JPH05187826A - Detecting method of position - Google Patents

Detecting method of position

Info

Publication number
JPH05187826A
JPH05187826A JP4004708A JP470892A JPH05187826A JP H05187826 A JPH05187826 A JP H05187826A JP 4004708 A JP4004708 A JP 4004708A JP 470892 A JP470892 A JP 470892A JP H05187826 A JPH05187826 A JP H05187826A
Authority
JP
Japan
Prior art keywords
measurement target
circumscribed
imaging
image
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4004708A
Other languages
Japanese (ja)
Inventor
Masao Nagamoto
正雄 長本
Yasushi Mizuoka
靖司 水岡
Nobutaka Taira
信孝 平良
Masanori Yasutake
正憲 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4004708A priority Critical patent/JPH05187826A/en
Publication of JPH05187826A publication Critical patent/JPH05187826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To dispense with a frame memory and to make it unnecessary to connect partial images by the frame memory, by obtaining a circumscribed quadrilateral of the whole measuring object on the basis of the data of the circumscribed quadrilaterals of every divided image. CONSTITUTION:A measuring area S where an electronic part 3 is mounted on an XY table 2 is divided according to a specific formula so that frames F of the size of a view field of a photographing camera 5 are overlapped in the X, Y two directions. The divided positions are preliminarily registered in a computer 8. The table 2 is moved in accordance with the registered position thereby to move the camera 5 relatively to each of the divided positions of the area S. An image recognizing device 7 operates a circumscribed quadrilateral of the partial pattern of the photographed screen through image processing, and the computer 8 inputs tone circumscribed quadrilateral as the data of partial circumscribed quadrilaterals. This procedure is repeated for the number of the divided positions. Then, a circumscribed quadrilateral of the whole of the subject pattern is operated from the circumscribed quadrilaterals at each photographing position. The center of circumscription is obtained from this circumscribed quadrilateral.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置検出方法に関し、
詳しくは計測対象を複数画面で撮像し、この複数画面に
撮像されている計測対象のパターンを画像処理して外接
中心を検出する位置検出方法に関するもので、例えば、
回路基板に実装する前の電子部品および回路基板に実装
した後の電子部品の外観検査や計測を行うのに利用され
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting method,
More specifically, the present invention relates to a position detection method of capturing an image of a measurement target on a plurality of screens and performing image processing on a pattern of the measurement target captured on the plurality of screens to detect a circumscribing center.
It is used for visual inspection and measurement of electronic components before they are mounted on the circuit board and electronic components after they are mounted on the circuit board.

【0002】[0002]

【従来の技術】従来の位置検出方法は、計測対象を撮像
装置との相対移動によって順次に分割撮像し、各回に撮
像した画像をその都度フレームメモリに取り込んでい
き、計測対象を分割撮像した画像の全てをフレームメモ
リに取り込んだとき、各フレームメモリに取り込んだ画
像を繋ぎ合わせて計測対象全体のパターンを得、これを
画像処理することにより外接中心を検出するようにして
いる。
2. Description of the Related Art In a conventional position detecting method, an object to be measured is sequentially divided and imaged by relative movement with an image pickup device, and an image picked up each time is taken into a frame memory, and an image of the object to be divided is picked up. When all are stored in the frame memory, the images captured in each frame memory are joined together to obtain the pattern of the entire measurement target, and the circumscribing center is detected by performing image processing on this pattern.

【0003】[0003]

【発明が解決しようとする課題】しかし前記従来のよう
な方法では、計測対象を分割撮像する数だけのフレーム
メモリが必要となるので、高価につく。
However, the above-mentioned conventional method is expensive because it requires as many frame memories as the number of divided images of the measurement object.

【0004】また分割撮像した数だけの画像を繋ぎ合わ
せるために処理時間が長くなると云う問題もある。
There is also a problem that the processing time becomes long because the images of the number of divided images are joined together.

【0005】そこで本発明は、分割撮像した各画像ごと
の外接四角形を得、これの情報をもとに、計測対象全体
の外接四角形を求めて位置検出を行えるようにし、前記
従来のようなフレームメモリとこれによる部分画像の繋
ぎ合わせ処理を省略することができる位置検出方法を提
供することを課題とするものである。
In view of this, the present invention obtains a circumscribed quadrangle for each image obtained by divisional imaging, and on the basis of this information, the circumscribed quadrangle of the entire measurement target is obtained so that position detection can be performed. An object of the present invention is to provide a position detection method that can omit the process of joining a memory and partial images by the memory.

