JP3089833B2 - Dielectric ceramic composition for temperature compensation - Google Patents

Dielectric ceramic composition for temperature compensation

Info

Publication number
JP3089833B2
JP3089833B2 JP04162256A JP16225692A JP3089833B2 JP 3089833 B2 JP3089833 B2 JP 3089833B2 JP 04162256 A JP04162256 A JP 04162256A JP 16225692 A JP16225692 A JP 16225692A JP 3089833 B2 JP3089833 B2 JP 3089833B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
dielectric
ceramic composition
temperature
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04162256A
Other languages
Japanese (ja)
Other versions
JPH05335179A (en
Inventor
本 義 弘 吉
田 康 信 米
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP04162256A priority Critical patent/JP3089833B2/en
Publication of JPH05335179A publication Critical patent/JPH05335179A/en
Application granted granted Critical
Publication of JP3089833B2 publication Critical patent/JP3089833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は温度補償用誘電体磁器
組成物に関し、特にたとえば、積層コンデンサの誘電体
磁器の材料として用いられる温度補償用誘電体磁器組成
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensating dielectric ceramic composition, and more particularly to a temperature-compensating dielectric ceramic composition used as a material for a dielectric ceramic of a multilayer capacitor.

【0002】[0002]

【従来の技術】従来、この種の温度補償用誘電体磁器組
成物としては、MgTiO3 −CaTiO3 系の組成物
があった。
2. Description of the Related Art Heretofore, as this kind of dielectric ceramic composition for temperature compensation, there has been an MgTiO 3 —CaTiO 3 based composition.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、MgT
iO3 −CaTiO3 系の組成物を用いた磁器では、そ
の焼成温度が1300℃以上と高く、さらに中性または
還元性の低酸素分圧下で焼成すると還元され、半導体化
するという性質を有していた。そのため、このような組
成物を積層コンデンサなどの材料として使用した場合、
内部電極の材料として、誘電体磁器材料の焼結する温度
で溶融せず、かつ誘電体磁器材料を半導体化しない高い
酸素分圧下でも酸化されない、たとえばPtやPdなど
の貴金属を使用しなければならなかった。そのため、製
造される積層コンデンサの低価格化の大きな妨げとなっ
ていた。
However, MgT
The iO 3 -CaTiO 3 based ceramics with the composition of, the firing temperature is as high as 1300 ° C. or more, is reduced further calcined at low oxygen partial pressure neutral or reducing, has the property of semiconductive I was Therefore, when such a composition is used as a material for a multilayer capacitor or the like,
As a material for the internal electrode, a noble metal such as Pt or Pd, which does not melt at the temperature at which the dielectric ceramic material sinters and does not oxidize even under a high oxygen partial pressure that does not turn the dielectric ceramic material into a semiconductor, must be used. Did not. Therefore, it has been a great hindrance to reducing the price of the manufactured multilayer capacitor.

【0004】そこで、上述の問題を解決するために、た
とえばNiやCuなどの安価な卑金属を内部電極の材料
として使用することが望まれていた。しかしながら、こ
のような卑金属を内部電極用材料として使用し、従来の
酸化性雰囲気の条件下で焼成すると、電極材料が酸化し
たり溶融したりしてしまう。そのため、このような卑金
属を内部電極用材料として使用するために、酸素分圧の
低い中性または還元性の雰囲気中において低温で焼成し
ても半導体化せず、コンデンサ用の誘電体材料として十
分な比抵抗と優れた誘電特性とを有する誘電体材料が必
要とされていた。
Therefore, in order to solve the above-mentioned problem, it has been desired to use an inexpensive base metal such as Ni or Cu as a material for the internal electrodes. However, when such a base metal is used as a material for an internal electrode and fired under a conventional oxidizing atmosphere, the electrode material is oxidized or melted. Therefore, since such a base metal is used as a material for an internal electrode, it does not turn into a semiconductor even when fired at a low temperature in a neutral or reducing atmosphere having a low oxygen partial pressure, and is sufficiently used as a dielectric material for a capacitor. There is a need for a dielectric material having an excellent specific resistance and excellent dielectric properties.

