JPH0682536A - Method and circuit for performing combination test on circuit breaker - Google Patents

Method and circuit for performing combination test on circuit breaker

Info

Publication number
JPH0682536A
JPH0682536A JP23486092A JP23486092A JPH0682536A JP H0682536 A JPH0682536 A JP H0682536A JP 23486092 A JP23486092 A JP 23486092A JP 23486092 A JP23486092 A JP 23486092A JP H0682536 A JPH0682536 A JP H0682536A
Authority
JP
Japan
Prior art keywords
circuit
phase
voltage
voltage source
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23486092A
Other languages
Japanese (ja)
Other versions
JP3191428B2 (en
Inventor
Shiyuuji Onomoto
周司 小野本
Takakazu Matsunami
孝和 松波
Mitsuyasu Shiozaki
光康 塩崎
Shunichi Arakawa
俊一 荒川
Terumichi Chiyou
長  輝通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23486092A priority Critical patent/JP3191428B2/en
Publication of JPH0682536A publication Critical patent/JPH0682536A/en
Application granted granted Critical
Publication of JP3191428B2 publication Critical patent/JP3191428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To obtain a method and circuit for performing a combination test with high equivalence without causing excess stress. CONSTITUTION:A voltage source transformer 11 is inserted into the first interruption phase of an auxiliary breaker 4 similarly to second and third cut-off phases and an isolation switch 12 is inserted between the first cut-off phase of a sample circuit breaker 3 and a voltage source circuit 2. In such constitution, a transient recovery voltage appears immediately after cut-off of voltage source current but since the isolation switch 12 isolates the voltage source circuit 2, an AC voltage is applied from the voltage source transformer 11 onto the cut-off phase of the sample circuit breaker 3. This constitution suppresses voltage rise with respect to other phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遮断器の等価合成試験方
法に係り、特に三相合成試験方法及びこの方法を実現す
る試験回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an equivalent synthetic test method for circuit breakers, and more particularly to a three-phase synthetic test method and a test circuit for realizing this method.

【0002】[0002]

【従来の技術】遮断器の高圧、大容量化が進むにつれ、
その検証手段として、直接試験に代えて合成試験(等価
合成試験)が実施されている。この試験は、低電圧で大
電流を供給する電流源と高電圧で小電流を供給する電圧
源とを遮断瞬時直前又は直後に結合して切り換えるもの
である。また、三相一括形の遮断器においては、その特
性上、相間の相互作用を考慮した試験方法が必要とさ
れ、種々の三相合成試験法が提案されている。例えば、
図4に示す構成の合成試験回路を用いた三相合成試験方
法が提案されている。
2. Description of the Related Art As the circuit breakers become higher in pressure and capacity,
As the verification means, a synthetic test (equivalent synthetic test) is performed instead of the direct test. In this test, a current source that supplies a large current at a low voltage and a voltage source that supplies a small current at a high voltage are coupled and switched immediately before or after the interruption instant. Further, in the three-phase all-in-one circuit breaker, a test method considering the interaction between the phases is required due to its characteristics, and various three-phase synthetic test methods have been proposed. For example,
A three-phase synthesis test method using a synthesis test circuit configured as shown in FIG. 4 has been proposed.

【0003】図4中、1は短絡電流を供給する電流源回
路、2は電流重畳法(ワイルドピケ法)を用いた第一遮
断相用電圧源回路、3は供試遮断器、4は補助遮断器で
ある。また、5,6は第二及び第三遮断相用電圧源変圧
器であり、夫々スキーツ法を用いている。7〜9は過渡
回復電圧調整用素子(TRV)、10はアーク期間延長
用回路である。
In FIG. 4, 1 is a current source circuit for supplying a short-circuit current, 2 is a voltage source circuit for the first interruption phase using the current superposition method (Wild-Piquette method), 3 is a circuit breaker under test, and 4 is an auxiliary circuit. It is a circuit breaker. Further, 5 and 6 are voltage source transformers for the second and third cut-off phases, respectively, which use the Skeitz method. Reference numerals 7 to 9 are elements for adjusting transient recovery voltage (TRV), and 10 is a circuit for extending the arc period.