【0006】[0006]

【課題を解決するための手段】本発明は上記のような課
題を達成するため、計測対象を複数画面で撮像し、この
複数画面に撮像されている計測対象のパターンを画像処
理して外接中心を検出する位置検出方法において、位置
検出のための計測範囲を、撮像装置との相対移動によっ
て順次に分割撮像し、各撮像位置の情報と各撮像位置に
て撮像された画面上の部分的な計測対象パターンにつき
画像処理して得た外接四角形の情報とによって計測対象
パターン全体の外接四角形を演算して得、この計測対象
パターン全体の外接四角形から計測対象の外接中心を演
算により検出するようにしたことを特徴とするものであ
る。
In order to achieve the above-mentioned object, the present invention takes an image of a measurement target on a plurality of screens, performs image processing on the pattern of the measurement target imaged on the plurality of screens, and performs circumscribed centering. In the position detection method for detecting, the measurement range for position detection is sequentially divided and imaged by relative movement with the image pickup device, and information of each image pickup position and a partial image on the screen imaged at each image pickup position. The circumscribed quadrangle of the entire measurement target pattern is calculated by using the information of the circumscribed quadrangle obtained by performing image processing on the measurement target pattern, and the circumscribing center of the measurement target is calculated from the circumscribed quadrangle of the entire measurement target pattern. It is characterized by having done.

【0007】計測範囲は計測対象の大きさ、形状、ある
いは許容する位置や向き等のずれ量に応じて設定するこ
とができる。
The measurement range can be set according to the size and shape of the object to be measured, or the amount of deviation such as the allowable position and orientation.

【0008】計測範囲の、多角形な計測対象のコーナー
部が存在する撮像位置での撮像を他に優先して行い、こ
れらの画像処理情報から計測対象のサイズエラーを検出
し、サイズエラーがあると残りの撮像位置での撮像を省
略するようにすることもできる。
Imaging at the imaging position where the polygonal corner of the measurement object exists in the measurement range is given priority over the other, and the size error of the measurement object is detected from these image processing information, and there is a size error. It is also possible to omit imaging at the remaining imaging positions.

【0009】[0009]

【作用】本発明の上記構成によれば、位置検出のための
計測範囲を、撮像装置との相対移動によって順次に分割
撮像するが、各撮像位置にて撮像された画面上の部分的
な計測対象パターンにつき画像処理して部分的な外接四
角形を得ておき、各撮影位置の情報とそれに対応した部
分的な各外接四角形の情報とにより、計測対象パターン
全体の外接四角形を演算により得、各撮像位置と部分的
な各外接四角形情報とを記憶しておくだけで、計測対象
全体の外接四角形を得、この全体の外接四角形から演算
により計測対象の外接中心を検出することができる。
According to the above configuration of the present invention, the measurement range for position detection is sequentially divided and imaged by relative movement with the image pickup device, but partial measurement on the screen imaged at each image pickup position is performed. Image processing is performed on the target pattern to obtain a partial circumscribed quadrangle, and the circumscribed quadrangle of the entire measurement target pattern is obtained by calculation based on the information of each photographing position and the information of each partial circumscribed quadrangle. The circumscribed quadrangle of the entire measurement target can be obtained only by storing the imaging position and the partial circumscribed quadrangle information, and the circumscribed center of the measurement target can be detected from the circumscribed quadrangle of the entire measurement target.

【0010】計測範囲を、計測対象の大きさ、形状、あ
るいは許容する位置や向き等のずれ量に応じて設定する
ことにより、どのような大きさ形状のものにも対応する
ことができるし、位置や向きにズレがあっても許容範囲
内であれば対応でき、過不足ない撮像回数によって位置
検出を効率よく適正に達成することができる。
By setting the measurement range according to the size and shape of the object to be measured, or the amount of deviation such as the allowable position and orientation, it is possible to handle objects of any size and shape. Even if there is a deviation in position or orientation, it can be accommodated within the allowable range, and position detection can be efficiently and appropriately achieved by the number of imagings that is sufficient.

【0011】計測範囲の、多角形な計測対象のコーナー
部が存在する撮像位置での撮像を他に優先して行い、こ
れらの画像処理情報から計測対象のサイズエラーを検出
し、サイズエラーがあると残りの撮像位置での撮像を省
略すると、サイズエラーのある計測対象についての無駄
な計測を回避することができる。
Imaging at the imaging position where the polygonal corner of the measurement object exists in the measurement range is given priority over the other, and the size error of the measurement object is detected from these image processing information, and there is a size error. By omitting the imaging at the remaining imaging positions, it is possible to avoid useless measurement of the measurement target having a size error.

【0012】[0012]

【実施例】以下本発明の幾つかの実施例について図面を
参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の方法で位置検出を行う位置
検出装置の一例を示し、直交するX、Y2方向の駆動機
構を持った直交ロボット1に支持されたXYテーブル2
を有し、このXYテーブル2上に計測対象である電子部
品3等が置かれる。
FIG. 1 shows an example of a position detecting device for detecting a position by the method of the present invention, in which an XY table 2 supported by an orthogonal robot 1 having a drive mechanism in orthogonal X and Y directions.
The electronic parts 3 and the like to be measured are placed on the XY table 2.

