JPH0518677Y2 - - Google Patents

Info

Publication number
JPH0518677Y2
JPH0518677Y2 JP9421287U JP9421287U JPH0518677Y2 JP H0518677 Y2 JPH0518677 Y2 JP H0518677Y2 JP 9421287 U JP9421287 U JP 9421287U JP 9421287 U JP9421287 U JP 9421287U JP H0518677 Y2 JPH0518677 Y2 JP H0518677Y2
Authority
JP
Japan
Prior art keywords
resistor
temperature sensor
power supply
operational amplifier
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9421287U
Other languages
Japanese (ja)
Other versions
JPS6428U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9421287U priority Critical patent/JPH0518677Y2/ja
Publication of JPS6428U publication Critical patent/JPS6428U/ja
Application granted granted Critical
Publication of JPH0518677Y2 publication Critical patent/JPH0518677Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 (考案の利用分野) 本考案は、温度変化に応じて抵抗値が変化する
温度センサを用いた温度センサ回路の改良に関す
るものである。
[Detailed Description of the Invention] (Field of Application of the Invention) The present invention relates to an improvement of a temperature sensor circuit using a temperature sensor whose resistance value changes according to temperature changes.

(考案の背景) 従来の温度センサ回路の一例を第3図に示す。(Background of the idea) An example of a conventional temperature sensor circuit is shown in FIG.

温度変化に応じて抵抗値が変化する温度センサ
Rs及び抵抗R1,R2,R3,R4は、ブリツジ回路を
形成している。+Vは電源、t1,t2は温度センサ
回路の出力端子である。
Temperature sensor whose resistance value changes according to temperature changes
R s and resistors R 1 , R 2 , R 3 , and R 4 form a bridge circuit. +V is a power supply, and t 1 and t 2 are output terminals of the temperature sensor circuit.

例えば、温度センサRsは0℃で100Ω、1℃の
温度変化で抵抗値が0.4Ω変化するものとし、R1
=R2=R4=400Ω、R3=300Ω、温度センサRs
流れるセンサ電流Is=1mAとすると、1℃の温度
変化に伴なう出力電圧の変化分△Eは0.4mV/℃
となる。また、センサ電流Is=0.1mAとすると、
1℃の温度変化に伴なう出力電圧の変化分△Eは
40μV/℃となる。このように、従来の温度セン
サ回路では、センサ電流Isが微小な場合には、1
℃の温度変化に伴なう出力電圧の変化分△Eを大
きくすることができなかつた。
For example, assume that the temperature sensor R s is 100Ω at 0°C, and the resistance value changes by 0.4Ω with a temperature change of 1°C, and R 1
= R 2 = R 4 = 400 Ω, R 3 = 300 Ω, and the sensor current I s flowing through the temperature sensor R s = 1 mA, the change in output voltage △E due to a 1°C temperature change is 0.4 mV/°C
becomes. Also, if the sensor current I s =0.1mA,
The change in output voltage △E due to a temperature change of 1℃ is
It becomes 40μV/℃. In this way, in the conventional temperature sensor circuit, when the sensor current I s is small, 1
It was not possible to increase the amount of change ΔE in the output voltage due to the temperature change in degrees Celsius.

このため、出力電圧を差動幅増器により増幅す
るとすれば、差動幅増器は高精度な演算増幅器を
2個以上必要とするので、コストアツプを招くこ
とになる。
Therefore, if the output voltage is amplified by a differential width amplifier, the differential width amplifier requires two or more highly accurate operational amplifiers, resulting in an increase in cost.

(考案の目的) 本考案の目的は、上述した問題点を解決し、セ
ンサ電流が微小な場合でも、1℃の温度変化に伴
なう出力電圧の変化分を大きくすることができる
シングルエンド型の温度センサ回路を提供するこ
とである。
(Purpose of the invention) The purpose of the invention is to solve the above-mentioned problems and to use a single-ended type that can increase the change in output voltage due to a temperature change of 1°C even when the sensor current is small. An object of the present invention is to provide a temperature sensor circuit.

