JPH05182524A - Dielectric porcelain composition for temperature compensation - Google Patents

Dielectric porcelain composition for temperature compensation

Info

Publication number
JPH05182524A
JPH05182524A JP4018467A JP1846792A JPH05182524A JP H05182524 A JPH05182524 A JP H05182524A JP 4018467 A JP4018467 A JP 4018467A JP 1846792 A JP1846792 A JP 1846792A JP H05182524 A JPH05182524 A JP H05182524A
Authority
JP
Japan
Prior art keywords
weight
parts
temperature
porcelain composition
dielectric porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4018467A
Other languages
Japanese (ja)
Other versions
JP3291748B2 (en
Inventor
Yoshihiro Yoshimoto
本 義 弘 吉
Yasunobu Yoneda
田 康 信 米
Yukio Sakabe
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP01846792A priority Critical patent/JP3291748B2/en
Publication of JPH05182524A publication Critical patent/JPH05182524A/en
Application granted granted Critical
Publication of JP3291748B2 publication Critical patent/JP3291748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To provide a dielectric porcelain composition for temperature compensation of excellent characteristic by sintering, allowing no reduction, at a low temperature of 1050 deg.C or less in a neutral or reductive environment of low oxygen partial pressure. CONSTITUTION:A dielectric porcelain composition for temperature compensation contains 22-43 parts by weight of TiO2, 38-58 parts by weight of ZrO2, and 9-26 parts by weight of SnO2 as a main component, and contains 5-35 parts by weight of a metallic oxide including at least one kind of the metallic oxide selected from B2O3, SiO2, and LiO2 as a sub-component which is added to 100 parts by weight of main component. The dielectric porcelain composition has 50ppm/ deg.C or less of temperature coefficient of dielectric constant in absolute value 2500 or more of Q value at 1MHz, and 1X10<12>OMEGAcm or more of specific resistance value at 20 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は温度補償用誘電体磁器
組成物に関し、特にたとえば積層コンデンサ,積層LC
フィルタの誘電体磁器として用いられる温度補償用誘電
体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensating dielectric ceramic composition, and more particularly, for example, a laminated capacitor and a laminated LC.
The present invention relates to a dielectric ceramic composition for temperature compensation used as a dielectric ceramic of a filter.

【0002】[0002]

【従来の技術】従来、この種の温度補償用誘電体磁器組
成物としては、MgTiO3 −CaTiO3 系の磁器組
成物が用いられていた。
2. Description of the Related Art Heretofore, as this type of temperature compensating dielectric porcelain composition, a MgTiO 3 —CaTiO 3 system porcelain composition has been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、MgT
iO3 −CaTiO3 系の磁器組成物では、その焼結温
度が1300℃以上と高く、さらに、中性または還元性
の低酸素分圧下で焼成した場合に磁器が還元されて半導
体化するという問題点を有していた。
However, MgT
The iO 3 -CaTiO 3 -based porcelain composition has a high sintering temperature of 1300 ° C. or higher, and when calcinated under a neutral or reducing low oxygen partial pressure, the porcelain is reduced and becomes a semiconductor. Had a point.

【0004】そのため、内部電極の材料として、誘電体
磁器材料が焼結する温度で溶融せず、かつ、誘電体磁器
材料が半導体化しない高い酸素分圧下で焼成されても酸
化されない金属を用いなければならない。このため、従
来の材料を積層コンデンサの誘電体磁器として用いる際
には、内部電極の材料として高融点かつ高温で酸化しに
くい高価な白金やパラジウムを使用しなければならず、
積層コンデンサの低価格化の大きな妨げとなっていた。
Therefore, as a material for the internal electrodes, a metal which is not melted at a temperature at which the dielectric ceramic material is sintered and which is not oxidized even when fired under a high oxygen partial pressure at which the dielectric ceramic material does not become a semiconductor must be used. I have to. Therefore, when using a conventional material as a dielectric ceramic of a multilayer capacitor, expensive platinum or palladium, which has a high melting point and is difficult to oxidize at high temperature, must be used as a material for the internal electrodes.
This has been a major obstacle to lowering the price of multilayer capacitors.