【0005】この種の問題を解決するための誘電体磁器
組成物が、特開平1−102806号公報などに開示さ
れている。この誘電体磁器組成物は酸素分圧の低い中性
および還元性雰囲気中において焼成が可能であるので、
これを使用してNi,Cuなどの卑金属を内部電極とす
る温度補償用積層コンデンサを作製することができる。
しかし、特開平1−102806号公報に開示されてい
る誘電体磁器組成物では、焼成温度や誘電率の温度係数
に関しては上述の問題点を解決できるが、誘電率εが1
0程度と低く、また誘電損失tanδは1MHzで0.
05%以上と大きい。
A dielectric porcelain composition for solving this kind of problem is disclosed in Japanese Patent Application Laid-Open No. 1-102806. Since this dielectric porcelain composition can be fired in neutral and reducing atmospheres with low oxygen partial pressure,
Using this, a multilayer capacitor for temperature compensation using a base metal such as Ni or Cu as an internal electrode can be manufactured.
However, in the dielectric porcelain composition disclosed in JP-A-1-102806, the above problems can be solved with respect to the firing temperature and the temperature coefficient of the dielectric constant, but the dielectric constant ε is 1
And a dielectric loss tan δ of 0.1 at 1 MHz.
It is as large as 05% or more.

【0006】それゆえに、この発明の主たる目的は、酸
素分圧の低い中性または還元性の雰囲気中において、1
200℃以下で焼結し、かつ還元されることがなく、誘
電率εが20以上、静電容量の温度係数の絶対値が60
ppm/℃以下、誘電損失tanδが0.02%以下、
20℃における比抵抗が1×1013Ωcm以上であり、
Cuなどの安価な金属を内部電極用材料として使用でき
る、温度補償用誘電体磁器組成物を提供することであ
る。
[0006] Therefore, the main object of the present invention is to provide a neutral or reducing atmosphere having a low oxygen partial pressure.
Sintered at 200 ° C. or less, not reduced, has a dielectric constant ε of 20 or more, and has an absolute value of a temperature coefficient of capacitance of 60
ppm / ° C. or less, dielectric loss tan δ is 0.02% or less,
A specific resistance at 20 ° C. of 1 × 10 13 Ωcm or more;
An object of the present invention is to provide a dielectric ceramic composition for temperature compensation, which can use an inexpensive metal such as Cu as a material for an internal electrode.

【0007】[0007]

【課題を解決するための手段】この発明は、aCaNb
2 6 −bZnNb2 6 −cZnO−dCaTiO3
で表される組成を主成分とする温度補償用誘電体磁器組
成物であって、a,b,c,dがそれぞれモル分率で、
0.10≦a≦0.60、0.05≦b≦0.60、
0.15≦c≦0.75、0.01≦d≦0.20の範
囲にあり、a+b+c+d=1の関係を満足する、温度
補償用誘電体磁器組成物である。さらに、主成分100
重量部に対して、副成分としてB2 3 ,SiO2 ,L
2 Oの中から選ばれる少なくとも1種類の金属酸化物
を0.1〜20重量部添加してもよい。
SUMMARY OF THE INVENTION The present invention provides aCaNb
2 O 6 -bZnNb 2 O 6 -cZnO-dCaTiO 3
A dielectric ceramic composition for temperature compensation having a composition represented by the following formula:
0.10 ≦ a ≦ 0.60, 0.05 ≦ b ≦ 0.60,
A temperature-compensating dielectric porcelain composition in the range of 0.15 ≦ c ≦ 0.75 and 0.01 ≦ d ≦ 0.20 and satisfies the relationship of a + b + c + d = 1. Furthermore, the main component 100
B 2 O 3 , SiO 2 , L
0.1 to 20 parts by weight of at least one metal oxide selected from i 2 O may be added.