(考案の特徴) 上記目的を達成するために、本考案は、温度セ
ンサと第2の抵抗を直列に接続して、該温度セン
サを電源の一端に、該第2の抵抗を電源の他端
に、それぞれ接続し、第1の抵抗と第3の抵抗を
直列に接続して、電源電圧と出力端子間の出力電
圧との差が該直列回路に印加されるように、該第
1の抵抗を前記電源の一端に、該第3の抵抗を前
記出力端子の一端に、それぞれ接続し、前記温度
センサと前記第2の抵抗の接続点を演算増幅器の
非反転入力端に接続し、前記第1の抵抗と前記第
3の抵抗の接続点を前記演算増幅器の反転入力端
に接続し、前記第3の抵抗に接続された前記出力
端子の一端を前記演算増幅器の出力端に接続し、
前記第1の抵抗に対する前記第3の抵抗の比を大
きく設定し、以て、温度センサでの電圧降下変化
分を演算増幅器により非反転増幅するようにした
ことを特徴とする。
(Characteristics of the invention) In order to achieve the above object, the present invention connects a temperature sensor and a second resistor in series, and connects the temperature sensor to one end of the power supply and the second resistor to the other end of the power supply. the first resistor and the third resistor are connected in series so that the difference between the power supply voltage and the output voltage between the output terminals is applied to the series circuit. is connected to one end of the power supply, the third resistor is connected to one end of the output terminal, a connection point between the temperature sensor and the second resistor is connected to a non-inverting input terminal of an operational amplifier, and the third resistor is connected to one end of the output terminal. A connection point between the first resistor and the third resistor is connected to an inverting input terminal of the operational amplifier, and one end of the output terminal connected to the third resistor is connected to an output terminal of the operational amplifier,
The present invention is characterized in that the ratio of the third resistor to the first resistor is set to a large value, so that the change in voltage drop at the temperature sensor is non-invertingly amplified by an operational amplifier.

(考案の実施例) 第1図は本考案の一実施例を示す。(Example of idea) FIG. 1 shows an embodiment of the present invention.

温度センサRsと第2の抵抗R12とは直列に接続
され、この直列回路は電源+Vとアースとの間に
接続される。第1の抵抗R11と第3の抵抗R13
温度センサ回路の出力端子t1,t2間とは直列に接
続され、この直列回路も、電源+Vとアースとの
間に接続される。出力端子t1,t2は、出力端子t1
をアース電位とするシングルエンド型となる。温
度センサRsと第2の抵抗R12の接続点Xは演算増
幅器Aの非反転入力端に接続され、第1の抵抗
R11と第3の抵抗R13の接続点Yは演算増幅器A
の反転入力端に接続される。第3の抵抗R13に接
続された出力端子t2は演算増幅器Aの出力端に接
続される。第1の抵抗R11に対する第3の抵抗
R13の比及び温度センサRsに対して第2の抵抗
R12の比は、例えば数10〜数100の大きな値に設
定される。
The temperature sensor R s and the second resistor R 12 are connected in series, and this series circuit is connected between the power supply +V and ground. The first resistor R 11 and the third resistor R 13 are connected in series between the output terminals t 1 and t 2 of the temperature sensor circuit, and this series circuit is also connected between the power supply +V and the ground. Output terminals t 1 and t 2 are output terminals t 1
It is a single-ended type with ground potential being . The connection point X between the temperature sensor R s and the second resistor R 12 is connected to the non-inverting input terminal of the operational amplifier A, and the first resistor
The connection point Y between R 11 and the third resistor R 13 is the operational amplifier A.
connected to the inverting input terminal of The output terminal t 2 connected to the third resistor R 13 is connected to the output terminal of the operational amplifier A. The third resistance to the first resistance R 11
The ratio of R 13 and the second resistor to the temperature sensor R s
The ratio of R12 is set to a large value, for example, several tens to several hundreds.