【0014】XYテーブル2上には撮像カメラ5が照明
ランプ6とともに設置され、XYテーブル2のX、Y2
方向の移動により、撮像カメラ5および照明ランプ6は
XYテーブル2の上面のどの位置とも対向するように相
対移動される。
An image pickup camera 5 is installed together with an illumination lamp 6 on the XY table 2, and X, Y2 of the XY table 2 are arranged.
Due to the movement in the direction, the imaging camera 5 and the illumination lamp 6 are relatively moved so as to face any position on the upper surface of the XY table 2.

【0015】撮像カメラ5は画像認識装置7に接続さ
れ、画像認識装置7はコンピュータ8と信号を授受して
制御される。
The image pickup camera 5 is connected to the image recognition device 7, and the image recognition device 7 is controlled by exchanging signals with the computer 8.

【0016】以下本発明の第1の実施例における位置検
出の具体的な方法について説明する。
A specific method of position detection in the first embodiment of the present invention will be described below.

【0017】まず図2に示すように、下記計算式にした
がい撮像カメラ5の視野サイズ枠FによってXYテーブ
ル2上の電子部品3が置かれている部分の計測範囲Sを
X、Y2方向に、視野サイズ枠Fが重なるように分割
し、分割した位置は、 X(k)=x+(DX1)*(i)−(計測範囲X方
向) Y(k)=y+(DY1)*(j)−(計測範囲Y方
向) ただし、(x、y)は計測対象目標中心位置 DX1=(撮像カメラの視野サイズ枠FのX方向サイ
ズ)−(視野の重なり長さX方向) DY1=(撮像カメラの視野サイズ枠FのY方向サイ
ズ)−(視野の重なり長さY方向) k=1、2、・・・・・・n1 i=1、2、・・・・・・m1 j=1、2、・・・・・・m2 m1=(計測範囲X方向)/DX1 m2=(計測範囲Y方向)/DY1 と計算され、コンピュータ8に予め登録する。
First, as shown in FIG. 2, the measurement range S of the portion where the electronic component 3 is placed on the XY table 2 by the field-of-view size frame F of the image pickup camera 5 in the X and Y2 directions is calculated according to the following formula. The fields of view size F are divided so that they overlap, and the positions are: X (k) = x + (DX1) * (i)-(measurement range X direction) Y (k) = y + (DY1) * (j)- (Measurement range Y direction) However, (x, y) is the target center position of the measurement target DX1 = (size in the X direction of the visual field size frame F of the imaging camera) − (overlap length X direction of the visual field) DY1 = (of the imaging camera) Size of field of view size frame F in Y direction)-(overlap length of field of view in Y direction) k = 1, 2, ..., N1 i = 1, 2, ..., M1 j = 1, 2 , ... m2 m1 = (measurement range X direction) / DX1 m2 = (measurement range Y direction) ) / DY1 and is registered in the computer 8 in advance.

【0018】次で登録した位置に従ってXYテーブル2
を移動させて、撮像カメラ5を計測範囲Sの各分割位置
へ所定の順序にて相対移動させる。
XY table 2 according to the position registered next
Are moved to relatively move the imaging camera 5 to each division position of the measurement range S in a predetermined order.

【0019】各分割位置での撮像に際し、撮像された画
面に置ける電子部品3の図3に示すような部分的なパタ
ーン3aについての外接四角形Aが画像認識装置7での
画像処理にて演算され、部分的な外接四角形情報として
コンピュータ8に入力され記憶される。
At the time of imaging at each division position, a circumscribing quadrangle A for a partial pattern 3a of the electronic component 3 placed on the imaged screen as shown in FIG. 3 is calculated by image processing in the image recognition device 7. , Is input and stored in the computer 8 as partial circumscribed quadrangle information.

【0020】計測範囲Sにつき分割した各位置の数だけ
の撮像と画像処理が終了すると、NO.kの各撮像位置
での外接四角形を画像処理範囲全体の座標系へ変換す
る。
When the image pickup and the image processing are completed by the number of the respective positions divided in the measurement range S, NO. The circumscribed quadrangle at each imaging position of k is converted into the coordinate system of the entire image processing range.

【0021】この画像処理範囲全体の座標系での撮像位
置NO.kは、 〔Xmin(1,k)〕=〔Xmin(k)〕+(DX1)*(i) 〔Ymin(1,k)〕=〔Ymin(k)〕+(DY1)*(j) 〔Xmax(1,k)〕=〔Xmax(k)〕+(DX1)*(i) 〔Ymax(1,k)〕=〔Ymax(k)〕+(DY1)*(j) ただし、 DX1=(撮像カメラの視野サイズ枠FのX方向サイ
ズ)−(視野の重なり長さX方向) DY1=(撮像カメラの視野サイズ枠FのY方向サイ
ズ)−(視野の重なり長さY方向) k=1、2、・・・・・ i,j=1、2、・・・・ と計算される。
Image pickup position NO. In the coordinate system of the entire image processing range. k is [Xmin (1, k)] = [Xmin (k)] + (DX1) * (i) [Ymin (1, k)] = [Ymin (k)] + (DY1) * (j) [ Xmax (1, k)] = [Xmax (k)] + (DX1) * (i) [Ymax (1, k)] = [Ymax (k)] + (DY1) * (j) where DX1 = ( X-direction size of field-of-view size frame F of imaging camera- (overlap length X-direction of field of view) DY1 = (size of field-of-view frame F of imaging camera in Y-direction)-(field-of-view overlap length Y direction) k = 1 It is calculated that i, j = 1, 2, ...