【0005】そこで、上述の問題点を解決するために、
内部電極の材料を高価な貴金属からたとえばニッケルや
銅などの安価な卑金属にすることが望まれていた。しか
し、このような卑金属を内部電極の材料として使用し、
従来の条件下で焼成すると、電極材料が酸化したり溶融
したりしてしまう。そのため、このような卑金属を内部
電極の材料として使用するために、酸素分圧の低い中性
または還元性の雰囲気中において低温で焼成しても半導
体化せず、コンデンサ用の誘電体磁器材料として充分な
比抵抗と優れた誘電特性とを有する誘電体磁器組成物が
必要とされていた。
Therefore, in order to solve the above problems,
It has been desired to change the material of the internal electrodes from an expensive noble metal to an inexpensive base metal such as nickel or copper. However, using such a base metal as a material for the internal electrodes,
If fired under conventional conditions, the electrode material will oxidize and melt. Therefore, in order to use such a base metal as a material for the internal electrode, even if it is fired at a low temperature in a neutral or reducing atmosphere with a low oxygen partial pressure, it does not become a semiconductor, and as a dielectric ceramic material for a capacitor. There has been a need for a dielectric porcelain composition having sufficient specific resistance and excellent dielectric properties.

【0006】この種の問題点を解決するための誘電体磁
器組成物が、特開平1−102806号公報などに開示
されている。この誘電体磁器組成物は、酸素分圧の低い
中性または還元性の雰囲気中において焼成が可能であ
る。したがって、この誘電体磁器組成物を使用して、ニ
ッケルや銅などの卑金属を内部電極の材料とする温度補
償用積層コンデンサを提供することができる。しかし、
この誘電体磁器組成物は、焼成温度や誘電体の温度係数
に関しては、上述の問題点を解決するものの、Q値は1
MHzで2000以下と小さかった。
A dielectric ceramic composition for solving this kind of problem is disclosed in JP-A-1-102806. This dielectric ceramic composition can be fired in a neutral or reducing atmosphere having a low oxygen partial pressure. Therefore, using this dielectric ceramic composition, it is possible to provide a temperature compensating multilayer capacitor using a base metal such as nickel or copper as a material for the internal electrodes. But,
Although this dielectric ceramic composition solves the above-mentioned problems with respect to the firing temperature and the temperature coefficient of the dielectric, it has a Q value of 1
It was as small as 2000 or less at MHz.

【0007】それゆえに、この発明の主たる目的は、酸
素分圧の低い中性または還元性の雰囲気中において、1
050℃以下の低温で還元されることなく焼結し、か
つ、誘電率の温度係数の絶対値が50ppm/℃以下、
Q値が1MHzで2500以上、20℃における比抵抗
値が1×1012Ωcm以上である誘電体磁器を得ること
ができ、銅などの卑金属を内部電極として使用できる温
度補償用誘電体磁器組成物を提供することである。
Therefore, the main object of the present invention is to achieve the following effects in a neutral or reducing atmosphere with a low oxygen partial pressure:
Sintered at a low temperature of 050 ° C or lower without being reduced, and the absolute value of the temperature coefficient of the dielectric constant is 50 ppm / ° C or lower,
A dielectric ceramic composition for temperature compensation, which makes it possible to obtain a dielectric ceramic having a Q value of 2500 or more at 1 MHz and a specific resistance value of 1 × 10 12 Ωcm or more at 20 ° C. and using a base metal such as copper as an internal electrode. Is to provide.

【0008】[0008]

【課題を解決するための手段】この発明は、TiO2
2〜43重量部、ZrO2 38〜58重量部、SnO2
9〜26重量部を主成分として含み、主成分100重量
部に対して、副成分として、B2 3 ,SiO2 ,Li
2 Oの中から選ばれる少なくとも1種類を含む金属酸化
物を5〜35重量部添加した、温度補償用誘電体磁器組
成物である。
The present invention is directed to TiO 2 2
2 to 43 parts by weight, ZrO 2 38 to 58 parts by weight, SnO 2
9 to 26 parts by weight as a main component, and as main components 100 parts by weight, B 2 O 3 , SiO 2 , Li as secondary components.
A dielectric ceramic composition for temperature compensation, comprising 5 to 35 parts by weight of a metal oxide containing at least one selected from 2 O.

