JPS59116067A - Testing method of three phase common tank type breaker - Google Patents

Testing method of three phase common tank type breaker

Info

Publication number
JPS59116067A
JPS59116067A JP57225695A JP22569582A JPS59116067A JP S59116067 A JPS59116067 A JP S59116067A JP 57225695 A JP57225695 A JP 57225695A JP 22569582 A JP22569582 A JP 22569582A JP S59116067 A JPS59116067 A JP S59116067A
Authority
JP
Japan
Prior art keywords
phase
voltage
test
breaker
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225695A
Other languages
Japanese (ja)
Inventor
Satoru Shiga
悟 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57225695A priority Critical patent/JPS59116067A/en
Publication of JPS59116067A publication Critical patent/JPS59116067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To perform the test approximate to a three-phase direct short circuiting test with one time test by connecting the breaking points of respective phases in series, grounding the prescribed breaking point, and connecting a voltage source of 1.5 times the rated phase voltage and a voltage source of a rated phase voltage between the prescribed phases. CONSTITUTION:The breaking points 4R and 4S of the phase 1 and phase 2 among breaking points 4R, 4S, 4T of the respective phases which are connected in series are kept grounded and connected, and currents are supplied from the respective phases 1R, 1S, 1T of a three-phase current source 1 to the respective points 4R, 4S, 4T. On the other hand, a voltage source 5a of 1.5 times the rated supply voltage is connected, via an auxiliary breaker 3, between the 1R and the point 4R and a voltage source 5B of the rated voltage is connected between the point 4S and the ground. The test approximate to a three-phase direct short circuiting test is accomplished with one test according to the above-mentioned constitution without the increase in the voltage at the breaking point to ground after the breaking or without the decrease in the interphase recovery voltage than the rated voltage.

Description

【発明の詳細な説明】 この発明は三相共通タンク形しゃ断器の合成短絡試験の
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthetic short circuit testing of three-phase common tank type circuit breakers.

三相のしゃ断点が共通のタンク内に収納されるしゃ断器
は事故などによる短絡電流しゃ断時に、しゃ断点間に発
生するアークの高熱によりイオンを含む高温ガスが共通
タンク内に放出され、その結果として相聞および各相と
接地された共通タンク間の絶縁全低下させる危険が潜在
している。このようなしゃ断器はそのしゃ断性能検証に
際して実系統と同一の三相直接短絡試験法により行なう
ことが望ましいことはいうまでもないが、それは短絡試
験設備容量を系統容量に合致させることであり、近年の
ように系統容量が犬きくなっては経済的に不可能に近く
、このような背景から一般に比較的低電圧で大電流の供
給可能な電流源と、小電流で高電圧の供給可能な電圧源
との組み合せによる合成短絡試験方法が採用されている
ことは知られていることである。
A circuit breaker in which the three-phase breaking points are housed in a common tank can cause high-temperature gas containing ions to be released into the common tank due to the high heat of the arc generated between the breaking points when a short-circuit current is cut off due to an accident, etc. There is a potential danger that the insulation between each phase and the grounded common tank will deteriorate as a result. It goes without saying that it is desirable to verify the breaking performance of such circuit breakers using the same three-phase direct short-circuit test method as in the actual system, but it is important to match the short-circuit test equipment capacity with the system capacity. It is almost economically impossible as the system capacity has become so low as in recent years, and for this reason, current sources that can supply large currents with relatively low voltages and those that can supply high voltages with small currents are generally available. It is known that a synthetic short circuit test method in combination with a voltage source is employed.

そして三相共通タンク形しゃ断器の合成短絡試験方法に
は前述のような問題があることから、以下のような条件
を満たすことが要求されている。
Since the synthetic short circuit test method for three-phase common tank type circuit breakers has the above-mentioned problems, it is required to satisfy the following conditions.

それの第1.!:して三相のしゃ断点に所定期間のアー
クを発生させること、第2として供試しゃ断器のしゃ断
第1相のしゃ断点および第2.第3相の各しゃ断点にし
ゃ断点間、相聞および対接地共通タンク間に所定の電圧
の印加が可能なこと、第3として所定のアーク期間を得
るために強制的にアーク延長が可能なこと、第4として
当然のことながら試験時間が短かくてすむことなどであ
る。
First of all. ! : to generate an arc for a predetermined period at the three-phase breaker point; It is possible to apply a predetermined voltage to each breaker point of the third phase, between the breaker points, and between the phases and the common tank to ground, and thirdly, it is possible to forcibly extend the arc to obtain a predetermined arc period. The fourth reason is, of course, that the test time can be shortened.