【0022】次に上記各撮像位置NO.kでの部分的な
外接四角形のデータXmin(1,1)、Xmin
(1,2)、Xmin(1,3),・・・Xmin
(1,n)の内の最も小さい値の(Xmin)を計測対
象である電子部品3の外接四角形(Xmin)とし、Y
min(1,1)、Ymin(1,2)、Ymin
(1,3),・・・Ymin(1,n)の内の最も小さ
い値の(Ymin)を計測対象である電子部品3の外接
四角形(Ymin)とし、Xmax(1,1)、Xma
x(1,2)、Xmax(1,3),・・・Xmax
(1,n)の内の最も大きい値の(Xmax)を計測対
象である電子部品3の外接四角形(Xmax)とし、Y
max(1,1)、Ymax(1,2)、Ymax
(1,3),・・・Ymax(1,n)の内の最も小さ
い値の(Ymax)を計測対象である電子部品3の外接
四角形(Ymax)とする。
Next, at each of the image pickup positions NO. Partial circumscribed quadrangle data Xmin (1,1), Xmin at k
(1,2), Xmin (1,3), ... Xmin
The smallest value (Xmin) of (1, n) is set as the circumscribed quadrangle (Xmin) of the electronic component 3 to be measured, and Y
min (1,1), Ymin (1,2), Ymin
The smallest value (Ymin) of (1,3), ..., Ymin (1, n) is set as the circumscribed rectangle (Ymin) of the electronic component 3 to be measured, and Xmax (1,1), Xma
x (1,2), Xmax (1,3), ... Xmax
The largest value (Xmax) of (1, n) is set as the circumscribed quadrangle (Xmax) of the electronic component 3 to be measured, and Y
max (1,1), Ymax (1,2), Ymax
The smallest value (Ymax) of (1,3), ..., Ymax (1, n) is set as the circumscribed quadrangle (Ymax) of the electronic component 3 that is the measurement target.

【0023】これにより計測対象パターン3b全体の図
4に示すような外接四角形Bは、(Xmin,Ymi
n)−(Xmax,Ymax)を演算することによって
得ることができ、計測対象である電子部品3の外接中心
は、 (XC)=〔(Xmin)+(Xmax)〕/2 (YC)=〔(Ymin)+(Ymax)〕/2 を演算して得られる。
As a result, the circumscribed quadrangle B of the entire measurement target pattern 3b as shown in FIG. 4 becomes (Xmin, Ymi
n) − (Xmax, Ymax), and the circumscribing center of the electronic component 3 to be measured is (XC) = [(Xmin) + (Xmax)] / 2 (YC) = [ It is obtained by calculating (Ymin) + (Ymax)] / 2.

【0024】これをフローチャートで示せば図5の通り
である。
FIG. 5 is a flowchart showing this.

【0025】図6、図7は本発明の第2の実施例を示
し、計測範囲Sの設定を、電子部品3の大きさおよび形
状に応じて設定したものであり、このように設定した計
測範囲Sを撮像カメラ5の視野サイズ枠Fにて分割した
ときの撮像画面数は、過不足のない必要最小限のものと
なり、どのような大きさ、形状にも対応しながら位置検
出を効率よく適正に行うことができる。
6 and 7 show a second embodiment of the present invention, in which the setting of the measurement range S is set according to the size and shape of the electronic component 3, and the measurement set in this way is performed. When the range S is divided by the field-of-view size frame F of the image pickup camera 5, the number of image pickup screens becomes the minimum necessary amount without excess or deficiency, and position detection can be performed efficiently while supporting any size and shape. It can be done properly.