【0008】[0008]

【発明の効果】この発明によれば、還元性雰囲気中にお
いて、1200℃以下の低温で焼結し、静電容量の温度
係数の絶対値が60ppm/℃以下で、誘電損失tan
δが0.02%以下であり、20℃における比抵抗が1
×1013Ωcm以上の特性を有する温度補償用誘電体磁
器組成物を得ることができる。したがって、この温度補
償用誘電体磁器組成物を積層コンデンサ用材料として用
いれば、Cuなどの卑金属を内部電極用材料として使用
することが可能となる。そのため、積層コンデンサの大
容量化にともなう電極のコストの増大を解消することが
でき、低価格の積層コンデンサを提供することができ
る。また、誘電損失tanδが小さいために、マイクロ
波用のLCフィルタ,RFモジュールなどの材料として
使用することができる。
According to the present invention, sintering is performed at a low temperature of 1200 ° C. or less in a reducing atmosphere, the absolute value of the temperature coefficient of capacitance is 60 ppm / ° C. or less, and the dielectric loss tan
δ is 0.02% or less, and the specific resistance at 20 ° C. is 1
× can be obtained temperature compensating dielectric ceramic composition having a 10 13 [Omega] cm or more properties. Therefore, if this dielectric ceramic composition for temperature compensation is used as a material for a multilayer capacitor, a base metal such as Cu can be used as a material for an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Also, since the dielectric loss tan δ is small, it can be used as a material for microwave LC filters, RF modules and the like.

【0009】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0010】[0010]

【実施例】まず、CaNb2 6 ,ZnNb2 6 ,C
aTiO3 の出発原料としてCaCO3 ,ZnO,Nb
2 5 ,TiO2 を準備した。これらの原料を各組成に
応じて秤量し、ボールミルで湿式混合後乾燥し、100
0〜1200℃で3時間仮焼し、主成分の原料を得た。
EXAMPLE First, CaNb 2 O 6 , ZnNb 2 O 6 , C
CaCO 3 as the starting material of aTiO 3, ZnO, Nb
2 O 5 and TiO 2 were prepared. These raw materials are weighed according to each composition, wet-mixed with a ball mill, and dried, and
Calcination was performed at 0 to 1200 ° C. for 3 hours to obtain a main component material.

【0011】また、B2 3 ,SiO2 ,Li2 Oの中
の少なくとも1種類の金属酸化物を含む材料を、表1に
示す配合比となるように秤量し、これらをボールミルで
湿式混合,粉砕したのち蒸発乾燥し、自然雰囲気中にお
いて1000℃で溶融させた。さらに、ボールミルで1
μm以下に湿式粉砕したのち、蒸発乾燥して副成分を得
た。
Further, a material containing at least one kind of metal oxide among B 2 O 3 , SiO 2 and Li 2 O is weighed so as to have a compounding ratio shown in Table 1, and these are wet-mixed by a ball mill. After pulverization, the mixture was evaporated to dryness and melted at 1000 ° C. in a natural atmosphere. In addition, 1 ball mill
After wet pulverization to a size of not more than μm, the mixture was evaporated to dryness to obtain an accessory component.

【0012】[0012]

【表1】 [Table 1]

【0013】このようにして得られた原料を表2に示す
組成となるように秤量し、ボールミルで16時間湿式混
合したのち、結合剤として酢酸ビニル系バインダを5重
量部加え、ボールミルで湿式混合して混合物を得た。
The raw materials thus obtained were weighed so as to have the composition shown in Table 2 and wet-mixed with a ball mill for 16 hours. Then, 5 parts by weight of a vinyl acetate-based binder was added as a binder, and wet-mixed with a ball mill. To obtain a mixture.

