JP2967438B2 - Dielectric ceramic composition for temperature compensation - Google Patents

Dielectric ceramic composition for temperature compensation

Info

Publication number
JP2967438B2
JP2967438B2 JP3180423A JP18042391A JP2967438B2 JP 2967438 B2 JP2967438 B2 JP 2967438B2 JP 3180423 A JP3180423 A JP 3180423A JP 18042391 A JP18042391 A JP 18042391A JP 2967438 B2 JP2967438 B2 JP 2967438B2
Authority
JP
Japan
Prior art keywords
composition
dielectric ceramic
temperature compensation
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3180423A
Other languages
Japanese (ja)
Other versions
JPH054865A (en
Inventor
本 義 弘 吉
田 康 信 米
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3180423A priority Critical patent/JP2967438B2/en
Publication of JPH054865A publication Critical patent/JPH054865A/en
Application granted granted Critical
Publication of JP2967438B2 publication Critical patent/JP2967438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は温度補償用誘電体磁器
組成物に関し、特にたとえば、積層コンデンサの誘電体
磁器の材料として用いられる温度補償用誘電体磁器組成
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensating dielectric ceramic composition, and more particularly to a temperature-compensating dielectric ceramic composition used as a material for a dielectric ceramic of a multilayer capacitor.

【0002】[0002]

【従来の技術】従来、この種の温度補償用誘電体磁器組
成物としては、MgTiO3 −CaTiO3 系の組成物
があった。
2. Description of the Related Art Heretofore, as this kind of dielectric ceramic composition for temperature compensation, there has been an MgTiO 3 —CaTiO 3 based composition.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、MgT
iO3 −CaTiO3 系の組成物を用いた磁器では、そ
の焼成温度が1300℃以上と高く、さらに中性または
還元性の低酸素分圧下で焼成すると還元され、半導体化
するという性質を有していた。そのため、このような組
成物を積層コンデンサなどの材料として使用した場合、
内部電極の材料として、誘電体磁器材料の焼結する温度
で溶融せず、かつ誘電体磁器材料を半導体化しない高い
酸素分圧下でも酸化されない、たとえばPtやPdなど
の貴金属を使用しなければならなかった。そのため、製
造される積層コンデンサの低価格化の大きな妨げとなっ
ていた。
However, MgT
The iO 3 -CaTiO 3 based ceramics with the composition of, the firing temperature is as high as 1300 ° C. or more, is reduced further calcined at low oxygen partial pressure neutral or reducing, has the property of semiconductive I was Therefore, when such a composition is used as a material for a multilayer capacitor or the like,
As a material for the internal electrode, a noble metal such as Pt or Pd, which does not melt at the temperature at which the dielectric ceramic material sinters and does not oxidize even under a high oxygen partial pressure that does not turn the dielectric ceramic material into a semiconductor, must be used. Did not. Therefore, it has been a great hindrance to reducing the price of the manufactured multilayer capacitor.

【0004】そこで、上述の問題を解決するために、た
とえばNiやCuなどの安価な卑金属を内部電極の材料
として使用することが望まれていた。しかしながら、こ
のような卑金属を内部電極用材料として使用し、従来の
酸化性雰囲気の条件下で焼成すると、電極材料が酸化し
たり溶融したりしてしまう。そのため、このような卑金
属を内部電極用材料として使用するために、酸素分圧の
低い中性または還元性の雰囲気中において低温で焼成し
ても半導体化せず、コンデンサ用の誘電体材料として十
分な比抵抗と優れた誘電特性とを有する誘電体材料が必
要とされていた。
Therefore, in order to solve the above-mentioned problem, it has been desired to use an inexpensive base metal such as Ni or Cu as a material for the internal electrodes. However, when such a base metal is used as a material for an internal electrode and fired under a conventional oxidizing atmosphere, the electrode material is oxidized or melted. Therefore, since such a base metal is used as a material for an internal electrode, it does not turn into a semiconductor even when fired at a low temperature in a neutral or reducing atmosphere having a low oxygen partial pressure, and is sufficiently used as a dielectric material for a capacitor. There is a need for a dielectric material having an excellent specific resistance and excellent dielectric properties.