【0026】以下具体的に説明すると、分割する撮像位
置は、 X(k)=x+(DX1)*(i)−(計測対象X方向
サイズ) Y(k)=y+(DY1)*(j)−(計測対象Y方向
サイズ) ただし、 DX1=(撮像カメラの視野サイズ枠FのX方向サイ
ズ)−(視野の重なり長さX方向) DY1=(撮像カメラの視野サイズ枠FのY方向サイ
ズ)−(視野の重なり長さY方向) k=1、2、・・・・・・n2 i=1、2、・・・・・・m1 j=1、2、・・・・・・m2 m1=(計測対象X方向サイズ)/DX1 m2=(計測対象Y方向サイズ)/DY1 と計算され、コンピュータ8に予め登録する。
More specifically, the image pickup positions to be divided are: X (k) = x + (DX1) * (i)-(measurement target X-direction size) Y (k) = y + (DY1) * (j) -(Measurement target Y-direction size) However, DX1 = (size of view field size frame F of the image pickup camera in X direction)-(overlap length X direction of view field) DY1 = (size of view field size frame F of image pickup camera in Y direction) -(Overlapping length of visual field in Y direction) k = 1, 2, ..., N2 i = 1, 2, ..., M1 j = 1, 2, ..., M2 m1 = (Measurement target X direction size) / DX1 m2 = (measurement target Y direction size) / DY1 is calculated and registered in the computer 8 in advance.

【0027】次で登録した位置に従ってXYテーブル2
を移動させて、撮像カメラ5を計測範囲Sの各分割位置
へ所定の順序にて相対移動させる。
XY table 2 according to the position registered next
Are moved to relatively move the imaging camera 5 to each division position of the measurement range S in a predetermined order.

【0028】分割した各位置の数だけの撮像と画像処理
が終了すると、第1の実施例の場合同様に、NO.kの
各撮像位置での外接四角形を画像処理範囲全体の座標系
へ変換し、後は第1の実施例と同様に処理される。
When the image pickup and the image processing for the respective divided positions are completed, as in the case of the first embodiment, NO. The circumscribed quadrangle at each image pickup position of k is converted into the coordinate system of the entire image processing range, and the subsequent processing is performed in the same manner as in the first embodiment.

【0029】この場合の処理をフローチャートで示せば
図7の通りである。
The processing in this case is shown in a flow chart in FIG.

【0030】図8、図9は本発明の第3の実施例を示
し、計測範囲Sの設定を、電子部品3の許容する平行ず
れと回転ずれに対応して行ったものであり、このように
設定した計測範囲Sを撮像カメラ5の視野サイズ枠Fに
て分割したときの撮像画面数は、過不足のない必要最小
限のものとしながら、許容する平行ずれや回転ずれにも
対応して位置検出をさらに効率よく適正に行うことがで
きる。
FIGS. 8 and 9 show a third embodiment of the present invention, in which the measurement range S is set corresponding to the parallel displacement and rotational displacement permitted by the electronic component 3. The number of imaging screens when the measurement range S set to is divided by the field-of-view size frame F of the imaging camera 5 is set to the minimum necessary amount without excess or deficiency, and also tolerates parallel deviation and rotation deviation. Position detection can be performed more efficiently and properly.

【0031】これを具体的に説明すると、 平行ずれ量=DX2,DY2 回転ずれ量=DQ 許容範囲=DK 計測対象X方向サイズ=LX 計測対象Y方向サイズ=LY 撮像カメラ位置X(k),Y(k) (k=1,2,・・・n3) とすると、X(k)>DX2、またはX(k)>DK、
またはY(k)>(LY)*sin(DQ)を満足する
撮像位置NO.kを削除し、これの撮像と処理を省略す
ることになるので、図8に示すように撮像回数がさらに
少なくなり、しかも電子部品3等の計測対象物の大き
さ、形状、位置や向きのずれに対応した適正な位置検出
が可能となる。
This will be described in detail. Parallel deviation amount = DX2, DY2 Rotational deviation amount = DQ Allowable range = DK Measurement target X direction size = LX Measurement target Y direction size = LY Imaging camera position X (k), Y (K) (k = 1, 2, ... N3), X (k)> DX2 or X (k)> DK,
Alternatively, the imaging position NO. Which satisfies Y (k)> (LY) * sin (DQ). Since k is deleted and the imaging and processing of this is omitted, the number of times of imaging is further reduced as shown in FIG. 8, and the size, shape, position and orientation of the measuring object such as the electronic component 3 are reduced. Appropriate position detection corresponding to the shift becomes possible.

【0032】この場合の処理のフローチャートを示せば
図9の通りである。
The flow chart of the processing in this case is as shown in FIG.

【0033】図10、図11は本発明の第4の実施例を
示し、設定した計測範囲Sの内の、多角形である電子部
品3等である計測対象のコーナー形状が存在する撮像位
置を設定し、この位置での撮像を優先的に行って画像処
理し、この位置での撮像画像に計測対象パターンのコー
ナー部が検出されるかどうかによって計測対象物のサイ
ズが大き過ぎたり小さ過ぎたりしないか判別し、サイズ
エラーがあるとそれ以降の計測を中止して、計測が無駄
に行われないようにする。
FIG. 10 and FIG. 11 show a fourth embodiment of the present invention, in which the imaging position where the corner shape of the measuring object, such as the polygonal electronic component 3 within the set measuring range S, exists. The image of the measurement target is set too large or too small depending on whether the corners of the measurement target pattern are detected in the captured image at this position. Whether there is a size error or not is determined, and if there is a size error, the subsequent measurement is stopped so that the measurement is not performed unnecessarily.