従来のこの種の合成短絡試験方法としてはたとえば第1
図および第2図にそれぞれ異なる例として示すものが知
られており、1ず第1図の回路として、所定の短絡電流
を供給可能とするY接続された三相電流源1には各相に
電流調整用のりアクドル2が接続され、電流源1は第1
相IR,第2相ISおよび第3相ITとからな9、リア
クトル2の端子になる電流源1の第1相IRは補助しゃ
断器3を介し、その他の第2.第3相Is、ITは直接
供試しゃ断器4の轟咳する三相しゃ断点4R。
As a conventional synthetic short circuit test method of this type, for example,
The circuit shown in Fig. 1 and Fig. 2 as different examples is known. First, as the circuit shown in Fig. 1, a Y-connected three-phase current source 1 capable of supplying a predetermined short-circuit current is connected to each phase. The current adjusting glue handle 2 is connected, and the current source 1 is connected to the first
The first phase IR of the current source 1, which is a terminal of the reactor 2, is connected to the other second phase IR, the second phase IS, and the third phase IT through the auxiliary breaker 3. The third phase Is, IT is the three-phase breaker point 4R of the direct test breaker 4.

48.4Tにそれぞれ接続されている。しゃ断第1相に
は供試しゃ断器3と第1相しゃ断点4Rとの間に定格相
電圧の1゜5倍の発生電圧をもつ電圧源5が接続され、
各相しゃ断点4R,48,4Tの反型源側は互に短絡さ
れるとともに接地されていそしてリアクトル2の各相端
にはアーク期間を強制的に延長させるアーク延長装置6
が接続されている。
48.4T respectively. A voltage source 5 having a generated voltage of 1.5 times the rated phase voltage is connected to the first phase of the cutoff between the test breaker 3 and the first phase cutoff point 4R,
The anti-mold source sides of each phase breaking point 4R, 48, and 4T are short-circuited and grounded, and an arc extension device 6 at each phase end of the reactor 2 for forcibly extends the arc period.
is connected.

次に第2図の回路について説明すると、この回路は前記
第1図の回路例と異なり、まず補助しゃ断器を用いるこ
となくまたアーク延長装置6も第1、第3相の2個のみ
とし、しかも供試しゃ断器4の各相しゃ断点4R,4S
、4Tを直列に接続していることと、電圧源5を第2.
第3のしゃ断点4S。
Next, the circuit shown in FIG. 2 will be explained. This circuit is different from the circuit example shown in FIG. Moreover, each phase breaker point 4R, 4S of the test breaker 4
, 4T are connected in series, and the voltage source 5 is connected to the second .
Third breaking point 4S.

4T間に接続し、第1.第2相のしゃ断点4R,48間
を接地していることである。
Connect between 4T and 1st. This means that the second phase breaking points 4R and 48 are grounded.

以上よシなる二つの回路構成において第1図の場合は3
個すなわち各相のアーク延長装置6それぞれによシ当該
相それぞれのアークを所定のアーク期延長させ、電圧源
5がしゃ断第1相のしゃ断点4Rのみに印加する方式で
おることがら、アーク延長装@6が各相に必要になって
費用が嵩むことと、電圧#5が第1相のしゃ断点4Rの
1個のみで、しかも相電圧の1.5倍の電圧を印加する
ためしゃ断後の相聞回復電圧が、所定のすなわち三相直
接短絡試験法の場合に比較して低く々ることや、第2、
第3相のしゃ断点48.4Tのしゃ断後の対地電圧が逆
に高くなるなどの欠点があった。
For the two circuit configurations above, in the case of Figure 1, 3
That is, the arc extension device 6 of each phase extends the arc of each phase for a predetermined arc period, and the voltage source 5 applies only to the breaking point 4R of the first cutting phase. 6 is required for each phase, which increases costs, and voltage #5 is only applied to one cutoff point 4R of the first phase, and since a voltage 1.5 times the phase voltage is applied, The phase-to-phase recovery voltage of
There was a drawback that the voltage to the ground after the third phase was cut off at the cutoff point of 48.4T became higher.