【0004】この合成試験方法において、第一遮断相は
ワイルドピケ法により熱的遮断性能及び遮断器の極間、
対地間の絶縁性能をするためのものであり、第二及び第
三遮断相はスキーツ法を用い、遮断相の対地間、各相間
の絶縁性能を検証するためのものである。
In this synthetic test method, the first shut-off phase is the thermal shut-off performance and the gap between the circuit breakers by the Wild Pique method,
The purpose of this is to provide insulation performance between the ground and the second and third cutoff phases using the Skeitz method to verify the insulation performance between the cutoff phase and the ground.

【0005】次に図5及び図6を参照して上記合成試験
方法を説明する。
Next, the synthetic test method will be described with reference to FIGS. 5 and 6.

【0006】まず、供試遮断器3、補助遮断器4が投入
されている状態で電流源回路1から短絡電流が供給され
る(a点)。電圧源回路2が接続されている相が意図し
たアーク時間で第一相遮断となるように制御された時点
にて供試遮断器3及び補助遮断器4が開極される。意図
した第一相遮断電流の零点直前に第一遮断相用電圧源回
路2から電圧源電流が重畳される(b点)。その後、重
畳電流が遮断される(c点)。同時に、第一遮断相用電
圧源回路2とTRV9により過渡回復電圧が発生し、第
一相遮断が完了する。
First, a short-circuit current is supplied from the current source circuit 1 while the test breaker 3 and the auxiliary breaker 4 are closed (point a). At the time when the phase to which the voltage source circuit 2 is connected is controlled so that the first phase is interrupted in the intended arc time, the test breaker 3 and the auxiliary breaker 4 are opened. Immediately before the zero point of the intended first-phase breaking current, the voltage source current is superimposed from the first breaking-phase voltage source circuit 2 (point b). After that, the superimposed current is cut off (point c). At the same time, the transient recovery voltage is generated by the voltage source circuit 2 for the first cutoff phase and the TRV 9, and the first phase cutoff is completed.

【0007】引続き単相直列回路となった短絡電流が他
の二相により遮断され(d点)、第二及び第三遮断相用
電圧源変圧器5,6と各二次側抵抗R5,R6により他の
二相に過渡回復電圧が発生し、全相遮断が完了する。
The short-circuit current, which has subsequently become a single-phase series circuit, is interrupted by the other two phases (point d), and the voltage source transformers 5 and 6 for the second and third interruption phases and the respective secondary side resistors R 5 , R 6 generates a transient recovery voltage in the other two phases and completes all-phase cutoff.

【0008】[0008]

【発明が解決しようとする課題】この従来の合成試験方
法の欠点は、遮断直後の回復電圧において、相間の電圧
が直接試験方法に比べて著しく高くなってしまう点が挙
げられる。
A drawback of this conventional synthetic test method is that the recovery voltage immediately after interruption has a significantly higher interphase voltage than the direct test method.

【0009】即ち、従来の合成試験方法の場合、第一遮
断相の検証にワイルドピケ法を用いているため、非接地
系の試験の場合、第一遮断相の回復電圧は、図7から明
らかなように直流の一定電圧となってしまう。このとき
の回復電圧値Vは、V=√2×1.5/√3×E=1.
22E(Eは遮断器の定格電圧)となる。
That is, in the case of the conventional synthetic test method, since the wild picket method is used to verify the first cutoff phase, the recovery voltage of the first cutoff phase is clear from FIG. 7 in the case of the non-grounded system test. In this way, the DC voltage becomes constant. The recovery voltage value V at this time is V = √2 × 1.5 / √3 × E = 1.
22E (E is the rated voltage of the circuit breaker).