【0009】[0009]

【発明の効果】この発明によれば、酸素分圧の低い中性
または還元性の雰囲気中において、1050℃以下の低
温で還元されることなく焼結し、静電容量の温度係数の
絶対値が50ppm/℃以下で、Q値が1MHzで25
00以上であり、20℃における比抵抗値が1×1012
Ωcm以上の特性を有する誘電体磁器を得ることができ
る温度補償用誘電体磁器組成物が得られる。
According to the present invention, sintering is performed in a neutral or reducing atmosphere having a low oxygen partial pressure at a low temperature of 1050 ° C. or less without being reduced, and the absolute value of the temperature coefficient of capacitance is obtained. Is 50 ppm / ° C or less and the Q value is 25 at 1 MHz.
And a specific resistance value at 20 ° C. of 1 × 10 12
A temperature-compensating dielectric porcelain composition capable of obtaining a dielectric porcelain having a characteristic of Ωcm or more is obtained.

【0010】したがって、この温度補償用誘電体磁器組
成物を積層コンデンサ用材料として用いれば、銅など卑
金属を内部電極として使用することが可能となる。その
ため、積層コンデンサの大容量化に伴う電極のコストの
増大を解消することができ、低価格の積層コンデンサを
提供することができる。また、この温度補償用誘電体磁
器組成物から得られる誘電体磁器は、Q値が高く、誘電
率の温度係数が小さい。そのため、銀,銅,金などの導
電率の高い電極を用いることによって、マイクロ波領域
で使用される積層LCフィルタ,RFモジュールなどの
材料として使用することができる。
Therefore, if this temperature-compensating dielectric ceramic composition is used as a material for a laminated capacitor, a base metal such as copper can be used as an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and it is possible to provide a low-cost multilayer capacitor. Further, the dielectric ceramic obtained from this temperature-compensating dielectric ceramic composition has a high Q value and a small temperature coefficient of the dielectric constant. Therefore, by using an electrode having a high conductivity such as silver, copper or gold, it can be used as a material for a laminated LC filter, an RF module or the like used in the microwave region.

【0011】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments with reference to the drawings.

【0012】[0012]

【実施例】まず、主成分の出発原料として、純度99.
5%以上のTiO2 ,ZrO2 ,SnO2 をそれぞれ表
1に示す配合比になるように配合した。
EXAMPLE First, as a starting material for the main component, a purity of 99.
5% or more of TiO 2 , ZrO 2 , and SnO 2 were compounded so as to have the compounding ratios shown in Table 1, respectively.

【0013】[0013]

【表1】 [Table 1]

【0014】また、副成分の材料として、B2 3 ,S
iO2 ,Li2 O,BaO,ZnO,CuO,MnO,
CaOを準備した。これらの材料を表2に示す割合にな
るように秤量し、それらをボールミルで湿式混合し、粉
砕した後、蒸発乾燥し、自然雰囲気中において1000
℃で溶融させた。さらに、溶融した材料をボールミルで
1μm以下に湿式粉砕した後、蒸発乾燥させて、A系列
とB系列との2種類の副成分を得た。
Further, B 2 O 3 and S are used as materials for the subcomponents.
iO 2 , Li 2 O, BaO, ZnO, CuO, MnO,
CaO was prepared. These materials were weighed so as to have the ratio shown in Table 2, wet-mixed with a ball mill, pulverized, and then evaporated to dryness.
Melted at ° C. Further, the melted material was wet pulverized to 1 μm or less by a ball mill and then evaporated and dried to obtain two kinds of subcomponents of A series and B series.

【0015】[0015]

【表2】 [Table 2]

【0016】得られた主成分と副成分とを表1に示す割
合となるように配合し、配合原料を得た。
The obtained main component and subcomponents were blended in the proportions shown in Table 1 to obtain blended raw materials.