一方第2図の回路例は供試しゃ断器4が電圧源5と電流
源1との切離しをやるすなわち補助しゃ断器の役目を兼
ねることになることがら補助しゃ断器を必要とせず、ま
たアーク延長装置6を第1゜第3相の2個となっている
ことがら経済性で優れている利点はあるものの、一つの
相にのみ相電圧の1.5倍の電圧を印加するために、前
記第1図の従来例同様に相間の同役電圧が所定値より低
くなることや、第2.第3相のしゃ断後の対地電圧が所
定値より高く彦るなどの欠点がありいずれも要求に十分
応えるものではなかった。このようなことから従来はこ
れらの試験方法に対してはさらに追加試験として残る2
相にアークを発生させ、相間電圧の不足する相間を所定
の電圧を印加することが行なわれていたことから、さら
に試験を面倒にして多くの時間を必要とする欠点があり
改善が待たれていた。
On the other hand, in the circuit example shown in Fig. 2, the test breaker 4 disconnects the voltage source 5 and the current source 1, that is, it also serves as an auxiliary breaker, so there is no need for an auxiliary breaker, and the arc extension The fact that there are two devices 6, one for the first phase and the third phase, has the advantage of being economical, but in order to apply a voltage 1.5 times the phase voltage to only one phase, the above-mentioned As in the conventional example shown in FIG. There are drawbacks such as the voltage to ground after the third phase is cut off being higher than a predetermined value, and none of these methods satisfactorily meet the requirements. For this reason, in the past, two additional tests were added to these test methods.
Previously, arcs were generated in the phases and a predetermined voltage was applied between the phases where the interphase voltage was insufficient, which also had the disadvantage of making testing cumbersome and requiring a lot of time, and improvements have been awaited. Ta.

この発明は上記従来の欠点を除去して1回の試験で三相
直接短絡試験により近くかつ合理的な三相共通タンク形
しゃ断器の試験方法を提供することを目的とする。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a method for testing a three-phase common tank type circuit breaker that is more similar to the three-phase direct short circuit test and more reasonable in one test.

この発明によれば上記目的は三相のしゃ断点が同一容器
内に収納された供試し、セ断器のしゃ断性能検鉦を短絡
電流と回復電圧とをそれぞれ別個になる電流源および電
圧源から供給する合成短絡試験方法において、各相しゃ
断点が直列接続され第1相と第2相の相聞が接地された
供試しゃ断器と、該供試しゃ断器の各相しゃ断点のそれ
ぞれに接続される三相の電流源と、該電流、源と前記供
試しゃ断器のしゃ断第1相聞に補助しゃ断器を介して接
続された定格相電圧の1.5倍になる第1遡圧源と、前
記供試しゃ断器の第2相と第3相の相間に接続された定
格相電圧の第2電圧源とを備えることにより達せられる
According to the present invention, the above object is to test the breaking performance of a test piece in which the three-phase breaking point is housed in the same container, and to detect the short circuit current and recovery voltage from separate current sources and voltage sources. In the synthetic short-circuit test method provided, a test breaker in which the breaking points of each phase are connected in series and the first and second phases are grounded, and a test breaker connected to each phase breaking point of the test breaker, a three-phase current source, and a first retrovoltage source with a voltage 1.5 times the rated phase voltage connected between the current source and the first phase of the test breaker via an auxiliary breaker; This is achieved by providing a second voltage source of rated phase voltage connected between the second and third phases of the test breaker.

以下この発明の実施例を図面に基づき説明する。Embodiments of the present invention will be described below based on the drawings.

第3図において、前記第1図および第2図に示したそれ
ぞれ異なる従来例と対応する部には同一符号を付すこと
で説明の重役を避は異なるところKつき説明する。異な
るところとしては電圧源が第1電圧源5aと、第2電圧
源5bとの2個用いられ、第2電圧源5bを当該供試し
ゃ断器4の相電圧10倍にしたことであり、そしてその
他が第1.第2図の両従来例の折衷構成となっているこ
とである。
In FIG. 3, parts corresponding to the different conventional examples shown in FIGS. 1 and 2 are designated by the same reference numerals to avoid overlapping explanations, and the different parts will be described with K. The difference is that two voltage sources are used, a first voltage source 5a and a second voltage source 5b, and the second voltage source 5b has a phase voltage 10 times that of the test breaker 4, and Others are number one. The structure is a compromise between the two conventional examples shown in FIG.

詳述すると電流源1の第1相IRと供試・しや・断器4
の第1相のし中断点4Rとの間は補助しゃ断器3によシ
分離可能にして、第1電圧源5aが接続され、電源源1
の第2.第3相xsptT間に接続された供試しゃ断器
4の第2.第3・相1シ:や断、点4S。
To explain in detail, the first phase IR of current source 1 and the test switch/disconnector 4
A first voltage source 5a is connected to the first phase disconnection point 4R so that it can be separated by an auxiliary breaker 3.
The second. The second phase of the test circuit breaker 4 connected between the third phase xsptT. 3rd phase 1shi: Yadan, point 4S.

