JPH05223905A - Combined testing device for circuit breaker - Google Patents

Combined testing device for circuit breaker

Info

Publication number
JPH05223905A
JPH05223905A JP3036992A JP3036992A JPH05223905A JP H05223905 A JPH05223905 A JP H05223905A JP 3036992 A JP3036992 A JP 3036992A JP 3036992 A JP3036992 A JP 3036992A JP H05223905 A JPH05223905 A JP H05223905A
Authority
JP
Japan
Prior art keywords
circuit
current
trv
voltage
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3036992A
Other languages
Japanese (ja)
Inventor
Osamu Koyanagi
修 小柳
Katsuichi Kashimura
勝一 樫村
Yoichi Oshita
陽一 大下
Yukio Kurosawa
幸夫 黒沢
Minoru Sato
稔 佐藤
Isao Takahashi
高橋  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3036992A priority Critical patent/JPH05223905A/en
Publication of JPH05223905A publication Critical patent/JPH05223905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To improve economic and time efficiency by totally deciding breaking performance of a circuit breaker by using a combined testing circuit for generating 4-parameter transition recovery voltage(TRV) waveform and 2-parameter TRV waveform. CONSTITUTION:Current ic is supplied from a power source 2 through a reactor 3 for adjusting current, a short-circuit transformer 4, a first auxiliary circuit breaker 5 and a circuit breaker 1 to be tested. At the same time, short-circuit small current which ia smaller than the current ic is supplied to an auxiliary switch 10 from a short-circuit voltage device 7 through a rector 8 and a second auxiliary circuit breaker 9. Since a capacitor 23 is charged subsequently by current i3 after current i2 is shut, the voltage of transition recovery voltage (TRV)2 is raised with delay. As a result, TRV waveforms appropriate for TRV display of 4-parameter TRV of TRV, +TRV2 can be applied to the circuit breaker 1 to be tested. Economy in enforcing voltage source circuit facility associated with voltage increase per breaking point of a breaker has a large effect in reducing the capacity of a capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力用遮断器の遮断性能
を検証するための合成試験装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic test device for verifying the breaking performance of a power circuit breaker.

【0002】[0002]

【従来の技術】近年、大容量電力用遮断器の高電圧化が
図られ、定格電圧550kV級の遮断器が一相当り一遮断
点で構成出来るようになってきている。これらの電力用
遮断器の遮断性能を検証する遮断試験に関する国際規格
(International Electrotechn-ical Commission;略称
IEC)や、電気規格調査会標準規格(Japanese Electro
-technical Committee;略称JEC)では、電流遮断後
に供試遮断器の極間に印加される過渡回復電圧(Transie
nt recovery voltage;以下、TRVと略す。)波形とし
て、電圧波高値が遅れて現われる、いわゆる、4パラメ
ータTRVを規定している。これは、TRV波形の初期
波高時間と波高時間、及びそれぞれの時間に対応する初
期波高値と波高値との四つのパラメータを規定し、この
4パラメータTRVに耐圧すれば供試遮断器は所望の遮
断性能を有すると判定するものである。これに対して、
従来から遮断性能の検証に広く用いられてきたワイルー
ドプケ法の合成試験回路では、回路の発生するTRV波
形が単一周波の振動であって、波高時間と波高値で規定
する2パラメータTRV波形と呼ばれているものであ
り、これを4パラメータTRV波形が発生出来るように
改善する多くの提案がなされた。しかし、遮断器の一遮
断点当りの高電圧化に伴う試験回路設備増強に対する経
済性や試験法の技術的な課題があって、一般に広く普及
するには至っていない。このため、その経済性に優れ、
技術的に容易な4パラメータTRV波形を発生する合成
試験回路の開発が望まれている。
2. Description of the Related Art In recent years, circuit breakers for large-capacity electric power have been made higher in voltage, and circuit breakers having a rated voltage of 550 kV can now be constructed at one breaking point. International standard for breaking test to verify breaking performance of these power circuit breakers
(International Electrotechnical Commission; abbreviated as IEC) and Electrical Standards Committee (Japanese Electrotechnical Commission)
-Technical Committee (abbreviated as JEC) specifies that the transient recovery voltage (Transie
nt recovery voltage; hereinafter abbreviated as TRV. ) As a waveform, a so-called 4-parameter TRV in which a voltage peak value appears with a delay is defined. This defines four parameters of the initial peak time and the peak time of the TRV waveform, and the initial peak value and the peak value corresponding to each time, and if the withstand voltage of these four parameters TRV is satisfied, the test circuit breaker has a desired value. It is determined to have a blocking performance. On the contrary,
In the synthesis test circuit of the Wiroud-Pouquet method, which has been widely used for verifying the breaking performance, the TRV waveform generated by the circuit is a single frequency oscillation and is called a two-parameter TRV waveform defined by the crest time and the crest value. However, many proposals have been made to improve this so that a 4-parameter TRV waveform can be generated. However, it has not been widely spread in general because of the technical problems of the test method and the economics for the enhancement of the test circuit equipment accompanying the high voltage per break point of the circuit breaker. Therefore, it is highly economical
It is desired to develop a synthetic test circuit that generates a 4-parameter TRV waveform that is technically easy.