【0010】図7は三相直接試験の場合の各相電流、各
相電圧、及び相間電圧の変化図、図8は上記従来の合成
試験法による各相電流、各相電圧、及び相間電圧の変化
図であり、これらの図を参照して相間電圧を比較する
と、三相直接試験では、相間電圧は最大で√2Eである
のに対し、図4の回路構成による合成試験の場合は最大
で2.04E(=1.22E+√2/√3×E)となっ
ている。したがって、従来の合成試験方法では条件的に
かなり苛酷となっていることがわかる。
FIG. 7 is a change diagram of each phase current, each phase voltage, and interphase voltage in the case of the three-phase direct test, and FIG. 8 shows each phase current, each phase voltage, and interphase voltage by the above-mentioned conventional synthetic test method. It is a change diagram. Comparing the interphase voltage with reference to these figures, the interphase voltage is √2E at the maximum in the three-phase direct test, whereas it is the maximum in the synthetic test by the circuit configuration of FIG. It is 2.04E (= 1.22E + √2 / √3 × E). Therefore, it can be seen that the conventional synthetic test method is considerably severe in terms of conditions.

【0011】本発明は、かかる背景の下になされたもの
で、その目的とするところは、過分なストレスを与えず
に等価性の高い検証を行うことができる遮断器の合成試
験方法及びその実現回路を提供することにある。
The present invention has been made in view of such a background, and an object thereof is a synthetic test method of a circuit breaker capable of performing highly equivalent verification without giving excessive stress and its realization. To provide a circuit.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の合成試験方法は、供試遮断器の遮断相に電圧源回路
を並列接続し、当該遮断相に供給される電流源電流の遮
断瞬時直前に前記電圧源回路から電圧源電流を重畳する
とともに、重畳電流の遮断と同時に当該遮断相に過渡回
復電圧を発生させる方法において、前記電流源電流の遮
断直後、前記電圧源回路を供試遮断器の遮断相から切り
離し、供試遮断器の遮断相に交流電圧を印加するように
したことを特徴とする。
According to the synthetic test method of the present invention which achieves the above object, a voltage source circuit is connected in parallel to a cutoff phase of a circuit breaker under test, and a current source current supplied to the cutoff phase is cut off. In a method of superimposing a voltage source current from the voltage source circuit immediately before the moment and generating a transient recovery voltage in the interruption phase at the same time as interruption of the superimposed current, the voltage source circuit is tested immediately after interruption of the current source current. The circuit is characterized in that it is separated from the breaker phase of the circuit breaker and an AC voltage is applied to the breaker phase of the test breaker.

【0013】また、上記目的を達成する本発明の試験回
路は、請求項1記載の合成試験方法を実現する試験回路
であって、供試遮断器の遮断相に短絡電流を供給する三
相電流源回路と、この電流源回路と供試遮断器の遮断相
との間に挿入接続された補助遮断器と、この補助遮断器
の入力側に一次側巻線、出力側に二次側巻線がそれぞれ
接続された電圧源変圧器と、供試遮断器の遮断相に分離
用開閉器を介して並列接続された電圧源回路とを有し、
前記短絡電流の遮断直後に前記分離開閉器が開極すると
ともに、前記電圧源変圧器の二次側巻線から前記供試遮
断器の遮断相に交流電圧が印加されることを特徴とす
る。
Further, a test circuit of the present invention which achieves the above object is a test circuit which realizes the synthetic test method according to claim 1, wherein a three-phase current for supplying a short-circuit current to the cut-off phase of the circuit breaker under test. Source circuit, an auxiliary circuit breaker inserted and connected between this current source circuit and the breaking phase of the test circuit breaker, the primary winding on the input side and the secondary winding on the output side of this auxiliary circuit breaker Each has a voltage source transformer connected thereto, and a voltage source circuit connected in parallel to the cutoff phase of the test circuit breaker via a switching switch for separation,
The isolation switch is opened immediately after the short circuit current is cut off, and an AC voltage is applied from the secondary winding of the voltage source transformer to the cutoff phase of the test breaker.