4Tの直列接続側に第2電圧源5bが接続されている。A second voltage source 5b is connected to the series connection side of the 4T.

そしてしゃ断点4Rと48との直列接続個所が接地され
、アーク延長装置6は第1相IRと第2相Isとに接続
されている。
The series connection point between the breaker points 4R and 48 is grounded, and the arc extension device 6 is connected to the first phase IR and the second phase Is.

以上の構成においてしゃ断器1相のしゃ断点は4Rでち
り、そのとき第1電圧源5aは電流重量法で電圧を印加
し、第2電圧源5bは供試しゃ断器4がしゃ断器自動的
に電圧を印加するスキーツ法が採用され、前述したよう
に第1電圧源は相電圧の1.5倍が、そして第2電圧源
は相電圧の10倍の電圧印加が可能になっている。
In the above configuration, the breaking point of one phase of the breaker is 4R, at which time the first voltage source 5a applies voltage by the current gravimetric method, and the second voltage source 5b The Skeets method of applying voltage is adopted, and as mentioned above, the first voltage source can apply a voltage 1.5 times the phase voltage, and the second voltage source can apply a voltage 10 times the phase voltage.

以上の構成において成果を三相直接短絡試験法および従
来の前述した合成短絡試験法との比較を第4図と示し説
明する。試験条件はいずれも非接地系統の場合であり、
図中の数値はすべて相電圧の倍数が示されている。第4
図において第1図および第2図に示した従来の試験方法
では所定の値(図中の三相直接短絡試験法の場合)に比
較してたとえば相電圧において第2,3相しゃ断器や回
復電圧定常値のように印加電圧が低く(約87%)なる
部分や、対地電圧のように15倍から1.73倍と極端
に高くなる部分がめったのに対し、この実施例の場合は
所定値よシ低くなる部分はなく、また高くなる部分でも
最大1.44倍どまりで大幅に合理性も向上することに
なる。
The results of the above configuration will be explained by comparing them with the three-phase direct short-circuit test method and the conventional synthetic short-circuit test method described above, as shown in FIG. All test conditions are for ungrounded systems.
All numerical values in the figure are shown as multiples of the phase voltage. Fourth
In the conventional test method shown in Fig. 1 and Fig. 2, for example, the phase voltage of the 2nd and 3rd phase breaker or the recovery In contrast to parts where the applied voltage is low (approximately 87%), such as the steady voltage value, and parts where it is extremely high, such as the ground voltage, from 15 times to 1.73 times, in this example, the applied voltage There is no area where the value is lower, and even where it is higher, it is only 1.44 times the maximum, which means that the rationality is greatly improved.

そしてこの構成は三相共通タンク形1.中断器用として
新製する設備はなく、いずれも従来一般に使用された三
相分離タンク形しゃ断器の試験設備の利用が可能であシ
、また電圧源が2個になっても一方にスキーツ“法を採
用し自動的に電圧が印加されるようになっていることか
ら、電圧印加のタイミングの制御も従来の制御技術の採
用が可能となる利点がある。
This configuration is a three-phase common tank type 1. There is no new equipment to be manufactured for the interrupter, and it is possible to use test equipment for three-phase separated tank type circuit breakers that have been commonly used in the past. Since the voltage is automatically applied by adopting the above method, there is an advantage that conventional control technology can be used to control the timing of voltage application.

以上述べたようにこの発明によれば従来から使用されて
いた単相合成短絡試験設備の複数組の選択組み合せのみ
で直接短絡試験法に近い合理的な三相共通タンク形しゃ
断器の合成短絡試験方法が得られる。
As described above, according to the present invention, a rational three-phase common tank type circuit breaker synthetic short-circuit test similar to the direct short-circuit test method can be performed using only a selected combination of multiple sets of conventional single-phase synthetic short-circuit test equipment. method is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ異なる従来の三相共通タ
ンク形しゃ断器の合成短絡試験法の試験回路図、第3図
はこの発明による三相共通タンク形しゃ断器の合成短絡
試験法の一実施例の試験回路図、第4図はこの発明の実
施例と従来例とを比較する説明図である。 1・・・三相電流源、3・・・補助しゃ断器、4・・・
供試しゃ断器、5 a + 5 b・・・第1.第2電
圧源、6・・・アーク延長装置。 オ  1  図 才  2  図 T  3  図 f  4  図
Figs. 1 and 2 are test circuit diagrams of different conventional synthetic short-circuit test methods for three-phase common tank type circuit breakers, and Fig. 3 is a test circuit diagram of a synthetic short-circuit test method for three-phase common tank type circuit breakers according to the present invention. Test circuit diagram of the embodiment, FIG. 4 is an explanatory diagram comparing the embodiment of the present invention with a conventional example. 1... Three-phase current source, 3... Auxiliary breaker, 4...
Test circuit breaker, 5 a + 5 b...1st. Second voltage source, 6... arc extension device. E 1 Figure 2 Figure T 3 Figure f 4 Figure