【0003】一方、例えば、JEC規格では、試験での
TRV波形が規格の4パラメータTRV波形をカバー出
来ない場合は、連続した複数の試験によるマルチパート
試験法を規定している。これは、第1の試験でのTRV
が初期波高値に至るまでの条件を満たし、第2の試験で
のTRVが波高値に至るまでの条件を満たすこととし、
この二つの試験でTRVの中間の値が十分にカバーされ
ない場合は第3の試験を行うこととしている。一般的に
用いられている2パラメータTRV波形によるマルチパ
ート試験法では、遮断性能検証項目の1条件に対して実
際には少なくとも3回以上の試験が必要であり、遮断器
として要求される総ての性能検証項目について検証する
ためには、多くの試験回数を要していた。遮断試験で
は、電流を遮断することによって遮断器極間がアークに
より損傷するため、その部品交換が必要であること、ま
た、遮断試験自体に多くの時間を必要とし、出来るだけ
試験回数の低減による経済的,時間的効率の向上が望ま
れていた。
On the other hand, for example, in the JEC standard, when the TRV waveform in the test cannot cover the four-parameter TRV waveform of the standard, a multi-part test method by a plurality of continuous tests is specified. This is TRV in the first test
Satisfies the condition of reaching the initial peak value and the condition of TRV in the second test reaching the peak value,
If the intermediate value of TRV is not sufficiently covered by these two tests, the third test will be performed. In the commonly used multi-part test method using a two-parameter TRV waveform, at least three or more tests are actually required for one condition of the breaking performance verification items, and all the breakers required. A large number of tests were required to verify the performance verification items of. In the breaking test, the circuit breaker poles are damaged by the arc by breaking the current, so it is necessary to replace the parts, and the breaking test itself requires a lot of time, and the number of tests is reduced as much as possible. It was desired to improve economic and time efficiency.

【0004】[0004]

【発明が解決しようとする課題】以上に述べたように、
遮断器の一遮断点当りの高電圧化に伴う試験回路設備増
強に対する経済性に優れ、技術的に容易な4パラメータ
TRV波形を発生する合成試験回路の開発が望まれてい
ること、また、従来から用いられているマルチパート試
験法での試験回数の低減によって、遮断試験に対する経
済的,時間的効率の向上が必要とされていた。
[Problems to be Solved by the Invention] As described above,
There is a need for the development of a synthetic test circuit that generates a four-parameter TRV waveform that is technically easy and that is economically advantageous for increasing the test circuit equipment that accompanies a higher voltage per breaker of the circuit breaker. It was necessary to improve the economical and time efficiency of the breaking test by reducing the number of tests in the multi-part test method used by the company.