【0017】この配合原料に結合材として酢酸ビニル系
バインダを5重量部加え、ボールミルで湿式混合して混
合物を得た。さらに、この混合物を蒸発乾燥した後、整
粒して粉末原料を得た。得られた粉末原料を2ton/
cm2 の圧力で直径20mm,厚さ1.0mmの円板状
に成形して成形物を得た。
5 parts by weight of a vinyl acetate binder as a binder was added to this blended raw material and wet mixed in a ball mill to obtain a mixture. Further, this mixture was evaporated and dried, and then sized to obtain a powder raw material. 2ton /
A disk-shaped product having a diameter of 20 mm and a thickness of 1.0 mm was formed at a pressure of cm 2 to obtain a formed product.

【0018】次に、この円板状の成形物をジルコニア粉
末を敷粉としたアルミナ質の箱に入れ、自然雰囲気中に
おいて500℃で2時間酢酸ビニル系バインダを燃焼さ
せた。その後、体積比率でN2 :H2 =3:100の還
元ガス雰囲気中において、円板状の成形物を900〜1
050℃で2時間焼成して、素子を得た。さらに、得ら
れた素子の両主面に、In−Ga合金を塗布して電極を
形成し、試料(コンデンサ)を作製した。
Next, the disk-shaped molded product was placed in an alumina-based box having zirconia powder as a floor powder, and a vinyl acetate binder was burned for 2 hours at 500 ° C. in a natural atmosphere. Then, in a reducing gas atmosphere with a volume ratio of N 2 : H 2 = 3: 100, the disc-shaped molded product was 900-1
A device was obtained by firing at 050 ° C. for 2 hours. Further, an In—Ga alloy was applied to both main surfaces of the obtained device to form electrodes, and a sample (capacitor) was produced.

【0019】そして、得られた試料について、誘電率
ε,Q値,誘電率の温度係数α(ppm/℃),20℃
における比抵抗ρ20(Ωcm)の各特性を測定した。
With respect to the obtained sample, dielectric constant ε, Q value, temperature coefficient of dielectric constant α (ppm / ° C.), 20 ° C.
Was measured for each characteristic of specific resistance ρ 20 (Ωcm).

【0020】なお、誘電率εおよびQ値は周波数1MH
z,電圧1Vrms,温度20℃の条件下で測定した。
また、誘電率の温度係数α(ppm/℃)は、20℃に
おける静電容量C20および85℃における静電容量C85
から次式によって求めた。 α(ppm/℃)={(C85−C20)/C20}×{1/(85−20)} ×106
The dielectric constant ε and the Q value have a frequency of 1 MH.
It was measured under the conditions of z, voltage 1 Vrms, and temperature 20 ° C.
Further, the temperature coefficient α (ppm / ° C.) of the dielectric constant is the electrostatic capacitance C 20 at 20 ° C. and the electrostatic capacitance C 85 at 85 ° C.
It was calculated from the following formula. α (ppm / ° C.) = {(C 85 −C 20 ) / C 20 } × {1 / (85−20)} × 10 6

【0021】さらに、20℃における比抵抗ρ20(Ωc
m)は、20℃において500Vの直流電圧を印加した
ときに流れる電流値から求めた。そして、これらの結果
を表3に示した。
Furthermore, the specific resistance at 20 ° C. ρ 20 (Ωc
m) was obtained from the value of the current flowing when a DC voltage of 500 V was applied at 20 ° C. The results are shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】なお、表1および表3中*印を付したもの
はこの発明の範囲外のものであり、それ以外はこの発明
の範囲内のものである。
Those marked with * in Tables 1 and 3 are outside the scope of the present invention, and others are within the scope of the present invention.

【0024】また、表1に示した各試料の主成分の組成
を図1中に3成分組成図で示した。この図面において○
印を付した数字は各試料番号を示す。
The composition of the main component of each sample shown in Table 1 is shown in FIG. 1 by a three-component composition diagram. In this drawing
The number with a mark shows each sample number.

【0025】さらに、図1中には、この発明の組成物の
主成分の組成比を示す領域を、組成点A,B,C,D,
EおよびFを頂点とした多角形で示した。
Further, in FIG. 1, regions showing the composition ratio of the main components of the composition of the present invention are represented by composition points A, B, C, D, and
It is shown by a polygon with E and F as vertices.