Claims (1)

【特許請求の範囲】 1)三相のしゃ断点が同一容器内に収納された供試しゃ
断器のしゃ断性能検証を短絡電流と回復電圧とをそれぞ
れ別個になる電流源および電圧源から供給する合成短絡
試験方法であって、各相しゃ断点が直列接続され第1相
と第2相の相間が接地された供試しゃ断器と、該供試し
ゃ断器の各相しゃ断点のそれぞれに接続される三相の電
流源と、該電流源と前記供試しゃ断器のしゃ断器1相間
に補助しゃ断器を介し接続された定格相電圧の1.5倍
になる第1電圧源と、前記供試しゃ断器の第2相と第3
相の相聞に接続された定格相電圧の第2電圧源とを備え
たことを特徴とする三相共通夕/り形しゃ断器の試験方
法。 2、特許請求の範囲第1項記載の方法において、前記三
相電流源回路のしゃ断器1相と第2相とのそれぞれにア
ーク期間延長装置を接続したことを特徴とする三相共通
タンク形しゃ断器の試験方法。
[Claims] 1) A synthesis method for verifying the breaking performance of a test breaker whose three-phase breaking points are housed in the same container by supplying short-circuit current and recovery voltage from separate current sources and voltage sources, respectively. A short-circuit test method, in which a test breaker is connected in series with each phase cutoff point and the first and second phases are grounded, and each phase cutoff point of the test breaker is connected to each other. a three-phase current source, a first voltage source having a voltage 1.5 times the rated phase voltage connected between the current source and one phase of the breaker of the test breaker via an auxiliary breaker, and the test breaker. 2nd and 3rd phase of the vessel
A method for testing a three-phase common duplex circuit breaker, comprising: a second voltage source of rated phase voltage connected between the phases. 2. A three-phase common tank type method according to claim 1, characterized in that an arc period extension device is connected to each of the first phase and second phase of the circuit breaker of the three-phase current source circuit. Test method for circuit breaker.
JP57225695A 1982-12-22 1982-12-22 Testing method of three phase common tank type breaker Pending JPS59116067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225695A JPS59116067A (en) 1982-12-22 1982-12-22 Testing method of three phase common tank type breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225695A JPS59116067A (en) 1982-12-22 1982-12-22 Testing method of three phase common tank type breaker

Publications (1)

Publication Number Publication Date
JPS59116067A true JPS59116067A (en) 1984-07-04

Family

ID=16833339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225695A Pending JPS59116067A (en) 1982-12-22 1982-12-22 Testing method of three phase common tank type breaker

Country Status (1)

Country Link
JP (1) JPS59116067A (en)

Similar Documents

Publication Publication Date Title
Panek et al. Overvoltage phenomena associated with virtual current chopping in three phase circuits
JPS5931283B2 (en) 2-pole grounding fault type circuit disconnector
JPS59116067A (en) Testing method of three phase common tank type breaker
US2349611A (en) Protection of polyphase impedance networks
JPH0682536A (en) Method and circuit for performing combination test on circuit breaker
JPH0145592B2 (en)
JPS63290122A (en) Overcurrent releasing device for breaker
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
JPH06186309A (en) Interruption test circuit for switch
JP2785295B2 (en) Leading current interruption test equipment for switchgear
JPS5818175A (en) Equivalent test method for multi-point interrupting tank type breaker
SU67774A1 (en) Device for relay protection of high-voltage air electrical networks with ungrounded zero point
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JPS6157870A (en) Three-phase equivalent testing method of breaker
JPS59109873A (en) Testing method of three-phase common tank-type breaker
Kapoor et al. Analysis of a pole-to-pole short-circuit on bipolar HVDC converters
JPH055067B2 (en)
SU1350733A1 (en) Apparatus for grounding protection in mains with insulated neutral wire
CN114325475A (en) Power supply circuit and method of ultra-high voltage transformer short-circuit test system
JPS6055026B2 (en) AC/DC superimposed application method
JPH0634028B2 (en) Switchgear test method and device
JPS63191083A (en) Equivalent three-phase test for circuit breaker
JPH06225449A (en) Protective apparatus of distribution system
JPH0563748B2 (en)
JPS6358181A (en) Small leading current cutoff test circuit for circuit breaker