【0005】本発明の目的は、経済性に優れ、技術的に
容易な4パラメータTRV波形を発生する合成試験回路
と、従来の2パラメータTRV波形を発生する合成試験
回路とを用いて遮断器の遮断性能を総合的に判定するこ
とにより、経済的,時間的効率の向上を図ることにあ
る。
An object of the present invention is to provide a circuit breaker using a synthetic test circuit that generates a 4-parameter TRV waveform that is economically and technically easy and a conventional synthetic test circuit that generates a 2-parameter TRV waveform. It is to improve economic and time efficiency by comprehensively judging the breaking performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明はTRV初期部の熱破壊現象に対する性能検
証は、少なくとも電圧源電流遮断時点の電流零における
電流変化率と、電流遮断後のTRVの初期上昇率を規格
値と一致させた2パラメータTRV波形を発生する合成
試験回路により、TRV初期部以降の誘導破壊現象に対
する性能検証は、少なくともTRV波形を規格波形と一
致させた4パラメータTRV波形を発生する合成試験回
路により、試験するようにした。
In order to achieve the above object, the present invention is to verify the performance against the thermal breakdown phenomenon at the initial part of the TRV by at least the current change rate at the current zero at the time when the voltage source current is cut off, and With a synthetic test circuit that generates a two-parameter TRV waveform in which the initial increase rate of TRV of the TRV waveform matches the standard value, the performance verification for the induced breakdown phenomenon after the initial part of the TRV is at least four parameters in which the TRV waveform matches the standard waveform. The test was performed by a synthetic test circuit that generates a TRV waveform.

【0007】[0007]

【作用】4パラメータTRV波形を発生する合成試験回
路において、TRV波形のみを規格波形と一致させ、電
圧源電流遮断時点の電流零における電流変化率、すなわ
ち、電圧源電流値を規格値より小さく設定することで、
電圧源回路に必要なコンデンサ容量を小さく構成するこ
とが出来る。このため、遮断器の一遮断点当りの高電圧
化に伴う試験回路設備の増強を最小限として回路構成が
可能となる。この4パラメータTRV波形を発生する合
成試験回路と、少なくとも、電圧源電流遮断時点の電流
零における電流変化率と、電流遮断後のTRVの初期上
昇率とを規格値と一致させた2パラメータTRV波形を
発生する合成試験回路とにより遮断試験を行うことによ
り、性能検証項目の1条件に対して2回の試験で検証が
可能となる。
In a synthetic test circuit for generating a four-parameter TRV waveform, only the TRV waveform is made to match the standard waveform, and the current change rate at zero current when the voltage source current is cut off, that is, the voltage source current value is set smaller than the standard value. by doing,
The capacitor capacity required for the voltage source circuit can be made small. Therefore, the circuit configuration can be minimized with the increase in the test circuit equipment accompanying the high voltage per break point of the breaker. A synthetic test circuit for generating this four-parameter TRV waveform, and a two-parameter TRV waveform in which at least the current change rate at zero current at the time of voltage source current interruption and the initial increase rate of TRV after current interruption are matched with the standard value. By performing the interruption test with the synthetic test circuit that generates the, it is possible to perform verification by two tests for one condition of the performance verification item.

【0008】[0008]

【実施例】図1は、電流重畳法による4パラメータTR
V波形発生回路の一実施例で、図2は図1の回路現象説
明図である。この4パラメータTRV波形発生回路の電
圧1988年1月発行の文献アイ・イー・イー・イー,
トランザクション,オン,パワー,デリベリー「「IEEE
Transaction on Power Delivery」の第3巻第1号第2
33頁の図3,図4に開示されており、この実施例は、
その回路の改良案として特願平2−242369 号明細書で新
たに提案されている。
EXAMPLE FIG. 1 shows a four-parameter TR based on the current superposition method.
FIG. 2 is an explanatory diagram of the circuit phenomenon of FIG. 1 in one embodiment of the V waveform generating circuit. Voltage of this four-parameter TRV waveform generation circuit Document issued in January 1988, iEeE,
Transaction, On, Power, Delivery "" IEEE
Transaction on Power Delivery "Volume 3 Issue 1 Issue 2
3 and 4 on page 33, this embodiment is
A proposal for improving the circuit is newly proposed in Japanese Patent Application No. 2-242369.