【0014】[0014]

【表2】 [Table 2]

【0015】さらに、この混合物を蒸発乾燥したのち、
整粒して粉末原料を得た。得られた粉末原料を、2to
n/cm2 の圧力で加圧し、直径20mm,厚さ1.0
mmの円板状に成形して成形物を得た。この成形物をジ
ルコニア粉末を敷粉としたアルミナ質の匣に入れ、自然
雰囲気中において500℃で2時間酢酸ビニル系バイン
ダを燃焼させた。そののち、体積比率でH2 :N2
3:100の還元性雰囲気中において、成形物を900
〜1350℃で2時間焼成して、素子を得た。得られた
素子の両面にIn−Ga合金を塗布して電極を形成し、
試料としてのコンデンサを作製した。
Further, after evaporating and drying the mixture,
The particles were sized to obtain a powder material. 2 to
Pressurized with pressure of n / cm 2 , diameter 20mm, thickness 1.0
A molded product was obtained by molding into a disk having a thickness of 2 mm. The molded product was placed in an alumina box made of zirconia powder as a ground powder, and the vinyl acetate binder was burned at 500 ° C. for 2 hours in a natural atmosphere. After that, the volume ratio of H 2 : N 2 =
In a reducing atmosphere of 3: 100, the molded article is 900
The device was fired at 〜1350 ° C. for 2 hours to obtain an element. An In-Ga alloy is applied to both surfaces of the obtained device to form electrodes,
A capacitor was prepared as a sample.

【0016】得られた試料について、誘電率ε,誘電損
失tanδ,静電容量の温度係数α(ppm/℃),2
0℃における比抵抗ρ20(Ωcm)を測定した。なお、
誘電損失tanδについては、1MHz,1Vrms,
20℃の条件で測定した。また、静電容量の温度係数T
C(ppm/℃)は、20℃における静電容量C20およ
び85℃における静電容量C85から次式によって求め
た。
For the obtained sample, dielectric constant ε, dielectric loss tan δ, temperature coefficient of capacitance α (ppm / ° C.), 2
The specific resistance ρ 20 (Ωcm) at 0 ° C. was measured. In addition,
For the dielectric loss tan δ, 1 MHz, 1 Vrms,
The measurement was performed at 20 ° C. In addition, the temperature coefficient of capacitance T
C (ppm / ° C.) was determined from the capacitance C 20 at 20 ° C. and the capacitance C 85 at 85 ° C. by the following equation.

【0017】[0017]

【数1】 (Equation 1)

【0018】さらに、20℃における比抵抗ρ20(Ωc
m)は、20℃において500Vの直流電圧を印加した
ときに流れる電流値から求めた。そして、これらの結果
を表3に示した。なお、表2および表3において、*印
を付したものはこの発明の範囲外のものであり、それ以
外はこの発明の範囲内のものである。
Further, the specific resistance ρ 20 (Ωc at 20 ° C.)
m) was determined from a current value flowing when a DC voltage of 500 V was applied at 20 ° C. Table 3 shows the results. In Tables 2 and 3, those marked with * are out of the scope of the present invention, and the others are within the scope of the present invention.

【0019】[0019]

【表3】 [Table 3]

【0020】次に、この発明の温度補償用誘電体磁器組
成物の主成分および副成分の数値を限定した理由につい
て説明する。試料番号6のように、主成分aCaNb2
6 −bZnNb2 6 −cZnO−dCaTiO3
cが0.75より大きい場合、誘電損失tanδが0.
02%より大きく、かつ静電容量の温度係数の絶対値が
60ppm/℃より大きくなり、しかも比抵抗が1×1
13Ωcmを下回るので好ましくない。試料番号7のよ
うに、主成分のaが0.10より小さい場合、比抵抗が
1×1013を下回るので好ましくない。試料番号8のよ
うに、主成分のcが0.15より小さい場合、焼成温度
が1200℃を上回り、静電容量の温度係数の絶対値が
60ppm/℃より大きくなるので好ましくない。試料
番号9のように、主成分のbが0.05より小さい場
合、焼成温度が1200℃を上回り、静電容量の温度係
数の絶対値が60ppm/℃より大きくなり、かつ誘電
損失tanδが0.02%より大きくなるので好ましく
ない。試料番号11のように、主成分のdが0.20よ
り大きい場合、焼成温度が1200℃を上回り、静電容
量の温度係数の絶対値が60ppm/℃より大きくなる
ので好ましくない。
Next, the reason why the numerical values of the main component and the subcomponent of the dielectric ceramic composition for temperature compensation of the present invention are limited will be described. As in sample No. 6, the main component aCaNb 2
When c of O 6 -bZnNb 2 O 6 -cZnO-dCaTiO 3 is larger than 0.75, the dielectric loss tan δ is 0.1.
02%, the absolute value of the temperature coefficient of capacitance is greater than 60 ppm / ° C., and the specific resistance is 1 × 1
It is not preferable because it is lower than 0 13 Ωcm. When a of the main component is smaller than 0.10 as in Sample No. 7, the specific resistance is less than 1 × 10 13, which is not preferable. When c as the main component is smaller than 0.15 as in Sample No. 8, the firing temperature exceeds 1200 ° C., and the absolute value of the temperature coefficient of the capacitance becomes undesirably higher than 60 ppm / ° C. When b as the main component is smaller than 0.05 as in Sample No. 9, the firing temperature exceeds 1200 ° C., the absolute value of the temperature coefficient of the capacitance becomes larger than 60 ppm / ° C., and the dielectric loss tan δ is 0. 0.02%, which is not preferable. When d of the main component is larger than 0.20 as in the sample No. 11, the firing temperature exceeds 1200 ° C., and the absolute value of the temperature coefficient of the capacitance becomes larger than 60 ppm / ° C., which is not preferable.