【0026】そして、この発明にかかる組成物は、主成
分100重量部に対して、副成分として、B2 3 ,S
iO2 ,Li2 Oの中から選ばれる少なくとも1種類を
含む金属酸化物が5〜35重量部添加される。
The composition according to the present invention contains 100 parts by weight of the main component as an auxiliary component such as B 2 O 3 and S.
5 to 35 parts by weight of a metal oxide containing at least one selected from iO 2 and Li 2 O is added.

【0027】次に、この発明にかかる温度補償用誘電体
磁器組成物の成分の数値を上述のように限定した理由に
ついて説明する。
Next, the reason why the numerical values of the components of the dielectric ceramic composition for temperature compensation according to the present invention are limited as described above will be explained.

【0028】TiO2 が22重量部未満では、焼結性が
悪く、1050℃の温度で焼成しても、緻密な焼結体が
得られないので好ましくない(試料番号17参照)。ま
た、TiO2 が43重量部を超えると、温度係数が大き
くなり、かつ比抵抗が1012Ωcm未満となるので好ま
しくない(試料番号1参照)。
If the amount of TiO 2 is less than 22 parts by weight, the sinterability is poor and a dense sintered body cannot be obtained even if fired at a temperature of 1050 ° C. (see Sample No. 17). Further, if TiO 2 exceeds 43 parts by weight, the temperature coefficient becomes large and the specific resistance becomes less than 10 12 Ωcm, which is not preferable (see Sample No. 1).

【0029】ZrO2 が38重量部未満では、温度係数
が大きくなるので好ましくない。また、ZrO2 が58
重量部を超えると、焼結性が悪く、1050℃の温度で
焼成しても、緻密な焼結体が得られないので好ましくな
い(試料番号11参照)。
When ZrO 2 is less than 38 parts by weight, the temperature coefficient becomes large, which is not preferable. Also, ZrO 2 is 58
If the amount is more than parts by weight, the sinterability is poor and a dense sintered body cannot be obtained even if fired at a temperature of 1050 ° C. (see Sample No. 11).

【0030】SnO2 が9重量部未満であるか、あるい
は26重量部を超えると、温度係数が大きくなり、かつ
比抵抗が1012Ωcm未満となるので好ましくない(試
料番号14参照)。
If SnO 2 is less than 9 parts by weight or more than 26 parts by weight, the temperature coefficient becomes large and the specific resistance becomes less than 10 12 Ωcm, which is not preferable (see Sample No. 14).

【0031】主成分100重量部に対して、A系列の副
成分の添加量が5重量部未満では、焼結性が悪く、10
50℃の温度で焼成しても、緻密な焼結体が得られない
ので好ましくない(試料番号18参照)。また、A系列
の副成分の添加量が35重量部を超えると、Q値が25
00未満となるので好ましくない(試料番号21参
照)。
If the amount of the A series subcomponent added is less than 5 parts by weight with respect to 100 parts by weight of the main component, the sinterability is poor and 10
Even if fired at a temperature of 50 ° C., a dense sintered body cannot be obtained, which is not preferable (see Sample No. 18). Further, when the amount of the auxiliary component of the A series exceeds 35 parts by weight, the Q value becomes 25.
It is less than 00, which is not preferable (see Sample No. 21).

【0032】主成分100重量部に対して、B系列の副
成分の添加量が5重量部未満では、焼結性が悪く、10
50℃の温度で焼成しても、緻密な焼結体が得られない
ので好ましくない。また、B系列の副成分の添加量が3
5重量部を超えると、Q値が2500未満となり、かつ
比抵抗が1012Ωcm未満となるので好ましくない(試
料番号25参照)。
If the amount of the B series subcomponent added is less than 5 parts by weight with respect to 100 parts by weight of the main component, the sinterability is poor and 10
Even if it is fired at a temperature of 50 ° C., a dense sintered body cannot be obtained, which is not preferable. Also, the addition amount of the B series subcomponent is 3
When it exceeds 5 parts by weight, the Q value becomes less than 2500 and the specific resistance becomes less than 10 12 Ωcm, which is not preferable (see Sample No. 25).