【0009】図1において、図示の供試遮断器1より右
側は高電圧の電圧源回路、左側は低電圧の電流源回路で
ある。商用周波数の電源2から電流調整用のリアクトル
3,短絡変圧器4,第一補助遮断器5、及び供試遮断器
1を通して電流源電流icを供給する。同時に、電源2に
電流調整用のリアクトル6を介して並列結線した第2の
短絡変圧器7から、2次側の電流制限用リアクトル8、
第2の補助遮断器9を介して少なくとも電流源電流icの
1/10〜1/100程度の小さい短絡小電流iaを補助
スイッチ10に供給するようにしたものである。短絡小
電流iaは、補助スイッチ10からさらに供試遮断器1と
短絡変圧器4のアース側を通って第2の短絡変圧器7に
帰るように流れる。第2の補助遮断器9は、補助遮断器
5と同様に、電流を通電した後に電圧源回路側から第2
の短絡変圧器7の回路を切り離すためのものである。こ
こで、サージアブソーバ11,12が電流源の保護用と
して図示の位置に接続されることが多い。また、13
は、それぞれの電流を測定するための分流器である。
In FIG. 1, the right side of the illustrated circuit breaker 1 is a high voltage voltage source circuit, and the left side is a low voltage current source circuit. A current source current ic is supplied from a commercial frequency power source 2 through a current adjusting reactor 3, a short-circuit transformer 4, a first auxiliary circuit breaker 5, and a test circuit breaker 1. At the same time, from the second short-circuit transformer 7 connected in parallel to the power source 2 via the current adjusting reactor 6 to the secondary side current limiting reactor 8,
A short circuit small current ia that is at least about 1/10 to 1/100 of the current source current ic is supplied to the auxiliary switch 10 via the second auxiliary breaker 9. The short-circuit small current ia further flows from the auxiliary switch 10 through the test breaker 1 and the ground side of the short-circuit transformer 4 and returns to the second short-circuit transformer 7. The second auxiliary circuit breaker 9 is, like the auxiliary circuit breaker 5, a second auxiliary circuit breaker from the voltage source circuit side after passing a current.
It is for disconnecting the circuit of the short-circuit transformer 7. Here, the surge absorbers 11 and 12 are often connected to the positions shown for protection of the current source. Also, 13
Is a shunt for measuring each current.

【0010】電流源電流icと短絡小電流iaを通電後、例
えば、ほぼ同時に供試遮断器1,補助遮断器5、及び第
二の補助遮断器9を開極する。図2に示すように、電流
源電流icと短絡小電流iaの最終零点直前で制御ギャップ
14を放電して、予め充電してあるコンデンサ15から
制御ギャップ14,リアクトル16,補助スイッチ1
0、及び供試遮断器1を介して電圧源電流ivを電流源電
流icに重畳する。例えば、JEC規格によれば、電流重
畳法による電圧源電流ivの重畳時点は、電流源電流icの
零時点より前であり、且つ、ivのみの期間t0は、電圧源
電流ivの周期の1/8〜1/4の範囲になければならな
いと規定されている。また、電圧源電流ivの周波数は、
商用周波数の10倍程度に選ばれるのが普通である。
After passing the current source current ic and the short-circuit small current ia, for example, the test breaker 1, the auxiliary breaker 5, and the second auxiliary breaker 9 are opened almost simultaneously. As shown in FIG. 2, the control gap 14 is discharged immediately before the final zero point of the current source current ic and the short circuit small current ia, and the control gap 14, the reactor 16, the auxiliary switch 1 are discharged from the precharged capacitor 15.
The voltage source current iv is superimposed on the current source current ic via 0 and the test breaker 1. For example, according to the JEC standard, the superposition time point of the voltage source current iv by the current superposition method is before the zero time point of the current source current ic, and the period t 0 of only iv is the period of the voltage source current iv. It is specified that it must be in the range of 1/8 to 1/4. The frequency of the voltage source current iv is
It is usually selected to be about 10 times the commercial frequency.