【0014】なお、前記補助遮断器の出力側と前記電圧
源変圧器の二次側巻線との間には抵抗器が挿入接続され
ている。
A resistor is inserted and connected between the output side of the auxiliary circuit breaker and the secondary winding of the voltage source transformer.

【0015】[0015]

【作用】電流源電流(短絡電流)の遮断直前に供試遮断
器の遮断相に電圧源電流が重畳され、重畳電流の零点直
後、電圧源変圧器の出力側に過渡回復電圧が発生し始め
る。但し、この時点ではまだ供試遮断器に電圧源電流が
流れているので、過渡回復電圧は、電圧源変圧器の二次
側の抵抗器が殆ど分担する。電圧源電流が零点になると
当該電流が遮断され、過渡回復電圧が発生する。分離用
開閉器は過渡回復電圧が収束した時点で電圧源回路を分
離する。これにより供試遮断器の遮断相に電圧源変圧器
より交流電圧が印加される。したがって、非接地系の試
験の場合であっても遮断相の過渡回復電圧が一定値とな
らず、他相との間の電圧上昇も抑制される。
[Function] The voltage source current is superimposed on the breaking phase of the test breaker immediately before the current source current (short circuit current) is interrupted, and immediately after the zero point of the superimposed current, the transient recovery voltage starts to be generated on the output side of the voltage source transformer. . However, since the voltage source current still flows through the test breaker at this point, the transient recovery voltage is almost shared by the resistor on the secondary side of the voltage source transformer. When the voltage source current reaches the zero point, the current is cut off and a transient recovery voltage is generated. The separation switch separates the voltage source circuit when the transient recovery voltage converges. As a result, an AC voltage is applied from the voltage source transformer to the breaking phase of the test breaker. Therefore, even in the case of the non-grounded system test, the transient recovery voltage of the cutoff phase does not have a constant value, and the voltage increase between the other phases is suppressed.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の一実施例に係る遮断器の合
成試験回路の構成図であり、図4に示した従来回路と同
一部品については同一符号を付している。
FIG. 1 is a block diagram of a synthetic test circuit for a circuit breaker according to an embodiment of the present invention. The same parts as those in the conventional circuit shown in FIG. 4 are designated by the same reference numerals.

【0018】本実施例では、図1に示すように、従来回
路において、補助遮断器4の第一遮断相間に、第二及び
第三遮断相と同様の電圧源変圧器11を設け、更に、供
試遮断器3の第一遮断相と電圧源回路2との間に分離用
開閉器12を挿入接続したものである。
In the present embodiment, as shown in FIG. 1, in the conventional circuit, a voltage source transformer 11 similar to the second and third breaking phases is provided between the first breaking phases of the auxiliary breaker 4, and further, A disconnecting switch 12 is inserted and connected between the first breaking phase of the test breaker 3 and the voltage source circuit 2.

【0019】次に、図2及び図3を参照して図1の構成
の合成試験回路の動作を説明する。まず、分離用開閉器
12は閉極しておき、従来回路と同じ手順で試験を開始
する。第一遮断相においては、b点(図2及び3参照)
にて電圧源回路2から電圧源電流が重畳され、重畳電流
の零点(b’点)直後に電圧源変圧器11の出力電極に
過渡回復電圧が発生し始める。しかしこの時点では、ま
だ供試遮断器3には電圧源電流が流れており、三相短絡
接地の状態となっている。したがって、過渡回復電圧
は、電圧源変圧器11の二次側に接続された抵抗器R11
が殆ど分担することになる。
Next, the operation of the synthesis test circuit having the configuration shown in FIG. 1 will be described with reference to FIGS. First, the separation switch 12 is closed, and the test is started in the same procedure as the conventional circuit. Point b in the first shut-off phase (see Figures 2 and 3)
At, the voltage source current is superposed from the voltage source circuit 2, and immediately after the zero point (point b ') of the superposed current, a transient recovery voltage starts to be generated at the output electrode of the voltage source transformer 11. However, at this time point, the voltage source current is still flowing in the test breaker 3 and the three-phase short-circuit grounding is being performed. Therefore, the transient recovery voltage is the resistor R 11 connected to the secondary side of the voltage source transformer 11.
Will be almost shared.