【0021】試料番号14のように、表1に示すA系列
の副成分の添加量が20重量部より多い場合、誘電率ε
が20より小さく、かつ誘電損失tanδが0.02%
より大きくなるので好ましくない。試料番号17のよう
に、表1に示すB系列の副成分の添加量が20重量部よ
り多い場合、誘電率εが20より小さく、誘電損失ta
nδが0.02%より大きく、かつ静電容量の温度係数
の絶対値が60ppm/℃より大きくなり、さらに比抵
抗が1×1013Ωcmを下回るので好ましくない。
As shown in Sample No. 14, when the addition amount of the sub-component of the A series shown in Table 1 is more than 20 parts by weight, the dielectric constant ε
Is smaller than 20, and the dielectric loss tan δ is 0.02%
It is not preferable because it becomes larger. As shown in Sample No. 17, when the addition amount of the sub-component of the B series shown in Table 1 is more than 20 parts by weight, the dielectric constant ε is smaller than 20, and
It is not preferable because nδ is greater than 0.02%, the absolute value of the temperature coefficient of capacitance is greater than 60 ppm / ° C., and the specific resistance is less than 1 × 10 13 Ωcm.

【0022】それに対して、この発明によれば、還元性
雰囲気中において1200℃以下の低温で焼結し、静電
容量の温度係数の絶対値が60ppm/℃以下で、静電
容量tanδが0.02%以下であり、20℃における
比抵抗が1×1013Ωcm以上の特性を有する温度補償
用誘電体磁器組成物を得ることができる。したがって、
この温度補償用誘電体磁器組成物を積層コンデンサ用材
料として用いれば、Cuなどの卑金属を内部電極用材料
として使用することが可能となる。そのため、積層コン
デンサの大容量化にともなう電極のコストの増大を解消
することができ、低価格の積層コンデンサを提供するこ
とができる。また、静電容量tanδが小さいために、
マイクロ波用のLCフィルタやRFモジュールなどの材
料として使用することができる。
On the other hand, according to the present invention, sintering is performed at a low temperature of 1200 ° C. or less in a reducing atmosphere, the absolute value of the temperature coefficient of capacitance is 60 ppm / ° C. or less, and the capacitance tan δ is 0%. 0.02% or less, and a dielectric ceramic composition for temperature compensation having characteristics of a specific resistance of 1 × 10 13 Ωcm or more at 20 ° C. can be obtained. Therefore,
If this dielectric ceramic composition for temperature compensation is used as a material for a multilayer capacitor, a base metal such as Cu can be used as a material for an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Further, since the capacitance tanδ is small,
It can be used as a material for microwave LC filters and RF modules.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−145211(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 4/00 - 4/40 H01G 13/00 - 13/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-57-145211 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 4/00-4/40 H01G 13 / 00-13/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 aCaNb2 6 −bZnNb2 6
cZnO−dCaTiO3 で表される組成を主成分とす
る温度補償用誘電体磁器組成物であって、 a,b,c,dがそれぞれモル分率で、 0.10≦a≦0.60 0.05≦b≦0.60 0.15≦c≦0.75 0.01≦d≦0.20 の範囲にあり、a+b+c+d=1の関係を満足する、
温度補償用誘電体磁器組成物。
1. aCaNb 2 O 6 -bZnNb 2 O 6-
A temperature-compensating dielectric porcelain composition having a composition represented by cZnO-dCaTiO 3 as a main component, wherein a, b, c, and d are each a mole fraction, and 0.10 ≦ a ≦ 0.600. 0.05 ≦ b ≦ 0.60 0.15 ≦ c ≦ 0.75 0.01 ≦ d ≦ 0.20 and satisfies the relationship of a + b + c + d = 1.
A dielectric ceramic composition for temperature compensation.
【請求項2】 前記主成分100重量部に対して、副成
分としてB2 3 ,SiO2 ,Li2 Oの中から選ばれ