【0011】まず、補助遮断器5と第二の補助遮断器9
がそれぞれ電流源電流icと短絡小電流iaを遮断し、その
後、供試遮断器1が最終的に電圧源電流ivの遮断に成功
すると、コンデンサ15の残留電圧によって図1,図2
に示すように、電流i1 は抵抗17,コンデンサ18
b,電流i2は抵抗19,コンデンサ20、さらに電流i
3 はリアクトル21,抵抗22の直列回路をそれぞれ流
れる。結局、コンデンサ18aには(i1−i3)、コン
デンサ23には(i2+i3)の電流が流れる。ここで、
コンデンサ20の静電容量はコンデンサ23と18に比
べてかなり小さく設定している。このため、電圧源電流
ivが供試遮断器1により遮断されると、電流i2 とコン
デンサ20,23の電圧降下として、図2に示されるよ
うな目標TRVの初期部分であるTRV1が発生する。
補助スイッチ10が電流i2を遮断し、もし、リアクト
ル21と抵抗22の直列回路が無ければ、図2に一点斜
線で示すように供試遮断器1の端子電圧は初期波高値U
1 に近い一定値を保ち続ける。電圧の大部分はコンデン
サ20の端子間で分担されており、コンデンサ23の端
子間電圧は十分低い。電流i2遮断後に、引き続き電流
3によってコンデンサ23が充電されるため、TRV
2 で示すように電圧が遅れて高められる。この結果、供
試遮断器1には(TRV1+TRV2)で示される4パラメ
ータTRV表示に適したTRV波形を印加することが出
来る。この回路は、回路を切り替える補助スイッチ10
としては通常用いられているパッファ式ガス遮断器等の
構造簡単な遮断器が使用可能で、技術的に容易に4パラ
メータTRV波形を発生出来る特徴が有る。
First, the auxiliary circuit breaker 5 and the second auxiliary circuit breaker 9
Respectively cut off the current source current ic and the short-circuit small current ia, and when the test breaker 1 finally succeeds in cutting off the voltage source current iv, the residual voltage of the capacitor 15 causes the residual voltage of FIG.
As shown, the current i 1 is the resistor 17, capacitor 18
b, the current i 2 is the resistance 19, the capacitor 20, and the current i
3 flows through the series circuit of the reactor 21 and the resistor 22. Eventually, a current of (i 1 −i 3 ) flows in the capacitor 18a and a current of (i 2 + i 3 ) flows in the capacitor 23. here,
The capacitance of the capacitor 20 is set to be considerably smaller than that of the capacitors 23 and 18. Therefore, the voltage source current
When iv is cut off by the test breaker 1, TRV 1 which is the initial part of the target TRV as shown in FIG. 2 is generated as a current i 2 and a voltage drop across the capacitors 20 and 23.
If the auxiliary switch 10 cuts off the current i 2 and there is no series circuit of the reactor 21 and the resistor 22, the terminal voltage of the test breaker 1 has an initial peak value U as shown by the one-dotted line in FIG.
Keep a constant value close to 1 . Most of the voltage is shared between the terminals of the capacitor 20, and the voltage between the terminals of the capacitor 23 is sufficiently low. After the current i 2 is cut off, the capacitor 23 is continuously charged by the current i 3 , so that TRV
The voltage is delayed and increased as shown in 2 . As a result, the TRV waveform suitable for the four-parameter TRV display represented by (TRV 1 + TRV 2 ) can be applied to the test breaker 1. This circuit is an auxiliary switch 10 that switches the circuit.
As such, it is possible to use a circuit breaker having a simple structure such as a puffer type gas circuit breaker which is usually used, and it is technically easy to generate a 4-parameter TRV waveform.