【0034】なお、計測を中止する際は、これを警告表
示したり、サイズエラーの計測対象を廃棄したりすれば
実用上便利である。
When stopping the measurement, it is practically convenient to display a warning or to discard the size error measurement target.

【0035】本実施例での処理を具体的に説明すると、
前記第1〜第3の各実施例における計測範囲Sの各分割
位置を撮像し、画像処理を行うのに、設定した計測範囲
Sの内の多角形の計測対象のコーナー部が存在する撮像
位置を、例えば図10にNO.1〜18にて示すように
設定する。これらの位置は、 撮像位置NO.1 X(k)=x−(LX)/2 Y(k)=y+(LY)/2 撮像位置NO.2 X(k)=x−(LX)/2 Y(k)=y−(LY)/2 撮像位置NO.3 X(k)=x+(LX)/2 Y(k)=y−(LY)/2 撮像位置NO.4 X(k)=x+(LX)/2 Y(k)=y+(LY)/2 撮像位置NO.k X(k)=x+(LX)*(i) Y(k)=y+(LY)*(j) ただし第1〜第3の実施例における撮像位置NO.kと
は共通しない。
The processing of this embodiment will be described in detail below.
An imaging position where a polygonal measurement target corner portion within the set measurement range S exists for imaging each divided position of the measurement range S in each of the first to third embodiments and performing image processing. In FIG. Set as shown in 1-18. These positions are the imaging position NO. 1 X (k) = x− (LX) / 2 Y (k) = y + (LY) / 2 Imaging position NO. 2 X (k) = x− (LX) / 2 Y (k) = y− (LY) / 2 Imaging position NO. 3 X (k) = x + (LX) / 2 Y (k) = y− (LY) / 2 Imaging position NO. 4 X (k) = x + (LX) / 2 Y (k) = y + (LY) / 2 Imaging position NO. k X (k) = x + (LX) * (i) Y (k) = y + (LY) * (j) However, the imaging position NO. in the first to third embodiments. Not common with k.

【0036】(x,y)は計測対象の目標中心位置であ
る。
(X, y) is the target center position of the measurement target.

【0037】 DX1=(撮像カメラの視野サイズ枠FのX方向サイ
ズ)−(視野の重なり長さX方向) DY1=(撮像カメラの視野サイズ枠FのY方向サイ
ズ)−(視野の重なり長さY方向) k=1、2、・・・・・・n4 i=1、2、・・・・・・m1 j=1、2、・・・・・・m2 m1=(計測対象X方向サイズ)/DX1 m2=(計測対象Y方向サイズ)/DY1 と計算され、コンピュータ8に登録される。
DX1 = (size of view field size frame F of imaging camera in X direction) − (overlap length of view in X direction) DY1 = (size of view size frame F of imaging camera in Y direction) − (overlap length of view) Y direction) k = 1,2, ... n4 i = 1,2, ... m1 j = 1,2, ... m2 m1 = (measurement target X direction size) ) / DX1 m2 = (measurement target Y direction size) / DY1 is calculated and registered in the computer 8.

【0038】そしてこれらの撮像位置につき他の撮像位
置に優先して撮像と画像処理とが行われ、サイズエラー
が判別される。
Then, with respect to these image pickup positions, the image pickup and the image processing are performed in preference to the other image pickup positions, and the size error is discriminated.

【0039】サイズエラーが判別されなければ、他の撮
像位置での撮像が行われ、前記第1〜第3の実施例の場
合同様に処理される。
If the size error is not discriminated, the image is picked up at another image pick-up position and processed in the same manner as in the first to third embodiments.

【0040】この場合の処理のフローチャートを示せば
図11の通りである。
The flow chart of the processing in this case is as shown in FIG.

【0041】[0041]

【発明の効果】本発明によれば、位置検出のための計測
範囲を、撮像装置との相対移動によって順次に分割撮像
するが、各撮影位置にて撮像された画面上の部分的な計
測対象パターンにつき画像処理して部分的な外接四角形
を得ておき、各撮影位置の情報とそれに対応した部分的
な各外接四角形の情報とにより、計測対象パターン全体
の外接四角形を演算して得、各撮像位置と部分的な各外
接四角形情報とを記憶しておくだけで、計測対象全体の
外接四角形を得、この全体の外接四角形から演算により
計測対象の外接中心を検出するので、計測範囲の分割撮
像数分にフレームメモリが不要となる分だけ簡単な装置
での処理が可能となるし、フレームメモリに格納した各
分割撮像画面を繋ぎ合わせる処理が不要であるから制御
も簡単となり、安価に実現する上処理時間が短縮する。
According to the present invention, the measurement range for position detection is sequentially divided and imaged by relative movement with the image pickup device, but a partial measurement target on the screen imaged at each image pickup position. Image processing is performed on the pattern to obtain a partial circumscribed quadrangle, and the circumscribed quadrangle of the entire measurement target pattern is calculated and obtained by the information of each photographing position and the information of the partial circumscribed quadrangle corresponding to each photographing position. The circumscribed quadrangle of the entire measurement target is obtained only by storing the imaging position and the partial circumscribed quadrangle information, and the circumscribed center of the measurement target is detected from the circumscribed quadrangle of the entire measurement target, so that the measurement range is divided. Since the frame memory is not required for the number of images to be taken, the processing can be performed by a simple device, and the process for connecting the divided image pickup screens stored in the frame memory is not necessary, so that the control is easy and the security is low. Processing time is shortened order to achieve to.