る少なくとも1種類の金属酸化物を0.1〜20重量部
添加した、請求項1の温度補償用誘電体磁器組成物。
2. Addition of 0.1 to 20 parts by weight of at least one kind of metal oxide selected from B 2 O 3 , SiO 2 and Li 2 O as an auxiliary component to 100 parts by weight of the main component. The dielectric ceramic composition for temperature compensation according to claim 1, wherein
JP04162256A 1992-05-27 1992-05-27 Dielectric ceramic composition for temperature compensation Expired - Lifetime JP3089833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04162256A JP3089833B2 (en) 1992-05-27 1992-05-27 Dielectric ceramic composition for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04162256A JP3089833B2 (en) 1992-05-27 1992-05-27 Dielectric ceramic composition for temperature compensation

Publications (2)

Publication Number Publication Date
JPH05335179A JPH05335179A (en) 1993-12-17
JP3089833B2 true JP3089833B2 (en) 2000-09-18

Family

ID=15750981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04162256A Expired - Lifetime JP3089833B2 (en) 1992-05-27 1992-05-27 Dielectric ceramic composition for temperature compensation

Country Status (1)

Country Link
JP (1) JP3089833B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246340A (en) * 2006-03-16 2007-09-27 Yokowo Co Ltd Dielectric ceramic composition
JP5128783B2 (en) * 2006-04-17 2013-01-23 株式会社ヨコオ High frequency dielectric materials

Also Published As

Publication number Publication date
JPH05335179A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JPH05217426A (en) Non-reducing dielectric ceramic composition
US4859641A (en) Nonreducible dielectric ceramic composition
JP3089833B2 (en) Dielectric ceramic composition for temperature compensation
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JPS63289709A (en) Nonreducible dielectric ceramic constituent
JP2967440B2 (en) Dielectric ceramic composition for temperature compensation
JPH0528448B2 (en)
JP2967438B2 (en) Dielectric ceramic composition for temperature compensation
JP3291748B2 (en) Dielectric ceramic composition for temperature compensation
Handa et al. High volume efficiency multilayer ceramic capacitor
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JP3450919B2 (en) Dielectric ceramic composition for temperature compensation
JPH04349303A (en) Dielectric porcelain compound for temperature compensation
JP2531548B2 (en) Porcelain composition for temperature compensation
JP2676778B2 (en) Dielectric porcelain composition
US4988651A (en) Temperature compensating dielectric ceramic composition
JP2568565B2 (en) Dielectric porcelain composition
JPH05266711A (en) Dielectric ceramic composition
JP3469911B2 (en) Dielectric porcelain composition
JPH0459265B2 (en)
KR940005088B1 (en) Composition of dielectric magnetism
JPH0329208A (en) Dielectric ceramic composition
JPH0815005B2 (en) Dielectric porcelain composition
JPS63289708A (en) Nonreducible dielectric ceramic constituent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

EXPY Cancellation because of completion of term