【0012】以上の4パラメータTRV波形発生回路に
おいて、TRV波形を変えずに、例えば、電圧源電流iv
を規格値の1/3に設定すれば、コンデンサ15,18
の容量をそれぞれ約1/3に低減することが可能であ
る。遮断器の一遮断点当りの高電圧化に伴う電圧源回路
設備増強に対する経済性を考慮すると、コンデンサ容量
の低減は、その効果が最も大きい。しかし、電圧源電流
ivすなわち、電圧源電流遮断時点の電流零における電流
変化率が規格値以下となるため、TRV初期部の熱破壊
現象の領域での性能検証に対しては規格で定めた条件を
満たすことが出来なくなる欠点が有る。そこで、その熱
破壊現象の領域での性能検証に対しては、従来から用い
られているワイルードプケ法の合成試験回路による試験
を追加することでその問題を解決することが出来る。
In the above four-parameter TRV waveform generation circuit, for example, the voltage source current iv without changing the TRV waveform.
Is set to 1/3 of the standard value, capacitors 15 and 18
It is possible to reduce the capacity of each to about 1/3. Considering the economical efficiency of the voltage source circuit equipment enhancement due to the high voltage per break point of the circuit breaker, the reduction of the capacitor capacity has the greatest effect. But the voltage source current
iv That is, the rate of current change at zero current at the time of voltage source current interruption is below the standard value, so the conditions specified by the standard can be satisfied for performance verification in the area of the thermal breakdown phenomenon in the initial part of the TRV. There is a defect that disappears. Therefore, for the performance verification in the area of the thermal breakdown phenomenon, the problem can be solved by adding a test using a synthetic test circuit of the conventionally used Wiroud-Puke method.

【0013】次に、そのワイルードプケ法の合成試験回
路を図3,図4を用いて簡単に説明する。図3は、2パ
ラメータTRV波形発生回路であるワイルードプケ法の
合成試験回路の実施例で、図4は図3の回路現象説明図
である。
Next, the synthesis test circuit of the Wiroud-Puke method will be briefly described with reference to FIGS. FIG. 3 is an embodiment of a synthesis test circuit of the Weilde-Puke method, which is a two-parameter TRV waveform generation circuit, and FIG. 4 is an explanatory diagram of the circuit phenomenon of FIG.

【0014】図3において、図示の供試遮断器24より
右側は高電圧の電圧源回路、左側は低電圧の電流源回路
である。商用周波数の電源25から電流調整用のリアク
トル26,短絡変圧器27,補助遮断器28、及び供試
遮断器24を通して電流源電流icを供給する。ここで、
29はサージアブソーバ、30はそれぞれの電流を測定
するための分流器である。
3, the right side of the illustrated circuit breaker 24 is a high voltage voltage source circuit, and the left side is a low voltage current source circuit. A current source current ic is supplied from a commercial frequency power supply 25 through a current adjusting reactor 26, a short-circuit transformer 27, an auxiliary circuit breaker 28, and a test circuit breaker 24. here,
29 is a surge absorber, and 30 is a shunt for measuring the respective currents.

【0015】電流源電流icを通電後、例えば、ほぼ同時
に供試遮断器24,補助遮断器28を開極する。図4に
示すように、電流源電流icの最終零点直前で制御ギャッ
プ31を放電して、予め充電してあるコンデンサ32か
ら制御ギャップ31,リアクトル33を介して電圧源電
流ivを電流源電流icに重畳する。電圧源電流iv遮断後、
供試遮断器24には、TRV調整用抵抗34とコンデン
サ35、及びコンデンサ32とリアクトル33とで決ま
る単一振動のTRVが印加される。このTRVの例は、初
期波高時間t1 までの領域をカバーする波形で示してい
る。
After passing the current source current ic, for example, the test breaker 24 and the auxiliary breaker 28 are opened almost simultaneously. As shown in FIG. 4, the control gap 31 is discharged immediately before the final zero point of the current source current ic, and the voltage source current iv is transferred from the precharged capacitor 32 via the control gap 31 and the reactor 33. Superimpose on. After interrupting the voltage source current iv,
A TRV having a single vibration determined by the TRV adjusting resistor 34, the capacitor 35, and the capacitor 32 and the reactor 33 is applied to the test breaker 24. This TRV example is shown by a waveform covering the area up to the initial wave height time t 1 .