R12=R13と仮定すると、Rs=R11の時、演算増
幅器Aは、接続点Xと接続点Yとを同電位に保つ
ため、出力電圧をアースと同じ電位に保つよう動
作する。この時の抵抗R11と抵抗R13の電圧降下
は第2図のL1にて示されるようになる。
Assuming that R 12 =R 13 , when R s =R 11 , operational amplifier A operates to maintain the output voltage at the same potential as ground in order to maintain the connection point X and the connection point Y at the same potential. At this time, the voltage drop across the resistor R 11 and the resistor R 13 becomes as shown by L 1 in FIG. 2.

温度変化により温度センサRsの電圧降下に変
化分△eが生じると、電圧降下変化分△eは、演
算増幅器Aにより(R11+R13)/R11倍に非反転
増幅され、出力端子t1,t2から出力電圧変化分△
Eとして出力される。この時の抵抗R11と抵抗
R13の電圧降下は第2図のL2にて示されるように
なる。
When a change △e occurs in the voltage drop of the temperature sensor R s due to a temperature change, the voltage drop change △e is non-invertingly amplified by (R 11 +R 13 )/R 11 times by the operational amplifier A, and is output to the output terminal t. 1 , output voltage change from t 2
Output as E. Resistance R 11 and resistance at this time
The voltage drop across R 13 will be shown as L 2 in FIG.

なお、電圧降下変化分△eが(R11+R13)/
R11倍になる理由は下記の通りである。
Note that the voltage drop change △e is (R 11 + R 13 )/
The reason why R increases by 11 times is as follows.

演算増幅器Aは理想演算増幅器として考えるの
で、入力電流Ii=0とする。電源+Vは一定電圧
値を保つものとする。
Since the operational amplifier A is considered as an ideal operational amplifier, the input current Ii is set to 0. The power supply +V shall maintain a constant voltage value.

ey=V+If×R11 …… If=(E−V)/(R11+R13) …… 式に式を代入し、 ey=V+R11(E−V)/(R11+R13) = (E・R11+V・R13)/(R11+R13
…… 式より E=ey(R11+R13)/R11 −V・R13/R11 …… eyの変化に対するEの変化を求めるため、
式をeyについて微分し、dE/deyを求めると、 dE/dey=(R11+R13)/R11 …… の一次式を得る。
ey=V+If×R 11 ...If=(E-V)/(R 11 +R 13 )...Substitute the formula into the equation and get ey=V+R 11 (E-V)/(R 11 +R 13 ) = (E・R 11 +V・R 13 )/(R 11 +R 13 )
... From the formula E = ey (R 11 + R 13 ) / R 11 −V・R 13 /R 11 ... To find the change in E with respect to the change in ey,
Differentiating the equation with respect to ey and finding dE/dey yields the following linear equation: dE/dey=(R 11 +R 13 )/R 11 .

Aは理想演算増幅器であるため、常にex=ey
となるまで帰還電流Ifを増減させ、常にex=eyが
保たれている。(通称、イマジリーシヨート) したがつて、式のeyをexに置き換え、exの
変化に対するEの変化(増幅度)を △E/△ex=(R11+R13)/R11 …… と考えることができる。(式での△exは△eの
ことである。) 例えば、温度センサRsは、第3図のものと同
様に、0℃で100Ω、1℃の温度変化で抵抗値が
0.4Ω変化するものとし、R11=100Ω,R12=R13
10KΩ,+V=+2Vとすると、温度センサRsに流
れるセンサ電流Is=0.2mA、電圧降下変化分△e
は0.08mV/℃となり、出力電圧の変化分△Eは
100倍の8mV/℃となる。したがつて、第3図の
温度センサRsに流すセンサ電流よりもはるかに
小さな電流によつても、大きな出力電圧を得るこ
とができる。
Since A is an ideal operational amplifier, ex=ey always
The feedback current If is increased or decreased until ex = ey is always maintained. (Commonly known as imaginary shot) Therefore, replace ey in the formula with ex, and consider the change in E (amplification degree) with respect to the change in ex as △E/△ex=(R 11 + R 13 )/R 11 ... be able to. (△ex in the formula means △e.) For example, the temperature sensor R s is 100Ω at 0°C, and the resistance value changes with a temperature change of 1°C, as in the one in Figure 3.
Assume that the resistance changes by 0.4Ω, R 11 = 100Ω, R 12 = R 13 =
Assuming 10KΩ, +V = +2V, sensor current I s flowing through temperature sensor R s = 0.2 mA, voltage drop change △e
is 0.08mV/℃, and the change in output voltage △E is
It becomes 8mV/℃ which is 100 times higher. Therefore, a large output voltage can be obtained even with a current much smaller than the sensor current flowing through the temperature sensor R s shown in FIG.