【0042】計測範囲を、計測対象の大きさ、形状、あ
るいは許容する位置や向き等のずれ量に応じて設定する
ことにより、どのような大きさ形状のものにも対応する
ことができるし、位置や向きにズレがあっても許容範囲
内であれば対応でき、過不足ない撮像回数によって位置
検出を効率よく適正に達成することができ、検出の信頼
性を確保しながら処理時間がさらに短縮する。
By setting the measurement range according to the size and shape of the object to be measured, or the amount of deviation such as the allowable position and orientation, it is possible to handle objects of any size and shape. Even if there is a deviation in position or orientation, it can be handled as long as it is within the allowable range, and position detection can be efficiently and properly achieved with just enough number of times of imaging, and processing time is further shortened while ensuring detection reliability. To do.

【0043】計測範囲の、多角形な計測対象のコーナー
部が存在する撮像位置での撮像を他に優先して行い、こ
れらの画像処理情報から計測対象のサイズエラーを検出
し、サイズエラーがあると残りの撮像位置での撮像を省
略すると、サイズエラーのある計測対象についての無駄
な計測を回避することができ、処理のさらなる高速化を
図り得る。
Imaging at the imaging position where the polygonal corner of the measurement object exists in the measurement range is given priority over the other, and the size error of the measurement object is detected from these image processing information, and there is a size error. By omitting the imaging at the remaining imaging positions, it is possible to avoid useless measurement of the measurement target having a size error, and further speed up the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に利用される位置検出装置の一例を示す
側面図および平面図である。
FIG. 1 is a side view and a plan view showing an example of a position detection device used in the present invention.

【図2】本発明の第1の実施例における計測範囲の分割
撮像位置の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of divided image pickup positions in a measurement range according to the first embodiment of the present invention.

【図3】分割撮像位置での撮像画面における部分的な計
測対象パターンと部分的な外接四角形を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a partial measurement target pattern and a partial circumscribing quadrangle on an image pickup screen at divided image pickup positions.

【図4】図3の部分的な外接四角形から演算して得た計
測対象全体の外接四角形の状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state of a circumscribed quadrangle of the entire measurement target obtained by calculation from the partial circumscribed quadrangle of FIG. 3;

【図5】本発明の第1の実施例の具体的処理を示すフロ
ーチャートである。
FIG. 5 is a flowchart showing a specific process of the first embodiment of the present invention.

【図6】本発明の第2の実施例での計測範囲を計測対象
の大きさや形状に応じて設定した場合の分割撮像位置の
状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state of divided imaging positions when the measurement range is set according to the size and shape of the measurement target in the second embodiment of the present invention.

【図7】本発明の第2の実施例の具体的処理を示すフロ
ーチャートである。
FIG. 7 is a flowchart showing a specific process of the second embodiment of the present invention.

【図8】本発明の第3の実施例での計測範囲を計測対象
の許容する平行ずれ量や回転ずれ量に対応して設定した
場合の分割撮像位置の状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a state of divided image pickup positions when a measurement range in the third embodiment of the present invention is set corresponding to a parallel displacement amount and a rotational displacement amount allowed by a measurement target.

【図9】本発明の第3の実施例の具体的処理を示すフロ
ーチャートである。
FIG. 9 is a flowchart showing a specific process of the third embodiment of the present invention.

【図10】本発明の第4の実施例での計測範囲における
多角形な計測対象のコーナー部が存在する分割撮像位置
を設定して優先的に撮像する際の、分割撮像位置設定状
態を示す説明図である。
FIG. 10 shows a divided image pickup position setting state when a divided image pickup position in which a corner portion of a polygonal measurement target exists in a measurement range in the fourth embodiment of the present invention and the image pickup is preferentially performed. FIG.