【0005】この種の問題を解決するための誘電体磁器
組成物が、特開平1−102806号公報などに開示さ
れている。この誘電体磁器組成物は酸素分圧の低い中性
および還元性雰囲気中において焼成が可能であるので、
これを使用してNi,Cuなどの卑金属を内部電極とす
る温度補償用積層コンデンサを作製することができる。
しかし、特開平1−102806号公報に開示されてい
る誘電体磁器組成物では、焼成温度や誘電率の温度係数
に関しては上述の問題点を解決できるが、Q値は1MH
zで2000以下と小さい。
A dielectric porcelain composition for solving this kind of problem is disclosed in Japanese Patent Application Laid-Open No. 1-102806. Since this dielectric porcelain composition can be fired in neutral and reducing atmospheres with low oxygen partial pressure,
Using this, a multilayer capacitor for temperature compensation using a base metal such as Ni or Cu as an internal electrode can be manufactured.
However, the dielectric porcelain composition disclosed in JP-A-1-102806 can solve the above-mentioned problems with respect to the firing temperature and the temperature coefficient of the dielectric constant, but has a Q value of 1 MHz.
It is as small as 2000 or less in z.

【0006】それゆえに、この発明の主たる目的は、酸
素分圧の低い中性または還元性の雰囲気中において、1
050℃以下の低温で焼結し、かつ還元されることがな
く、静電容量の温度係数の絶対値が100ppm/℃以
下、Q値が2500以上、20℃における比抵抗が1×
1013Ωcm以上であり、Cuなどの安価な金属を内部
電極用材料として使用できる、温度補償用誘電体磁器組
成物を提供することである。
[0006] Therefore, the main object of the present invention is to provide a neutral or reducing atmosphere having a low oxygen partial pressure.
Sintered at a low temperature of 050 ° C. or less, without reduction, the absolute value of the temperature coefficient of capacitance is 100 ppm / ° C. or less, the Q value is 2500 or more, and the specific resistance at 20 ° C. is 1 ×
An object of the present invention is to provide a dielectric ceramic composition for temperature compensation, which is 10 13 Ωcm or more and can use an inexpensive metal such as Cu as a material for an internal electrode.

【0007】[0007]

【課題を解決するための手段】この発明は、酸化バリウ
ム,酸化珪素,酸化ジルコニウムおよび酸化アルミニウ
ムを含み、酸化バリウムの含有量をBaOに換算してX
重量部とし、酸化ジルコニウムおよび酸化アルミニウム
の含有量を{(ZrO2 1-a (Al2 3 a }(た
だし、0≦a≦0.5)に換算してY重量部とし、酸化
珪素の含有量をSiO2 に換算してZ重量部としたとき
(ただし、X+Y+Z=100)、3成分組成図におい
て、(X,Y,Z)が、A(50, 2.5,47.
5),B(50, 30, 20),C(15, 6
5, 20),D(15, 2.5, 82.5)の各
組成点を頂点とする多角形A,B,C,Dで囲まれた範
囲にある主成分に対して、副成分としてTiO2 をV重
量部(ただし、0≦V≦10)、B2 3 をW重量部
(ただし、0<W≦5)添加した、温度補償用誘電体磁
器組成物である。
The present invention comprises barium oxide, silicon oxide, zirconium oxide and aluminum oxide, and converts the content of barium oxide to BaO by X
Parts by weight, and the content of zirconium oxide and aluminum oxide is converted into {(ZrO 2 ) 1 -a (Al 2 O 3 ) a } (where 0 ≦ a ≦ 0.5) to obtain Y parts by weight. When the silicon content is converted to SiO 2 and expressed as Z parts by weight (X + Y + Z = 100), in the three-component composition diagram, (X, Y, Z) is A (50, 2.5, 47.
5), B (50, 30, 20), C (15, 6)
5, 20) and D (15, 2.5, 82.5), the main components within the range surrounded by polygons A, B, C, and D having the vertices as subcomponents This is a dielectric ceramic composition for temperature compensation in which TiO 2 is added by V (where 0 ≦ V ≦ 10) and B 2 O 3 is added by W (where 0 <W ≦ 5).

【0008】[0008]

【発明の効果】この発明によれば、還元性雰囲気中にお
いて、1050℃以下の低温で焼結し、静電容量の温度
係数の絶対値が100ppm/℃以下で、Q値が250
0以上であり、20℃における比抵抗が1×1013Ωc
m以上の特性を有する温度補償用誘電体磁器組成物を得
ることができる。したがって、この温度補償用誘電体磁
器組成物を積層コンデンサ用材料として用いれば、Cu
などの卑金属を内部電極用材料として使用することが可
能となる。そのため、積層コンデンサの大容量化にとも
なう電極のコストの増大を解消することができ、低価格
の積層コンデンサを提供することができる。また、Q値
が高いために、マイクロ波領域で使用されるLCフィル
タ,RFモジュールなどの材料として使用することがで
きる。
According to the present invention, sintering is performed at a low temperature of 1050 ° C. or less in a reducing atmosphere, the absolute value of the temperature coefficient of capacitance is 100 ppm / ° C. or less, and the Q value is 250
0 or more, and the specific resistance at 20 ° C. is 1 × 10 13 Ωc
Thus, a dielectric ceramic composition for temperature compensation having characteristics of at least m can be obtained. Therefore, if this dielectric ceramic composition for temperature compensation is used as a material for a multilayer capacitor, Cu
Such a base metal can be used as a material for an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Further, since the Q value is high, it can be used as a material for an LC filter, an RF module, and the like used in a microwave region.