【0016】このように、遮断性能検証項目の1条件に
対して、コンデンサ容量を低減した経済的な4パラメー
タTRV波形を発生する合成試験回路と、従来の2パラ
メータTRV波形を発生する合成試験回路とによる2回
の試験により性能検証が可能となる。
Thus, for one condition of the breaking performance verification item, a synthetic test circuit for generating an economical four-parameter TRV waveform with a reduced capacitor capacity and a conventional synthetic test circuit for generating a two-parameter TRV waveform. Performance verification can be performed by performing two tests with and.

【0017】[0017]

【発明の効果】本実施例によれば、経済性に優れ、技術
的に容易な4パラメータTRV波形を発生する合成試験
回路と、従来の2パラメータTRV波形を発生する合成
試験回路とを用いて遮断器の遮断性能を総合的に判定す
ることにより、経済的,時間的な効率の向上を図れる。
According to the present embodiment, a synthetic test circuit that generates a 4-parameter TRV waveform that is economically and technically easy and a conventional synthetic test circuit that generates a 2-parameter TRV waveform are used. By comprehensively judging the breaking performance of the circuit breaker, economic and time efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を使用した遮断器の合成試験の
回路図。
FIG. 1 is a circuit diagram of a synthetic test of a circuit breaker using an embodiment of the present invention.

【図2】図1の実施例の電流零点現象の説明図。FIG. 2 is an explanatory diagram of a current zero point phenomenon in the embodiment of FIG.

【図3】従来例を適用した遮断器の合成試験の回路図。FIG. 3 is a circuit diagram of a circuit breaker synthetic test to which a conventional example is applied.

【図4】図3の従来例の電流零点現象の説明図。FIG. 4 is an explanatory view of a current zero point phenomenon of the conventional example of FIG.

【符号の説明】[Explanation of symbols]

1,24…供試遮断器、2,25…電源、4,7,27
…短絡変圧器、3,6,8,16,21,26,33…
リアクトル、13,30…分流器、5,28…補助遮断
器、9…第二補助遮断器、10…補助スイッチ、11,
12,15,18,20,23,29,32,35…コ
ンデンサ、14,31…制御ギャップ、17,19,2
2,34…抵抗。
1, 24 ... Test breaker, 2, 25 ... Power supply, 4, 7, 27
... Short-circuit transformer, 3,6,8,16,21,26,33 ...
Reactor, 13, 30 ... Shunt, 5, 28 ... Auxiliary circuit breaker, 9 ... Second auxiliary circuit breaker, 10 ... Auxiliary switch, 11,
12, 15, 18, 20, 23, 29, 32, 35 ... Capacitor, 14, 31 ... Control gap, 17, 19, 2
2, 34 ... Resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 幸夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 佐藤 稔 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 高橋 功 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Kurosawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Minoru Sato 1-1 1-1 Kokubuncho, Hitachi City, Ibaraki Stock Kokubun Plant, Hitachi, Ltd. (72) Inventor Isao Takahashi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電流源回路と電圧源回路とから成る遮断器
の合成試験回路において、2パラメータ過渡回復電圧波
形を発生する合成試験回路と、4パラメータ過渡回復電
圧波形を発生する合成試験回路とを備え、前記2パラメ
ータ過渡回復電圧波形を発生する合成試験回路は、少な
くとも電圧源電流遮断時点の電流零における電流変化率
と、電流遮断後の過渡回復電圧の初期上昇率を規格値で
規定された条件を満足させ、前記4パラメータ過渡回復
電圧波形を発生する合成試験回路は、少なくとも過渡回
復電圧波形を規格波形の条件を満足させたことを特徴と
する遮断器の合成試験装置。
1. A synthetic test circuit for a circuit breaker comprising a current source circuit and a voltage source circuit, wherein the synthetic test circuit generates a two-parameter transient recovery voltage waveform and the synthetic test circuit generates a four-parameter transient recovery voltage waveform. In the synthetic test circuit for generating the two-parameter transient recovery voltage waveform, at least the current change rate at zero current at the time of the voltage source current cutoff and the initial increase rate of the transient recovery voltage after the current cutoff are defined by standard values. The synthetic test circuit for generating the four-parameter transient recovery voltage waveform satisfies the above conditions, and at least the transient recovery voltage waveform satisfies the standard waveform condition.
JP3036992A 1992-02-18 1992-02-18 Combined testing device for circuit breaker Pending JPH05223905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036992A JPH05223905A (en) 1992-02-18 1992-02-18 Combined testing device for circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036992A JPH05223905A (en) 1992-02-18 1992-02-18 Combined testing device for circuit breaker

