放電ギャップ,第一のリアクトル,第一の補助
スイッチ,供試遮断器を介して電流源電流の零点直前に
電圧源電流を重畳する電圧源回路と、第二の補助スイッ
チを介し、さらに前記第一の補助スイッチ、前記供試遮
断器を経由して帰路する小電流を供給する第二の電流源
回路と、前記供試遮断器,前記第一の補助スイッチ,前
記第二の補助スイッチと直列に閉回路を構成する第二の
放電ギャップと第二のコンデンサから成る電流重畳回路
とを備えたことを特徴とする遮断器の合成等価試験回
路。
Claim: What is claimed is: 1. A first current source circuit, a first capacitor, a first discharge gap, a first reactor, a first auxiliary switch, and a circuit breaker, and a voltage immediately before the zero point of the current source current. A voltage source circuit that superimposes a source current, and a second current source circuit that supplies a small current that returns via the second auxiliary switch, the first auxiliary switch, and the test breaker, The test circuit breaker, the first auxiliary switch, the second auxiliary switch, and a current superimposing circuit including a second discharge gap forming a closed circuit and a second capacitor in series. Equivalent test circuit for circuit breaker.
【請求項2】請求項1において、前記第二の放電ギャッ
プの放電時期を、前記電圧源電流が前記電流源電流に重
畳した時点から前記電圧源電流が遮断される時点までの
範囲内とした遮断器の合成等価試験回路。
2. The discharge timing of the second discharge gap is set within a range from a time point when the voltage source current is superimposed on the current source current to a time point when the voltage source current is cut off. Circuit breaker synthetic equivalent test circuit.
JP3172158A 1991-07-12 1991-07-12 Composite equivalent test circuit of circuit breaker Pending JPH0519029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3172158A JPH0519029A (en) 1991-07-12 1991-07-12 Composite equivalent test circuit of circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3172158A JPH0519029A (en) 1991-07-12 1991-07-12 Composite equivalent test circuit of circuit breaker

Publications (1)

Publication Number Publication Date
JPH0519029A true JPH0519029A (en) 1993-01-26

Family

ID=15936650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3172158A Pending JPH0519029A (en) 1991-07-12 1991-07-12 Composite equivalent test circuit of circuit breaker

Country Status (1)

Country Link
JP (1) JPH0519029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106953A1 (en) * 2011-02-12 2012-08-16 中兴通讯股份有限公司 Device and method for detecting state of overload and overcurrent protector
CN104062579A (en) * 2014-06-20 2014-09-24 中国船舶重工集团公司第七一二研究所 Breaker arc voltage characteristic test device and method
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106953A1 (en) * 2011-02-12 2012-08-16 中兴通讯股份有限公司 Device and method for detecting state of overload and overcurrent protector
US9116211B2 (en) 2011-02-12 2015-08-25 Zte Corporation Device and method for detecting state of overload and overcurrent protector
CN104062579A (en) * 2014-06-20 2014-09-24 中国船舶重工集团公司第七一二研究所 Breaker arc voltage characteristic test device and method
CN104062579B (en) * 2014-06-20 2016-11-02 中国船舶重工集团公司第七一二研究所 Circuit breaker arc voltage characteristic assay device and test method
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches

Similar Documents

Publication Publication Date Title
WO2018109889A1 (en) Testing apparatus for dc circuit breaker
JP2591525B2 (en) Circuit breaker test equipment
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JP3103262B2 (en) Circuit breaker test circuit for switchgear
Smeets et al. The testing of SF/sub 6/generator circuit-breakers
JP2675649B2 (en) Switchgear test method and device
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
JPH0682536A (en) Method and circuit for performing combination test on circuit breaker
US3038116A (en) Circuit-breaker testing arrangement
JPH06186309A (en) Interruption test circuit for switch
JPH0735831A (en) Method and apparatus for testing breaker
JPS60207079A (en) Synthesis test of breaker
JPH05223905A (en) Combined testing device for circuit breaker
JPH08278349A (en) Method for synthetic equalization testing of breaker
CN104868455A (en) Bus residual voltage maintaining device
JPS6157870A (en) Three-phase equivalent testing method of breaker
CN104882859A (en) Holding circuit capable of rapidly triggering current limiting impeder
SU1737615A1 (en) Device for compensation of emf of faulty phase under single- phase short-circuits in network with ungrounded neutral
JPH0651036A (en) Short line fault testing device
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
JP3302857B2 (en) Test method of breaking performance
JPS6119942B2 (en)
JPH0449662B2 (en)
JPH0634028B2 (en) Switchgear test method and device
JPS59109873A (en) Testing method of three-phase common tank-type breaker