【0009】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0010】[0010]

【実施例】まず、主成分の出発原料となるBaCO3
ZrO2,Al2 3 ,SiO2 と、副成分となるTi
2 ,B2 3 を準備した。これらの原料を表1に示す
組成になるように秤量して、秤量物を得た。さらに、表
1に示す組成を3成分組成図上に表して、図1に示し
た。図1において、組成点A,B,C,Dで囲まれた部
分は、この発明の範囲内であることを示す。
EXAMPLE First, BaCO 3 , which is a starting material of a main component,
ZrO 2 , Al 2 O 3 , SiO 2 and Ti as a sub-component
O 2 and B 2 O 3 were prepared. These raw materials were weighed to have the composition shown in Table 1 to obtain a weighed material. Further, the compositions shown in Table 1 are shown on a three-component composition diagram and are shown in FIG. In FIG. 1, the portions surrounded by the composition points A, B, C, and D indicate that they are within the scope of the present invention.

【0011】[0011]

【表1】 [Table 1]

【0012】得られた秤量物をボールミルで16時間湿
式混合したのち、蒸発乾燥して混合粉末を得た。この混
合粉末を850℃で2時間仮焼し、これに結合剤として
酢酸ビニルを8重量部加え、再びボールミルで16時間
湿式混合,粉砕して粉砕物を得た。この粉砕物を蒸発乾
燥して整粒し、顆粒状の粉末を得た。このようにして得
られた粉末を、乾式プレス機で2ton/cm2 の圧力
で加圧し、直径20mm,厚さ1.0mmの円板状に成
形して成形物を得た。次に、この成形物をN2 −H2
ス雰囲気中で表2に示した温度条件で2時間焼成を行っ
て焼成物を得た。得られた焼成物の両面にIn−Ga合
金を塗布して電極を形成し、試料としてのコンデンサを
作製した。
The obtained weighed product was wet-mixed with a ball mill for 16 hours and then dried by evaporation to obtain a mixed powder. This mixed powder was calcined at 850 ° C. for 2 hours, 8 parts by weight of vinyl acetate was added as a binder, and the mixture was wet-mixed and pulverized again with a ball mill for 16 hours to obtain a pulverized product. The pulverized product was evaporated to dryness and sized to obtain a granular powder. The powder thus obtained was pressed with a dry press at a pressure of 2 ton / cm 2 and formed into a disc having a diameter of 20 mm and a thickness of 1.0 mm to obtain a molded product. Next, this molded product was fired in an N 2 -H 2 gas atmosphere under the temperature conditions shown in Table 2 for 2 hours to obtain a fired product. An In-Ga alloy was applied on both surfaces of the obtained fired product to form electrodes, and a capacitor as a sample was manufactured.

【0013】得られた試料について、誘電率ε,Q値,
静電容量の温度係数α(ppm/℃),20℃における
比抵抗ρ20(Ωcm)を測定した。なお、Q値について
は、1MHz,1Vrms,20℃の条件で測定した。
また、静電容量の温度係数α(ppm/℃)は、20℃
における静電容量C20および85℃における静電容量C
85から次式によって求めた。
For the obtained sample, the dielectric constant ε, Q value,
The temperature coefficient α (ppm / ° C.) of the capacitance and the specific resistance ρ 20 (Ωcm) at 20 ° C. were measured. The Q value was measured under the conditions of 1 MHz, 1 Vrms and 20 ° C.
The temperature coefficient α (ppm / ° C.) of the capacitance is 20 ° C.
C at 20 ° C. and C at 85 ° C.
From 85, it was obtained by the following equation.

【0014】[0014]

【数1】 (Equation 1)

【0015】さらに、20℃における比抵抗ρ20(Ωc
m)は、20℃において500Vの直流電圧を印加した
ときに流れる電流値から求めた。そして、これらの結果
を表2に示した。なお、表1および表2において、*印
を付したものはこの発明の範囲外のものであり、それ以
外はこの発明の範囲内のものである。
Further, the specific resistance at 20 ° C. ρ 20 (Ωc
m) was determined from a current value flowing when a DC voltage of 500 V was applied at 20 ° C. Table 2 shows the results. In Tables 1 and 2, those marked with * are out of the scope of the present invention, and the others are within the scope of the present invention.