【0020】電圧源電流が零点(c点)となった時点で
当該電流が遮断され、TRV9及び電圧源回路2により
過渡回復電圧が発生する。
When the voltage source current reaches the zero point (point c), the current is cut off, and the TRV 9 and the voltage source circuit 2 generate a transient recovery voltage.

【0021】分離用開閉器12には、過渡回復電圧が収
束した時点(c’点)にて電圧源回路2(電流重畳回
路)が分離されるよう予め所定タイミングで指令を与え
ておく。電圧源回路2が分離された供試遮断器3の遮断
相には電圧源変圧器11より交流電圧が印加されること
となる。
A command is given to the separation switch 12 at a predetermined timing in advance so that the voltage source circuit 2 (current superposition circuit) is separated when the transient recovery voltage converges (point c '). An AC voltage is applied from the voltage source transformer 11 to the breaking phase of the test breaker 3 from which the voltage source circuit 2 is separated.

【0022】したがって、第二及び第三相遮断後も各相
の電圧は、対地間、相間ともに三相直接試験の場合と同
様の様相を示すようになり、従来のこの種の合成試験方
法による問題点が解消される。
Therefore, even after the second and third phases are shut off, the voltage of each phase shows the same aspect as the case of the three-phase direct test for both the ground and the phase, and according to the conventional synthetic test method of this kind. The problem is solved.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
によれば、非接地系の試験の場合であっても遮断相の過
渡回復電圧が一定値とならず、他相との間の電圧上昇も
抑制される効果がある。これにより過分なストレスを与
えることなく、等価性の高い合成試験が実施可能とな
る。
As is apparent from the above description, according to the present invention, the transient recovery voltage of the cutoff phase does not become a constant value even in the case of the non-grounded system test, and the voltage between the other phases is not recovered. It also has the effect of suppressing the voltage rise. This makes it possible to carry out highly equivalent synthetic tests without applying excessive stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る合成試験回路の構成
図。
FIG. 1 is a configuration diagram of a synthesis test circuit according to an embodiment of the present invention.

【図2】本実施例に係る合成試験回路の動作タイミング
図。
FIG. 2 is an operation timing chart of the synthesis test circuit according to the present embodiment.

【図3】図3の動作タイミング図の部分拡大図。FIG. 3 is a partially enlarged view of the operation timing chart of FIG.

【図4】従来の合成試験回路の構成図。FIG. 4 is a configuration diagram of a conventional synthesis test circuit.

【図5】従来の合成試験回路の動作タイミング図。FIG. 5 is an operation timing chart of a conventional synthesis test circuit.

【図6】図5の動作タイミング図の部分拡大図。6 is a partially enlarged view of the operation timing chart of FIG.

【図7】直接試験方法による各相電圧、電流及び相間電
圧の状態説明図。
FIG. 7 is an explanatory diagram of states of each phase voltage, current, and interphase voltage by a direct test method.

【図8】従来の合成試験方法による各相電圧、電流及び
相間電圧の状態説明図。
FIG. 8 is a state explanatory diagram of each phase voltage, current, and interphase voltage according to a conventional synthesis test method.