なお、出力端子t1がアースされたシングルエン
ド型であるため、次段における処理、例えばA/
D変換或いは増幅などを容易に行うことができ
る。
Note that since the output terminal t1 is a single-ended type that is grounded, processing in the next stage, such as A/
D conversion or amplification can be easily performed.

(考案の効果) 以上説明したように、本考案によれば、温度セ
ンサと第2の抵抗を直列に接続して、該温度セン
サを電源の一端に、該第2の抵抗を電源の他端
に、それぞれ接続し、第1の抵抗と第3の抵抗を
直列に接続して、電源電圧と出力端子間の出力電
圧との差が該直列回路に印加されるように、該第
1の抵抗を前記電源の一端に、該第3の抵抗を前
記出力端子の一端に、それぞれ接続し、前記温度
センサと前記第2の抵抗の接続点を演算増幅器の
非反転入力端に接続し、前記第1の抵抗と前記第
3の抵抗の接続点を前記演算増幅器の反転入力端
に接続し、前記第3の抵抗に接続された前記出力
端子の一端を前記演算増幅器の出力端に接続し、
前記第1の抵抗に対する前記第3の抵抗の比を大
きく設定し、以て、温度センサでの電圧降下変化
分を演算増幅器により非反転増幅するようにした
から、センサ電流が微小な場合でも、1℃の温度
変化に伴なう出力電圧の変化分を大きくすること
ができる。また、出力はシングルエンド型になる
ので、後の処理をし易くすることができる。
(Effect of the invention) As explained above, according to the invention, a temperature sensor and a second resistor are connected in series, the temperature sensor is connected to one end of the power supply, and the second resistor is connected to the other end of the power supply. the first resistor and the third resistor are connected in series so that the difference between the power supply voltage and the output voltage between the output terminals is applied to the series circuit. is connected to one end of the power supply, the third resistor is connected to one end of the output terminal, a connection point between the temperature sensor and the second resistor is connected to a non-inverting input terminal of an operational amplifier, and the third resistor is connected to one end of the output terminal. A connection point between the first resistor and the third resistor is connected to an inverting input terminal of the operational amplifier, and one end of the output terminal connected to the third resistor is connected to an output terminal of the operational amplifier,
Since the ratio of the third resistor to the first resistor is set large and the change in voltage drop at the temperature sensor is non-invertingly amplified by the operational amplifier, even when the sensor current is small, The amount of change in output voltage due to a temperature change of 1° C. can be increased. Furthermore, since the output is of a single-ended type, subsequent processing can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す回路図、第2
図は同じく特性図、第3図は従来の温度センサ回
路を示す回路図である。 Rs……温度センサ、R11……第1の抵抗、R12
……第2の抵抗、R13……第3の抵抗、A……演
算増幅器、+V……電源、t1,t2……出力端子、
X,Y……接続点。
Figure 1 is a circuit diagram showing one embodiment of the present invention;
This figure is also a characteristic diagram, and FIG. 3 is a circuit diagram showing a conventional temperature sensor circuit. R s ... Temperature sensor, R 11 ... First resistor, R 12
... Second resistor, R 13 ... Third resistor, A ... Operational amplifier, +V ... Power supply, t 1 , t 2 ... Output terminal,
X, Y...Connection point.