【0016】[0016]

【表2】 [Table 2]

【0017】次に、この発明の温度補償用誘電体磁器組
成物の主成分の数値を限定した理由について説明する。
試料番号6のように、3成分組成図において、組成点A
およびBを結ぶ線分の外側の組成領域では、Q値が25
00以下となるので好ましくない。試料番号5のよう
に、3成分組成図において、組成点AおよびDを結ぶ線
分の外側の組成領域では、Q値が2500以下となり、
かつ比抵抗が1×1013を下回るので好ましくない。試
料番号7のように、3成分組成図において、組成点Bお
よびCを結ぶ線分の外側の組成領域では、1050℃の
温度で焼成しても緻密な焼結体が得られないので好まし
くない。試料番号8のように、3成分組成図において、
組成点CおよびDを結ぶ線分の外側の組成領域では、Q
値が2500以下となり、かつ比抵抗が1×1013を下
回り、しかも焼結磁器素体の表面上にガラス質が浮くの
で好ましくない。
Next, the reason why the numerical values of the main components of the dielectric ceramic composition for temperature compensation of the present invention are limited will be described.
As shown in sample No. 6, in the three-component composition diagram, the composition point A
In the composition region outside the line segment connecting B and B, the Q value is 25
00 or less, which is not preferable. As in the sample number 5, in the three-component composition diagram, the Q value is 2500 or less in the composition region outside the line connecting the composition points A and D,
In addition, the specific resistance is less than 1 × 10 13, which is not preferable. As in sample number 7, in the three-component composition diagram, in the composition region outside the line connecting the composition points B and C, even if fired at a temperature of 1050 ° C., a dense sintered body is not obtained, which is not preferable. . As shown in sample number 8, in the three-component composition diagram,
In the composition region outside the line connecting the composition points C and D, Q
The value is 2500 or less, the specific resistance is less than 1 × 10 13 , and the glassy material floats on the surface of the sintered ceramic body, which is not preferable.

【0018】試料番号13のように、{(ZrO2
1-a (Al2 3 a }のaが0.5より大きい場合、
1050℃で焼成しても緻密な焼結体が得られないので
好ましくない。試料番号16のように、TiO2 が10
重量部より大きい場合、1050℃の温度で焼成しても
緻密な焼結体が得られないので好ましくない。試料番号
17のように、B2 3 が0重量部の場合、Q値が25
00以下となるため好ましくない。試料番号19のよう
に、B2 3 が5重量部より大きい場合、Q値が250
0以下となり、かつ比抵抗が1×1013を下回るので好
ましくない。
As shown in sample No. 13, Δ (ZrO 2 )
1-a (Al 2 O 3 ) a } When a is greater than 0.5,
It is not preferable to fire at 1050 ° C. because a dense sintered body cannot be obtained. As shown in sample No. 16, TiO 2
When it is larger than the weight part, it is not preferable because a dense sintered body cannot be obtained even when firing at a temperature of 1050 ° C. When B 2 O 3 is 0 parts by weight as in sample No. 17, the Q value is 25.
It is not preferable because it becomes 00 or less. When B 2 O 3 is larger than 5 parts by weight as in Sample No. 19, the Q value is 250
0 or less, and the specific resistance is less than 1 × 10 13, which is not preferable.