Publications (1)

Publication Number Publication Date
JPH05223905A true JPH05223905A (en) 1993-09-03

Family

ID=12301959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036992A Pending JPH05223905A (en) 1992-02-18 1992-02-18 Combined testing device for circuit breaker

Country Status (1)

Country Link
JP (1) JPH05223905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099022A1 (en) * 2011-01-17 2012-07-26 株式会社 東芝 Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099022A1 (en) * 2011-01-17 2012-07-26 株式会社 東芝 Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program
JP2012149916A (en) * 2011-01-17 2012-08-09 Toshiba Corp Transient recovery voltage measuring apparatus, transient recovery voltage measuring method, and transient recovery voltage measuring program
CN103299199A (en) * 2011-01-17 2013-09-11 株式会社东芝 Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program
KR101472243B1 (en) * 2011-01-17 2014-12-11 가부시끼가이샤 도시바 Transient recovery voltage measuring deⅵce, transient recovery voltage measuring method, and recording medium
EP2667206A4 (en) * 2011-01-17 2017-11-22 Kabushiki Kaisha Toshiba Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program

Similar Documents

Publication Publication Date Title
Panek et al. Overvoltage phenomena associated with virtual current chopping in three phase circuits
JP6767644B2 (en) DC circuit breaker test equipment
Badrzadeh Transient recovery voltages caused by capacitor switching in wind power plants
Smeets et al. Capacitive current switching duties of high-voltage circuit breakers: Background and practice of new IEC requirements
Sheng Design consideration of Weil-Dobke synthetic testing circuit for the interrupting testing of HV AC circuit breakers
JP2591525B2 (en) Circuit breaker test equipment
Liljestrand et al. Vacuum circuit breaker and transformer interaction in a cable system
Braun et al. Intermittent line-to-ground faults in generator stator windings and consequences on neutral grounding
Sheng et al. A new synthetic test circuit for ultra-high-voltage circuit breakers
Van der Sluis et al. The influence of the arc voltage in synthetic test circuits
JPH05223905A (en) Combined testing device for circuit breaker
US3064183A (en) Circuit-breaker testing arrangements
Anderson et al. Synthetic testing of ac circuit breakers. Part 1: Methods of testing and relative severity
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
Sheng et al. Comparison of synthetic test circuits for ultra-high-voltage circuit breakers
US3038116A (en) Circuit-breaker testing arrangement
Koeppl et al. New aspects for neutral grounding of generators considering intermittent faults
Szewczyk et al. Comparative Study of Synthetic Test Circuits for Testing of MV and HV AC Circuit Breakers According to IEC Std. 62271
Ueno et al. Monte-Carlo simulation of overvoltage generation in the inductive current interruption by vacuum interrupters
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
Islam et al. Synthetic testing of medium voltage load break switches
JP2675649B2 (en) Switchgear test method and device
Heinmiller et al. Transient recovery voltage failures of two 15 kV indoor oilles circuit breakers
JPH0735831A (en) Method and apparatus for testing breaker
Parvizi et al. Sensitivity analysis of TRV in TCSC compensated transmission lines during fault clearing by line CB