Claims (1)

【実用新案登録請求の範囲】 温度センサと第2の抵抗を直列に接続して、該
温度センサを電源の一端に、該第2の抵抗を電源
の他端に、それぞれ接続し、 第1の抵抗と第3の抵抗を直列に接続して、電
源電圧と出力端子間の出力電圧との差が該直列回
路に印加されるように、該第1の抵抗を前記電源
の一端に、該第3の抵抗を前記出力端子の一端
に、それぞれ接続し、 前記温度センサと前記第2の抵抗の接続点を演
算増幅器の非反転入力端に接続し、前記第1の抵
抗と前記第3の抵抗の接続点を前記演算増幅器の
反転入力端に接続し、 前記第3の抵抗に接続された前記出力端子の一
端を前記演算増幅器の出力端に接続し、 前記第1の抵抗に対する前記第3の抵抗の比を
大きく設定した温度センサ回路。
[Claims for Utility Model Registration] A temperature sensor and a second resistor are connected in series, the temperature sensor is connected to one end of the power supply, and the second resistor is connected to the other end of the power supply, A resistor and a third resistor are connected in series, and the first resistor is connected to one end of the power supply, and the third resistor is connected to one end of the power supply so that the difference between the power supply voltage and the output voltage between the output terminals is applied to the series circuit. 3 resistors are each connected to one end of the output terminal, a connection point between the temperature sensor and the second resistor is connected to a non-inverting input terminal of an operational amplifier, and the first resistor and the third resistor are connected to one end of the output terminal. is connected to the inverting input terminal of the operational amplifier; one end of the output terminal connected to the third resistor is connected to the output terminal of the operational amplifier; A temperature sensor circuit with a large resistance ratio.
JP9421287U 1987-06-19 1987-06-19 Expired - Lifetime JPH0518677Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9421287U JPH0518677Y2 (en) 1987-06-19 1987-06-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9421287U JPH0518677Y2 (en) 1987-06-19 1987-06-19

Publications (2)

Publication Number Publication Date
JPS6428U JPS6428U (en) 1989-01-05
JPH0518677Y2 true JPH0518677Y2 (en) 1993-05-18

Family

ID=30957453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9421287U Expired - Lifetime JPH0518677Y2 (en) 1987-06-19 1987-06-19

Country Status (1)

Country Link
JP (1) JPH0518677Y2 (en)

Also Published As

Publication number Publication date
JPS6428U (en) 1989-01-05

Similar Documents

Publication Publication Date Title
JPH0344447B2 (en)
US2813934A (en) Transistor amplifier
JPH0518677Y2 (en)
JPH0770935B2 (en) Differential current amplifier circuit
JP2002111410A (en) Improved slew rate for amplification circuit
US3958135A (en) Current mirror amplifiers
JPS58166115U (en) Amplifier circuit with two transistors
JPS6213844B2 (en)
US4038566A (en) Multiplier circuit
JPS62173807A (en) Constant current source bias circuit
JPS62227204A (en) Differential amplifier
JP3367875B2 (en) Logarithmic conversion circuit and transconductor using the same
JPH0463004A (en) Amplifier circuit
JPH0233387Y2 (en)
JPH01241207A (en) Gain variable amplifier
JP3258202B2 (en) Differential circuit
JPH0427214Y2 (en)
JPH0444406A (en) Dc amplifier
JPS6238336Y2 (en)
JPH0495406A (en) Differential amplifier circuit
JPH0346406A (en) Variable gain amplifier
JPS5826363Y2 (en) Thermocouple room temperature compensation circuit
JPH06109678A (en) Humidity detection circuit
JPS6322150B2 (en)
JPS63277984A (en) Temperature compensation type amplifying circuit for hole sensor