【0019】それに対して、この発明によれば、還元性
雰囲気中において1050℃以下の低温で焼結し、静電
容量の温度係数の絶対値が100ppm/℃以下で、Q
値が2500以上であり、20℃における比抵抗が1×
1013Ωcm以上の特性を有する温度補償用誘電体磁器
組成物を得ることができる。したがって、この温度補償
用誘電体磁器組成物を積層コンデンサ用材料として用い
れば、Cuなどの卑金属を内部電極用材料として使用す
ることが可能となる。そのため、積層コンデンサの大容
量化にともなう電極のコストの増大を解消することがで
き、低価格の積層コンデンサを提供することができる。
また、Q値が高いために、マイクロ波領域で使用される
LCフィルタやRFモジュールなどの材料として使用す
ることができる。
On the other hand, according to the present invention, sintering is performed at a low temperature of 1050 ° C. or less in a reducing atmosphere, the absolute value of the temperature coefficient of capacitance is 100 ppm / ° C. or less,
Value is 2500 or more, and the specific resistance at 20 ° C. is 1 ×
A dielectric ceramic composition for temperature compensation having characteristics of 10 13 Ωcm or more can be obtained. Therefore, if this dielectric ceramic composition for temperature compensation is used as a material for a multilayer capacitor, a base metal such as Cu can be used as a material for an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor.
Further, since the Q value is high, it can be used as a material for an LC filter or an RF module used in a microwave region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の温度補償用誘電体磁器組成物の成分
の配合比の範囲を表す3成分組成図である。
FIG. 1 is a three-component composition diagram showing the range of the mixing ratio of the components of the dielectric ceramic composition for temperature compensation of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−102805(JP,A) 特開 昭63−55814(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-102805 (JP, A) JP-A-63-55814 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化バリウム,酸化珪素,酸化ジルコニ
ウムおよび酸化アルミニウムを含み、前記酸化バリウム
の含有量をBaOに換算してX重量部とし、前記酸化ジ
ルコニウムおよび前記酸化アルミニウムの含有量を
{(ZrO2 1-a (Al2 3 a }(ただし、0≦
a≦0.5)に換算してY重量部とし、前記酸化珪素の
含有量をSiO2 に換算してZ重量部としたとき(ただ
し、X+Y+Z=100)、3成分組成図において、
(X,Y,Z)が、 A(50, 2.5, 47.5) B(50, 30, 20) C(15, 65, 20) D(15, 2.5, 82.5) の各組成点を頂点とする多角形A,B,C,Dで囲まれ
た範囲にある主成分に対して、副成分としてTiO2
V重量部(ただし、0≦V≦10)、B2 3 をW重量
部(ただし、0<W≦5)添加した、温度補償用誘電体
磁器組成物。
A barium oxide, a silicon oxide, a zirconium oxide and an aluminum oxide, wherein the content of the barium oxide is converted into BaO to be X parts by weight, and the content of the zirconium oxide and the aluminum oxide is {(ZrO 2 ) 1-a (Al 2 O 3 ) a } (where 0 ≦
a ≦ 0.5) and Y parts by weight, and the silicon oxide content is converted to SiO 2 and Z parts by weight (where X + Y + Z = 100).
(X, Y, Z) is A (50, 2.5, 47.5) B (50, 30, 20) C (15, 65, 20) D (15, 2.5, 82.5) For the main component in the range surrounded by polygons A, B, C, and D having vertices at each composition point, TiO 2 is added as a sub-component by V parts by weight (provided that 0 ≦ V ≦ 10) and B 2 A dielectric ceramic composition for temperature compensation, to which W 3 parts by weight of O 3 is added (where 0 <W ≦ 5).
JP3180423A 1991-06-24 1991-06-24 Dielectric ceramic composition for temperature compensation Expired - Lifetime JP2967438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180423A JP2967438B2 (en) 1991-06-24 1991-06-24 Dielectric ceramic composition for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180423A JP2967438B2 (en) 1991-06-24 1991-06-24 Dielectric ceramic composition for temperature compensation

Publications (2)

Publication Number Publication Date
JPH054865A JPH054865A (en) 1993-01-14
JP2967438B2 true JP2967438B2 (en) 1999-10-25

Family

ID=16083005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180423A Expired - Lifetime JP2967438B2 (en) 1991-06-24 1991-06-24 Dielectric ceramic composition for temperature compensation

Country Status (1)

Country Link
JP (1) JP2967438B2 (en)

Also Published As

Publication number Publication date
JPH054865A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
JP2967438B2 (en) Dielectric ceramic composition for temperature compensation
JP2967440B2 (en) Dielectric ceramic composition for temperature compensation
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JP3089833B2 (en) Dielectric ceramic composition for temperature compensation
JPH0528448B2 (en)
JP3291748B2 (en) Dielectric ceramic composition for temperature compensation
JP2890865B2 (en) Dielectric ceramic composition for temperature compensation
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JP3120500B2 (en) Non-reducing dielectric porcelain composition
US4988651A (en) Temperature compensating dielectric ceramic composition
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JPH1095667A (en) Dielectric ceramic composition and ceramic capacitor
JP3385626B2 (en) Dielectric porcelain composition
JP3450919B2 (en) Dielectric ceramic composition for temperature compensation
JP3185331B2 (en) Non-reducing dielectric ceramic composition
JPH051565B2 (en)
JPH0528446B2 (en)
JPH01102806A (en) Dielectric porcelain compound for temperature compensation
JPH01102807A (en) Dielectric substance porcelain compound for temperature compensation
JPH06103604B2 (en) Dielectric ceramic composition for temperature compensation
JPH06103605B2 (en) Dielectric ceramic composition for temperature compensation
JPH0459265B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

EXPY Cancellation because of completion of term