【符号の説明】[Explanation of symbols]

1…電流源回路 2…電圧源回路 3…供試遮断器 4…補助遮断器 5,6,11…電圧源変圧器 7,8,9…過渡回復電圧調整用素子(TRV) 10…アーク期間延長用回路 R5,R6,R11…抵抗器 12…分離用開閉器1 ... Current source circuit 2 ... Voltage source circuit 3 ... Test breaker 4 ... Auxiliary breaker 5, 6, 11 ... Voltage source transformer 7, 8, 9 ... Transient recovery voltage adjusting element (TRV) 10 ... Arc period extension circuit R 5, R 6, R 11 ... resistor 12 ... separation switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 俊一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 長 輝通 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunichi Arakawa 2-1,17 Osaki, Shinagawa-ku, Tokyo Stock company inside Meidensha (72) Inventor Teruichi Nagai 2-1-117 Osaki, Shinagawa-ku, Tokyo Shares Inside the company Meidensha

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 供試遮断器の遮断相電極に電圧源回路を
並列接続し、当該遮断相に供給される電流源電流の遮断
瞬時直前に前記電圧源回路から電圧源電流を重畳すると
ともに、重畳電流の遮断と同時に当該遮断相に過渡回復
電圧を発生させる遮断器の合成試験方法において、前記
電流源電流の遮断直後、前記電圧源回路を供試遮断器の
遮断相から切り離し、供試遮断器の遮断相に交流電圧を
印加するようにしたことを特徴とする遮断器の合成試験
方法。
1. A voltage source circuit is connected in parallel to a breaking phase electrode of a circuit breaker under test, and a voltage source current is superposed from the voltage source circuit immediately before a breaking instant of a current source current supplied to the breaking phase. In the synthetic test method of a circuit breaker that generates a transient recovery voltage in the relevant cutoff phase at the same time as the cutoff of the superimposed current, immediately after the cutoff of the current source current, disconnect the voltage source circuit from the cutoff phase of the test breaker A synthetic test method for a circuit breaker, characterized in that an AC voltage is applied to a circuit breaker phase.
【請求項2】 請求項1記載の合成試験方法を実現する
試験回路であって、供試遮断器の遮断相に短絡電流を供
給する三相電流源回路と、この電流源回路と供試遮断器
の遮断相との間に挿入接続された補助遮断器と、この補
助遮断器の入力側に一次側巻線、出力側に二次側巻線が
それぞれ接続された電圧源変圧器と、供試遮断器の遮断
相に分離用開閉器を介して並列接続された電圧源回路と
を有し、前記短絡電流の遮断直後に前記分離開閉器が開
極するとともに、前記電圧源変圧器の二次側巻線から前
記供試遮断器の遮断相に交流電圧が印加されることを特
徴とする合成試験回路。
2. A test circuit for realizing the synthetic test method according to claim 1, wherein the three-phase current source circuit supplies a short-circuit current to the breaking phase of the test breaker, the current source circuit and the test breaking. An auxiliary circuit breaker inserted between the circuit and the breaker phase, and a voltage source transformer in which the primary side winding is connected to the input side and the secondary side winding is connected to the output side of the auxiliary circuit breaker. And a voltage source circuit connected in parallel to the cutoff phase of the test circuit breaker via a separation switch, the separation switch being opened immediately after the short circuit current is cut off, and the two of the voltage source transformers being opened. A synthetic test circuit, wherein an AC voltage is applied from the secondary winding to the breaking phase of the circuit breaker under test.
【請求項3】 前記補助遮断器の出力側と前記電圧源変
圧器の二次側巻線との間に抵抗器が挿入接続されている
ことを特徴とする請求項2記載の合成試験回路。
3. The synthetic test circuit according to claim 2, wherein a resistor is inserted and connected between the output side of the auxiliary circuit breaker and the secondary side winding of the voltage source transformer.
JP23486092A 1992-09-02 1992-09-02 Three-phase synthesis test method and circuit for ungrounded circuit breaker Expired - Fee Related JP3191428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23486092A JP3191428B2 (en) 1992-09-02 1992-09-02 Three-phase synthesis test method and circuit for ungrounded circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23486092A JP3191428B2 (en) 1992-09-02 1992-09-02 Three-phase synthesis test method and circuit for ungrounded circuit breaker