【図11】本発明の第4の実施例の具体的処理を示すフ
ローチャートである。
FIG. 11 is a flowchart showing a specific process of the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 直交ロボット 3 電子部品 5 撮像カメラ 7 画像認識装置 8 コンピュータ A 部分外接四角形 B 全体外接四角形 S 計測範囲 1 Cartesian Robot 3 Electronic Component 5 Imaging Camera 7 Image Recognition Device 8 Computer A Partial Circumscribed Rectangle B B Whole Circumscribed Rectangle S Measurement Range

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安武 正憲 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Yasutake 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 計測対象を複数画面で撮像し、この複数
画面に撮像されている計測対象のパターンを画像処理し
て外接中心を検出する位置検出方法において、 位置検出のための計測範囲を、撮像装置との相対移動に
よって順次に分割撮像し、各撮像位置の情報と各撮像位
置にて撮像された画面上の部分的な計測対象パターンに
つき画像処理して得た外接四角形の情報とによって計測
対象パターン全体の外接四角形を演算して得、この計測
対象パターン全体の外接四角形から計測対象の外接中心
を演算により検出するようにしたことを特徴とする位置
検出方法。
1. A position detecting method for detecting a circumscribing center by image-processing a measurement target on a plurality of screens and image-processing the pattern of the measurement target imaged on the plurality of screens. Divided images are sequentially taken by relative movement with the image pickup device, and measured by information of each image pickup position and information of a circumscribed quadrangle obtained by performing image processing on a partial measurement target pattern on the screen imaged at each image pickup position. A position detecting method, characterized in that a circumscribing quadrangle of the entire target pattern is obtained by calculation, and the circumscribing center of the measurement target is detected from the circumscribing quadrangle of the entire measurement target pattern.
【請求項2】 計測範囲は計測対象の大きさ、形状、あ
るいは許容する位置や向き等のずれ量に応じて設定され
る請求項1記載の位置検出方法。
2. The position detection method according to claim 1, wherein the measurement range is set according to the size and shape of the measurement target, or the amount of deviation such as the allowable position and orientation.
【請求項3】 計測範囲の、多角形な計測対象のコーナ
ー部が存在する撮像位置での撮像を他に優先して行い、
これらの画像処理情報から計測対象のサイズエラーを検
出し、サイズエラーがあると残りの撮像位置での撮像を
省略する請求項1または2に記載の位置検出方法。
3. Prioritizing the imaging at an imaging position where a polygonal corner of the measurement target exists in the measurement range,
The position detecting method according to claim 1, wherein a size error of the measurement target is detected from the image processing information, and if there is a size error, the imaging at the remaining imaging positions is omitted.
JP4004708A 1992-01-14 1992-01-14 Detecting method of position Pending JPH05187826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004708A JPH05187826A (en) 1992-01-14 1992-01-14 Detecting method of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004708A JPH05187826A (en) 1992-01-14 1992-01-14 Detecting method of position

Publications (1)

Publication Number Publication Date
JPH05187826A true JPH05187826A (en) 1993-07-27

Family

ID=11591386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004708A Pending JPH05187826A (en) 1992-01-14 1992-01-14 Detecting method of position

Country Status (1)

Country Link
JP (1) JPH05187826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439178B1 (en) * 2002-01-19 2004-07-05 한국전자통신연구원 System and method for taking the dimensions of 3d objects
JP2008218537A (en) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd Device for mounting electronic component, and method of reading information code in the same
KR20190096755A (en) * 2018-02-09 2019-08-20 한화정밀기계 주식회사 Mass component recognition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439178B1 (en) * 2002-01-19 2004-07-05 한국전자통신연구원 System and method for taking the dimensions of 3d objects
JP2008218537A (en) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd Device for mounting electronic component, and method of reading information code in the same
KR20190096755A (en) * 2018-02-09 2019-08-20 한화정밀기계 주식회사 Mass component recognition method

Similar Documents

Publication Publication Date Title
US5541834A (en) Control system for component mounting apparatus
JPH08247736A (en) Mounted substrate inspecting device
JPH05187826A (en) Detecting method of position
JPH0335108A (en) Lead position recognition device
JPS6337479A (en) Pattern recognizer
JP3468643B2 (en) Appearance inspection method for printed wiring boards
JPH02216408A (en) Substrate inspection device
JPH08186808A (en) Method and device for processing image
JPH02151702A (en) Apparatus for inspecting mounting of part
JPH0815171A (en) Method and apparatus for inspection soldering
JP2596158B2 (en) Component recognition device
JPH0134345Y2 (en)
JPH09282444A (en) Visual recognition device
JPH08315147A (en) Template matching method
JPH0663751B2 (en) Electronic component recognition method
JP4087973B2 (en) Inter-component inspection method and apparatus for mounted components
JPH0510719A (en) Electronic part's position detecting method
JPH0894534A (en) Pattern defect detecting deice
JPH0399250A (en) Mounting state recognizing apparatus
JPH09232797A (en) Ic component position detecting device
JPH04238206A (en) Multi-visual field recognizing method for pattern
JPH04158206A (en) Component inspecting apparatus
JP3438974B2 (en) Method for storing and reading template images
JPH04174311A (en) Inspecting apparatus for printed circuit board
JPH0416752A (en) Apparatus for inspecting defect