【0033】なお、上述の実施例において副成分として
金属酸化物の粉末を使用したが、それ以外に溶液を添加
してもよい。また、副成分は各素材を溶融・粉砕によっ
てガラス化して用いたが、素材のまま主成分に添加して
もよい。
Although the metal oxide powder was used as a subcomponent in the above-mentioned embodiment, a solution may be added in addition to the powder. Further, although the sub-components are used by virtue of melting and pulverizing each material to be vitrified, they may be added to the main component as they are.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の組成物の主成分の配合比を示す3成
分組成図である。
FIG. 1 is a three-component composition diagram showing the mixing ratio of the main components of the composition of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 TiO2 22〜43重量部、ZrO2
8〜58重量部、SnO2 9〜26重量部を主成分とし
て含み、 前記主成分100重量部に対して、副成分として、B2
3 ,SiO2 ,Li2 Oの中から選ばれる少なくとも
1種類を含む金属酸化物を5〜35重量部添加した、温
度補償用誘電体磁器組成物。
1. 22 to 43 parts by weight of TiO 2 and ZrO 2 3
8 to 58 parts by weight, SnO 2 9 to 26 parts by weight as a main component, and B 2 as a subcomponent with respect to 100 parts by weight of the main component.
O 3, SiO 2, Li 2 metal oxide containing at least one selected from among O were added 5 to 35 parts by weight, temperature compensating dielectric ceramic composition.
JP01846792A 1992-01-06 1992-01-06 Dielectric ceramic composition for temperature compensation Expired - Lifetime JP3291748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01846792A JP3291748B2 (en) 1992-01-06 1992-01-06 Dielectric ceramic composition for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01846792A JP3291748B2 (en) 1992-01-06 1992-01-06 Dielectric ceramic composition for temperature compensation

Publications (2)

Publication Number Publication Date
JPH05182524A true JPH05182524A (en) 1993-07-23
JP3291748B2 JP3291748B2 (en) 2002-06-10

Family

ID=11972449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01846792A Expired - Lifetime JP3291748B2 (en) 1992-01-06 1992-01-06 Dielectric ceramic composition for temperature compensation

Country Status (1)

Country Link
JP (1) JP3291748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399723B2 (en) 2006-07-07 2008-07-15 Tdk Corporation Dielectric ceramic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399723B2 (en) 2006-07-07 2008-07-15 Tdk Corporation Dielectric ceramic material

Also Published As

Publication number Publication date
JP3291748B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JPH04218207A (en) Dielectric porcelain composition
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
JPH1143370A (en) Dielectric porcelain composition and ceramic electronic part using the dielectric porcelain composition
KR890004114B1 (en) Dielectric ceramic composition
KR900002516B1 (en) Low temperature sintered ceramic capacitor with a temperature compensating capacity
JPS6119005A (en) Nonreduced dielectric porcelain composition
KR900008777B1 (en) Ceramic capacitor method of manufacture
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JPH05182524A (en) Dielectric porcelain composition for temperature compensation
KR900002518B1 (en) Low temperature sintered ceramic capacitor with a temperature compensating capability
JP3089833B2 (en) Dielectric ceramic composition for temperature compensation
JPH05250916A (en) Nonreducing dielectric porcelain composition
JPH05182523A (en) Dielectric porcelain composition
JP2967440B2 (en) Dielectric ceramic composition for temperature compensation
JP2967438B2 (en) Dielectric ceramic composition for temperature compensation
US4988651A (en) Temperature compensating dielectric ceramic composition
JPH056710A (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JPH05166411A (en) Dielectric ceramic composition for temperature compensation
JP2568566B2 (en) Dielectric porcelain composition
JPH0815005B2 (en) Dielectric porcelain composition
JPH0517222A (en) Porcelain composition for temperature compensation
JPH0566332B2 (en)
JPH05128913A (en) Dielectric ceramic composition for temperature compensation
JPH01102805A (en) Dielectric porcelain compound for temperature compensation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10