Publications (2)

Publication Number Publication Date
JPH0682536A true JPH0682536A (en) 1994-03-22
JP3191428B2 JP3191428B2 (en) 2001-07-23

Family

ID=16977484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23486092A Expired - Fee Related JP3191428B2 (en) 1992-09-02 1992-09-02 Three-phase synthesis test method and circuit for ungrounded circuit breaker

Country Status (1)

Country Link
JP (1) JP3191428B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488201B1 (en) * 2012-08-24 2015-01-30 오미크론 일렉트로닉스 게엠바하 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
AT516121A1 (en) * 2014-07-29 2016-02-15 Omicron Electronics Gmbh Checking a multi-pole electrical circuit breaker
CN105865769A (en) * 2016-04-26 2016-08-17 国网河南省电力公司商丘供电公司 Detection device and method for mechanical parameters of electric isolation disconnecting link
CN110806310A (en) * 2019-09-27 2020-02-18 国网浙江省电力有限公司杭州供电公司 Online monitoring method and device for mechanical characteristics of high-voltage isolating switch operating mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983914B (en) * 2014-05-08 2017-05-10 国家电网公司 Testing device and method for secondary circuit of electric isolating knife switch
CN111665438A (en) * 2020-05-22 2020-09-15 江门市电力工程输变电有限公司 Calibration method for three-phase synchronous debugging of high-voltage isolating switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488201B1 (en) * 2012-08-24 2015-01-30 오미크론 일렉트로닉스 게엠바하 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
AT516121A1 (en) * 2014-07-29 2016-02-15 Omicron Electronics Gmbh Checking a multi-pole electrical circuit breaker
AT516121B1 (en) * 2014-07-29 2016-09-15 Omicron Electronics Gmbh Checking a multi-pole electrical circuit breaker
US10088509B2 (en) 2014-07-29 2018-10-02 Omicron Electronics Gmbh Checking a multi-pole electrical circuit breaker
CN105865769A (en) * 2016-04-26 2016-08-17 国网河南省电力公司商丘供电公司 Detection device and method for mechanical parameters of electric isolation disconnecting link
CN110806310A (en) * 2019-09-27 2020-02-18 国网浙江省电力有限公司杭州供电公司 Online monitoring method and device for mechanical characteristics of high-voltage isolating switch operating mechanism

Also Published As

Publication number Publication date
JP3191428B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JP3191428B2 (en) Three-phase synthesis test method and circuit for ungrounded circuit breaker
JPH03202793A (en) Testing apparatus for circuit breaker
JPH04363677A (en) Synthetic test circuit for breaker
JP2675649B2 (en) Switchgear test method and device
JP3103262B2 (en) Circuit breaker test circuit for switchgear
US3038116A (en) Circuit-breaker testing arrangement
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
JPH03202792A (en) Combined testing apparatus for circuit breaker
JPH06186309A (en) Interruption test circuit for switch
JP2004153932A (en) Exciting rush current reduction circuit for transformer
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JPS63177083A (en) Step-out synthetic testing apparatus of breaker
JP3035897B2 (en) Arc extension method in three-phase synthesis test of high voltage circuit breaker
JPS61225675A (en) Method and apparatus for testing switch gear
JPS61195366A (en) Testing instrument for lightening arrestor disconnecting device
JPS60207079A (en) Synthesis test of breaker
JPH01216285A (en) Testing apparatus for compositing circuit breaker stepping-out
JPH065652Y2 (en) Shiya disconnector testing device
JPH0563748B2 (en)
JPH06213979A (en) Synthetic test method for power switch
JPS59116067A (en) Testing method of three phase common tank type breaker
Johnson et al. Neutral Grounding and the Prevention of Neutral Instability
JPH05288815A (en) Composite short-circuit tester for circuit breaker with resistor
JPH0434111B2 (en)
JPH058533Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees