JPH01102805A - Dielectric porcelain compound for temperature compensation - Google Patents

Dielectric porcelain compound for temperature compensation

Info

Publication number
JPH01102805A
JPH01102805A JP62259266A JP25926687A JPH01102805A JP H01102805 A JPH01102805 A JP H01102805A JP 62259266 A JP62259266 A JP 62259266A JP 25926687 A JP25926687 A JP 25926687A JP H01102805 A JPH01102805 A JP H01102805A
Authority
JP
Japan
Prior art keywords
parts
weight
oxide
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62259266A
Other languages
Japanese (ja)
Other versions
JPH0528446B2 (en
Inventor
Goro Nishioka
西岡 吾朗
Yukio Sakabe
行雄 坂部
Masayuki Yamada
昌幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62259266A priority Critical patent/JPH01102805A/en
Publication of JPH01102805A publication Critical patent/JPH01102805A/en
Publication of JPH0528446B2 publication Critical patent/JPH0528446B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase specific resistance by containing barium oxide, silicon oxide, and zirconium oxide as main components, and substituting part of ZrO2 with one or more of TiO2 and SnO2. CONSTITUTION:Among compositions ranging surrounded by a polygon with Points A-D (X, Y, Z) as apexes containing barium oxide, silicon oxide, and zirconium oxide as main component, wherein the barium oxide content is X parts by weight converted into BaO, the silicon oxide content Y parts by weight converted in SiO2, and the zirconium oxide content Z parts by weight converted in ZrO2 (where X+Y+Z=100), part of ZrO2 is substituted with one or more of TiO2 and SnO2 an amount of 1-30 parts by weight, Here it is assumed as A(50, 49, 1), B(50, 20, 30), C(15, 20, 65), D(15, 84, 1). This can raise the specific resistance of porcelain over 10<12>OMEGAcm even though sintering is made at a low temp. and baking in non-oxidizing atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は温度補償用誘電体磁器組成物に関し、特にた
とえば積層コンデンサの誘電体磁器として用いられる温
度補償用誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a temperature-compensating dielectric ceramic composition, and particularly to a temperature-compensating dielectric ceramic composition used as dielectric ceramic for a multilayer capacitor, for example.

(従来技術) 従来、この種の温度補償用誘電体磁器組成物としては、
M g T i Os −Ca T i 03系の磁器
が用いられていた。
(Prior Art) Conventionally, as this type of dielectric ceramic composition for temperature compensation,
M g T i Os -Ca T i 03 type porcelain was used.

(発明が解決しようとする問題点) しかしながら、MgT’io、−CaTiO+系の磁器
では、その焼結温度が1300℃以上と高く、さらに、
非酸化性雰囲気中で焼成した場合に磁器が還元されて絶
縁抵抗値が著しく低下するという問題点を有していた。
(Problems to be Solved by the Invention) However, MgT'io, -CaTiO+ type porcelain has a high sintering temperature of 1300°C or higher, and furthermore,
The problem is that when fired in a non-oxidizing atmosphere, the porcelain is reduced and the insulation resistance value is significantly reduced.

また、積層セラミックコンデンサの一般的な製法におい
ては、ドクタブレード法などの方法によって得られたグ
リーンシートと呼ばれる焼成前のセラミックシート上に
内部電極となる導体金属粉末ペーストを印刷塗布し、こ
れを複数枚交互に積層し圧着したものを焼成する工程が
とられている。
In addition, in the general manufacturing method of multilayer ceramic capacitors, a conductive metal powder paste, which will become the internal electrodes, is printed and coated on an unfired ceramic sheet called a green sheet obtained by a method such as the doctor blade method, and multiple layers of this are applied. A process is used in which the sheets are alternately laminated and pressed together and then fired.

そのため、従来の材料では焼成コストが高くつくばかり
でなく、誘電体セラミックと同時に焼成される積層コン
デンサの内部電極の材料として、誘電体セラミックが焼
結する温度で熔融せず、かつ、セラミックが半導体化し
ない高い酸素分圧下で焼成されても酸化されない金属を
用いなければならない。このため、従来の材料を積層コ
ンデンサの誘電体磁器として用いる際には、内部電極の
材料として高融点かつ高温で酸化しにくい高価なパラジ
ウムや白金を使用しなければならず、積層コンデンサの
コスト低減の障害となっていた。
Therefore, not only are conventional materials expensive to sinter, but they are also used as internal electrode materials for multilayer capacitors that are fired at the same time as dielectric ceramics because they do not melt at the temperature at which dielectric ceramics sinter, and ceramics do not melt at the sintering temperature of semiconductors. Metals must be used that do not oxidize even when fired under high oxygen partial pressures that do not oxidize. For this reason, when using conventional materials as dielectric ceramics for multilayer capacitors, expensive palladium or platinum, which has a high melting point and is difficult to oxidize at high temperatures, must be used as the material for the internal electrodes, reducing the cost of multilayer capacitors. This had become an obstacle.

以上のことから、積層セラミックコンデンサの低価格化
および小型大容量化のために内部電極の材料を高価な貴
金属から安価な卑金属にすることが望まれていたが、卑
金属たとえば銅を内部電極として用いるためには、銅が
酸化あるいは溶融しない酸素分圧の低い中性または還元
雰囲気中で1O00″C以下で半導体化することなく焼
結し、コンデンサ用誘電体として十分に高い比抵抗と優
れた誘電特性を有する誘電体磁器組成物が必要とされて
いた。
Based on the above, it has been desired to change the material of the internal electrodes from expensive noble metals to cheap base metals in order to reduce the price and make the multilayer ceramic capacitors smaller and larger in capacity. In order to achieve this, copper is sintered at 1000"C or less in a neutral or reducing atmosphere with low oxygen partial pressure where it does not oxidize or melt, without becoming a semiconductor, and has a sufficiently high resistivity and excellent dielectric properties as a dielectric material for capacitors. There was a need for a dielectric porcelain composition with properties.

それゆえに、この発明の主たる目的は、1000℃以下
の低温で焼結し、かつ、非酸化性雰囲気中で焼成しても
磁器の比抵抗値が10′2Ω印以上と高い温度補償用誘
電体磁器組成物を提供することである。
Therefore, the main object of the present invention is to provide a temperature-compensating dielectric material that can be sintered at a low temperature of 1000°C or less and has a high resistivity of porcelain of 10'2Ω mark or higher even when fired in a non-oxidizing atmosphere. An object of the present invention is to provide a porcelain composition.

(問題点を解決するための手段) この発明は、酸化バリウム、酸化珪素および酸化ジルコ
ニウムを土成公として含み、酸化バリウムの含有量をB
aOに換算してX重量部とし、酸化珪素の含有量をS 
i Otに換算して7重量部とし、酸化ジルコニウムの
含有量をZrO,に換算して2重量部としたとき(ただ
し、X + Y + Z =100)、次の各点A、B
、CおよびD (X、 Y、  Z) A  (50,49,1) B  (50,20,30) C(15,20,65) D  (15,84,1) を頂点とした多角形で囲まれる範囲にある組成のうち、
7.rOtの一部をTie、およびS n Otのうち
の1種以上で1〜30重量部置換した、温度補償用誘電
体磁器組成物である。
(Means for Solving the Problems) This invention contains barium oxide, silicon oxide, and zirconium oxide as soil components, and the content of barium oxide is reduced to B.
In terms of aO, the content is X parts by weight, and the content of silicon oxide is S.
When the content of zirconium oxide is 7 parts by weight in terms of i Ot and 2 parts by weight in terms of ZrO (however, X + Y + Z = 100), the following points A and B
, C and D (X, Y, Z) A (50,49,1) B (50,20,30) C (15,20,65) D (15,84,1) A polygon with vertices Of the compositions within the enclosed range,
7. This is a dielectric ceramic composition for temperature compensation in which a part of rOt is replaced with 1 to 30 parts by weight of one or more of Tie and SnOt.

(発明の効果) この発明によれば、1000℃以下の低温で焼結し、か
つ、非酸化性雰囲気中で焼成しても比抵抗値が1012
Ω口以上と高い温度補償用誘電体磁器組成物が得られる
。そのため、この温度補償用誘電体磁器組成物を積層コ
ンデンサの誘電体磁器として用いれば、焼成コストを安
価にすることができ、かつ、抵抗値が低くて安価な銅、
銅系合金あるいはその他の卑金属を内部電極として用い
ることができるので、従来に比べて、積層コンデンサの
大幅なコストダウンを図ることができる。
(Effect of the invention) According to this invention, even when sintered at a low temperature of 1000°C or less and in a non-oxidizing atmosphere, the resistivity value remains 1012.
A dielectric ceramic composition for temperature compensation with a high resistance of Ω or more can be obtained. Therefore, if this temperature-compensating dielectric ceramic composition is used as the dielectric ceramic of a multilayer capacitor, the firing cost can be reduced, and copper, which is low in resistance and inexpensive, can be used.
Since copper-based alloys or other base metals can be used for the internal electrodes, the cost of the multilayer capacitor can be significantly reduced compared to conventional ones.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例) まず、原料として、BaC0,、Sin、、Zrow 
、Ti0z 、SnugおよびA l z O3を別表
1に示す組成となるように秤量し、それらをボールミル
で16時時間式混合した後、蒸発乾燥して混合粉末を得
た。
(Example) First, as raw materials, BaC0,, Sin,, Zrow
, TiOz , Snug and Al z O3 were weighed so as to have the composition shown in Attached Table 1, mixed in a ball mill for 16 hours, and then evaporated to dryness to obtain a mixed powder.

次に、この混合粉末を850℃で2時間仮焼し、これに
結合材として酢酸ビニルを5重量部加え、再びボールミ
ルで16時時間式混合、粉砕して粉砕物を得た。
Next, this mixed powder was calcined at 850° C. for 2 hours, 5 parts by weight of vinyl acetate was added as a binder, and the mixture was again mixed in a ball mill for 16 hours and pulverized to obtain a pulverized product.

そして、この粉砕物を蒸発乾燥して整粒し、果粒状の粉
末を得た。
Then, this pulverized product was evaporated to dryness and sized to obtain a granular powder.

それから、こうして得た果粒状の粉末を乾式プレス機で
2tOn/cIAの圧力で加圧し、直径22酊、厚さ1
.Olmの円板状に成形して成形物を得た。
Then, the granular powder obtained in this way was pressed with a dry press machine at a pressure of 2 tOn/cIA, and the diameter was 22mm and the thickness was 1mm.
.. A molded product was obtained by molding it into a disk shape.

次に、この成形物をNt  Hzガス雰囲気中で別表2
に示した各温度条件で2時間焼成を行って、焼成物を得
た。
Next, this molded product was heated in an Nt Hz gas atmosphere in Table 2.
Firing was performed for 2 hours under each temperature condition shown in , to obtain a fired product.

さらに、これらの焼成物の両生面に、電極を形成する際
に磁器が特性の変化を受けることを避けるために、In
−Ga合金を塗布して電極を形成し試料1−16とした
Furthermore, in order to avoid changes in the characteristics of the porcelain when forming electrodes, In
-Ga alloy was applied to form an electrode, which was designated as sample 1-16.

そして、これらの試料について、次に示す各特性をそれ
ぞれの条件や測定方法で測定し、その結果を別表2に示
した。
The following properties of these samples were measured using the respective conditions and measurement methods, and the results are shown in Attached Table 2.

(1)比誘電率:周波数IMHz、温度25℃の条件下
で測定した。
(1) Specific dielectric constant: Measured under the conditions of a frequency of IMHz and a temperature of 25°C.

(2)Q値(品質係数):周波数IMHz、温度25℃
の条件下で測定した。
(2) Q value (quality factor): frequency IMHz, temperature 25°C
Measured under the following conditions.

(3)低温側の静電容量の温度係数(ppm/ ”C)
  :25℃での静電容NC1を基準として、これと−
55℃での静電容量C2とから次式(i)によって算出
した。
(3) Temperature coefficient of capacitance on the low temperature side (ppm/”C)
: Based on the capacitance NC1 at 25℃, this and -
It was calculated using the following formula (i) from the capacitance C2 at 55°C.

低温側の静電容量の温度係数(ppm/ ”C)C,(
−55−25)    ・・・ (1)(4)高温側の
静電容量の温度係数(ppm/l)  :25℃での静
電容it c +を基準として、これと125℃での静
電容量C3とから次式(2)によって算出した。
Temperature coefficient of capacitance on low temperature side (ppm/”C)C, (
-55-25) ... (1) (4) Temperature coefficient of capacitance on the high temperature side (ppm/l): Based on the capacitance it c + at 25°C, this and the electrostatic capacitance at 125°C It was calculated using the following equation (2) from the capacitance C3.

高温側の静電容量の温度係数(ppm/ ’C)(Cs
  C+) XIO’ c、 (125−25)     ・・・ (2)(5
)比抵抗:25℃で500v直流電圧を印加して電流値
を測定し、それらから算出した。
Temperature coefficient of capacitance on high temperature side (ppm/'C) (Cs
C+) XIO' c, (125-25) ... (2) (5
) Specific resistance: A 500 V DC voltage was applied at 25° C., the current value was measured, and the value was calculated from the current value.

なお、別表1および別表2中で*印を付したものはこの
発明の範囲外のものであり、それ以外はこの発明の範囲
内のものである。
In addition, those marked with * in Attached Tables 1 and 2 are outside the scope of this invention, and the others are within the scope of this invention.

また、別表1および別表2に示した各試料の主成分の組
成を図中に3成分組成図で示した。この図面においてO
印を付した数字は各試料番号を示す。
In addition, the composition of the main components of each sample shown in Attached Table 1 and Attached Table 2 is shown in a three-component composition diagram in the figure. In this drawing O
The marked numbers indicate each sample number.

さらに、この図中には、この発明の組成物の主成分の組
成比を示す領域を、組成点A、B、CおよびDを頂点と
した4角形で示した。すなわち、酸化バリウムの含有量
をBaOに換算してX重量部とし、酸化珪素の含有量を
S i O,に換算して7重量部とし、酸化ジルコニウ
ムの含有量をZrO□に換算して2重量部としたとき(
ただし、X+Y+Z=100) 、この発明の組成物の
主成分の組成比(X、Y、Z)は、組成点A(50,4
9,1)、B (50,20,30)、C(15゜20
.65)およびD (15,84,1)を頂点とした多
角形で囲まれる領域内の組成比に相当するのである。
Further, in this figure, regions showing the composition ratios of the main components of the composition of the present invention are shown as rectangles with composition points A, B, C, and D as vertices. That is, the content of barium oxide is converted to BaO and is X parts by weight, the content of silicon oxide is converted to SiO, which is 7 parts by weight, and the content of zirconium oxide is converted to ZrO□ and is 2 parts by weight. When expressed as parts by weight (
However, the composition ratio (X, Y, Z) of the main components of the composition of this invention is at the composition point A (50,4
9,1), B (50,20,30), C (15°20
.. 65) and D (15, 84, 1) in a region surrounded by a polygon with vertices.

そして、この発明にかかる組成物は、上述の主成分中の
ZrO,の一部がT i OtおよびSnO2のうちの
1種以上で1〜30重量部置換され、さらに、必要に応
じて、主成分100重量部に対して酸化アルミニウムが
Aj!gosに換算して20重量部以下(0重量部を含
まず)添加含有される。
Further, in the composition according to the present invention, a part of ZrO in the above-mentioned main component is replaced with 1 to 30 parts by weight of one or more of TiOt and SnO2, and further, if necessary, the main component Aluminum oxide is Aj! with respect to 100 parts by weight of ingredients! It is added and contained in an amount of 20 parts by weight or less (excluding 0 parts by weight) in terms of GoS.

なお、各試料の主成分中のZrO,の一部をTi0gお
よびSnowで置換した割合は、別表1に示され図中に
は示されていない。
Note that the proportion of ZrO in the main component of each sample replaced with TiOg and Snow is shown in Attached Table 1 and is not shown in the figure.

次に、この発明にかかる温度補償用誘電体磁器組成物を
上述の範囲に限定した理由について説明する。
Next, the reason why the temperature compensating dielectric ceramic composition according to the present invention is limited to the above range will be explained.

(1)3成分組成図に示す組成点AおよびBを結ぶ線分
の外側の組成領域ではミQ値が1000以下となりかつ
静電容量の温度係数が+1100pp / ”e以上と
なり、しかも、焼結磁器素体の表面上にガラス質が浮く
ので好ましくない(試料番号6参照)。
(1) In the composition region outside the line segment connecting composition points A and B shown in the ternary composition diagram, the Mi-Q value is less than 1000, the temperature coefficient of capacitance is more than +1100pp/''e, and the sintering This is undesirable because vitreous material floats on the surface of the porcelain body (see sample number 6).

(2)3成分組成図に示す組成点AおよびDを結ぶ線分
の外側の組成領域でも、Q値が1000以下となりかつ
静電容量の温度係数が+tooppm / ’Ic以上
となり、しかも、焼結磁器素体の表面上にガラス質が浮
くので好ましくない(試料番号5参照)。
(2) Even in the composition region outside the line segment connecting composition points A and D shown in the ternary composition diagram, the Q value is 1000 or less, the temperature coefficient of capacitance is +tooppm/'Ic or more, and sintering This is undesirable because vitreous material floats on the surface of the porcelain body (see sample number 5).

(3)3成分組成図に示す組成点BおよびCを結ぶ線分
の外側の組成領域では、1150℃の温度で焼成しても
緻密な焼結体が得られないので好ましくない(試料番号
7参照)。
(3) In the composition region outside the line segment connecting composition points B and C shown in the ternary composition diagram, a dense sintered body cannot be obtained even if fired at a temperature of 1150°C, which is not preferable (sample number 7). reference).

(4)3成分組成図に示す組成点CおよびDを結ぶ線分
の外側の組成領域でも、1150℃の温度で焼成しても
緻密な焼結体が得られないので好ましくない(試料番号
8参照)。
(4) Even in the composition region outside the line segment connecting composition points C and D shown in the ternary composition diagram, a dense sintered body cannot be obtained even if fired at a temperature of 1150°C, which is not preferable (sample number 8). reference).

(5)’ZrO,の一部をTiO2、Snowで置換す
ることによって、高温側と低温側とにおける静電容量の
温度係数の差が小さくなる。これは、ZrO,のうちの
1重量部以上をTi0tあるいはSnO,で置換するこ
とによって効果を確認することができる(試料番号12
および14参照)。
(5) By replacing part of ZrO with TiO2 and Snow, the difference in temperature coefficient of capacitance between the high temperature side and the low temperature side becomes smaller. This effect can be confirmed by replacing 1 part by weight or more of ZrO with TiOt or SnO (sample number 12).
and 14).

しかし、ZrO,のうちの30重量部より多くTiO□
あるいはSnO,で置換すると磁器の焼結性が低下し焼
結温度が1150℃以上と高くなるため好ましくない(
試料番号15参照)。
However, more than 30 parts by weight of ZrO,
Alternatively, if it is replaced with SnO, the sinterability of the porcelain will decrease and the sintering temperature will rise to 1150°C or higher, which is not preferable (
(See sample number 15).

(6)さらに、Altosを主成分100重量部に対し
て20重量部以下添加含有すると、磁器の特性にばらつ
きが少なくなりかつ特性が一定の水準でそろう。しかし
、AI、O,の添加量が20重量部を虐えると焼結温度
が1150℃以上と高くなるため好ましくない(試料番
号11参照)。
(6) Furthermore, when Altos is added in an amount of 20 parts by weight or less per 100 parts by weight of the main component, variations in the properties of the porcelain will be reduced and the properties will be uniform at a certain level. However, if the added amount of AI, O, exceeds 20 parts by weight, the sintering temperature will increase to 1150° C. or higher, which is not preferable (see sample number 11).

それに対して、この発明の範囲内の試料では、還元雰囲
気中で1000℃以下で焼結し、温度に対する静電容量
の温度係数の絶対値が1100pp / ’C以下と小
さく、品質係数(Q値)が1000以上と高く、25℃
における比抵抗が1012Ω国以上の特性が得られる。
On the other hand, samples within the scope of the present invention are sintered at 1000°C or less in a reducing atmosphere, have a small absolute value of the temperature coefficient of capacitance with respect to temperature of 1100pp/'C or less, and have a quality coefficient (Q value). ) is high at over 1000 and at 25℃
A characteristic with a specific resistance of 1012Ω or more can be obtained.

したがって、この発明にかかる誘電体磁器組成物をセラ
ミックコンデンサの誘電体として用いれば、焼成コスト
の低減が可能となる。また、この発明にかかる誘電体磁
器組成物を積層セラミックコンデンサの誘電体として用
いれば、従来の高価な貴金属に比べて安価な銅、ニッケ
ル、鉄、クロムなどの卑金属あるいはこれらからなる合
金を内部電極とすることが可能になり、積層セラミック
コンデンサの大容量化にともなう電極コストの増大を解
消することができ、低価格な積層セラミックコンデンサ
を得ることができる。
Therefore, if the dielectric ceramic composition according to the present invention is used as a dielectric of a ceramic capacitor, it is possible to reduce the firing cost. Furthermore, if the dielectric ceramic composition according to the present invention is used as a dielectric of a multilayer ceramic capacitor, base metals such as copper, nickel, iron, and chromium, or alloys made of these metals, which are cheaper than conventional expensive precious metals, can be used for internal electrodes. This makes it possible to eliminate the increase in electrode cost that accompanies an increase in the capacity of a multilayer ceramic capacitor, and to obtain a low-cost multilayer ceramic capacitor.

なお、上述の実施例において焼成雰囲気としてNz−H
zからなる還元性雰囲気を用いたが、この発明では、A
r、CO,COz +  Hz、Nzおよびこれらの混
合雰囲気ガスを用いてもよいことはいうまでもない。
In addition, in the above-mentioned example, Nz-H was used as the firing atmosphere.
A reducing atmosphere consisting of A was used, but in this invention, A
It goes without saying that atmospheric gases such as r, CO, COz + Hz, Nz, and a mixture thereof may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の組成物の主成分の配合比を示す3成分組
成図である。 特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓
The figure is a three-component composition diagram showing the blending ratio of the main components of the composition of the present invention. Patent applicant Murata Manufacturing Co., Ltd. Representative Patent attorney Oka 1) Kei Zen

Claims (1)

【特許請求の範囲】 1 酸化バリウム,酸化珪素および酸化ジルコニウムを
主成分として含み、 前記酸化バリウムの含有量をBaOに換算してX重量部
とし、前記酸化珪素の含有量をSiO_2に換算してY
重量部とし、前記酸化ジルコニウムの含有量をZrO_
2に換算してZ重量部としたとき(ただし、X+Y+Z
=100)、次の各点A,B,CおよびD(X,Y,Z
) A(50,49,1) B(50,20,30) C(15,20,65) D(15,84,1) を頂点とした多角形で囲まれる範囲にある組成のうち、
ZrO_2の一部をTiO_2およびSnO_2のうち
の1種以上で1〜30重量部置換した、温度補償用誘電
体磁器組成物。 2 前記主成分100重量部に対して、さらに酸化アル
ミニウムをAl_2O_3に換算して20重量部以下(
0重量部を含まず)添加含有した、特許請求の範囲第1
項記載の温度補償用誘電体磁器組成物。
[Claims] 1 Contains barium oxide, silicon oxide and zirconium oxide as main components, the content of the barium oxide is X parts by weight in terms of BaO, and the content of the silicon oxide is in terms of SiO_2. Y
The content of the zirconium oxide is ZrO_
When converted to Z parts by weight (X+Y+Z
= 100), each of the following points A, B, C and D (X, Y, Z
) A (50,49,1) B (50,20,30) C (15,20,65) D (15,84,1) Among the compositions within the range surrounded by a polygon with vertices,
A dielectric ceramic composition for temperature compensation, in which a part of ZrO_2 is replaced with 1 to 30 parts by weight of one or more of TiO_2 and SnO_2. 2 With respect to 100 parts by weight of the main component, 20 parts by weight or less of aluminum oxide converted to Al_2O_3 (
Claim 1, which contains (excluding 0 parts by weight)
A dielectric ceramic composition for temperature compensation as described in 1.
JP62259266A 1987-10-14 1987-10-14 Dielectric porcelain compound for temperature compensation Granted JPH01102805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259266A JPH01102805A (en) 1987-10-14 1987-10-14 Dielectric porcelain compound for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259266A JPH01102805A (en) 1987-10-14 1987-10-14 Dielectric porcelain compound for temperature compensation

Publications (2)

Publication Number Publication Date
JPH01102805A true JPH01102805A (en) 1989-04-20
JPH0528446B2 JPH0528446B2 (en) 1993-04-26

Family

ID=17331714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259266A Granted JPH01102805A (en) 1987-10-14 1987-10-14 Dielectric porcelain compound for temperature compensation

Country Status (1)

Country Link
JP (1) JPH01102805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element
US7008669B2 (en) 2001-06-13 2006-03-07 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7323257B2 (en) 2001-06-13 2008-01-29 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7825569B2 (en) 2001-06-13 2010-11-02 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7956519B2 (en) 2001-06-13 2011-06-07 Seiko Epson Corporation Piezoelectric device having a ferroelectric film including a solid solution
US7960901B2 (en) 2001-06-13 2011-06-14 Seiko Epson Corporation Piezoelectric device having a ferroelectric film including a ferroelectric material

Also Published As

Publication number Publication date
JPH0528446B2 (en) 1993-04-26

Similar Documents

Publication Publication Date Title
KR860001758B1 (en) Ceramic compositions
KR100201201B1 (en) Monolithic ceramic capacitor
US4859641A (en) Nonreducible dielectric ceramic composition
KR900008777B1 (en) Ceramic capacitor method of manufacture
JPH01102808A (en) Dielectric porcelain compound for temperature compensation
JPH01102805A (en) Dielectric porcelain compound for temperature compensation
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JPH0544764B2 (en)
JPH01102807A (en) Dielectric substance porcelain compound for temperature compensation
KR900008778B1 (en) Ceramic capacitor method manufacture
JPH01102806A (en) Dielectric porcelain compound for temperature compensation
JPH07211140A (en) Dielectric ceramic composition
JPH02228014A (en) Porcelain capacitor and manufacture thereof
JPH05128913A (en) Dielectric ceramic composition for temperature compensation
JP3291748B2 (en) Dielectric ceramic composition for temperature compensation
JP2967438B2 (en) Dielectric ceramic composition for temperature compensation
JP3057948B2 (en) Dielectric porcelain composition
JP2803320B2 (en) Dielectric porcelain composition
JPH07211138A (en) Dielectric ceramic composition
JPS6355815A (en) Dielectric ceramic composition for temperature compensation
JPH059065A (en) Dielectric porcelain composition for temperature compensation
JP3469911B2 (en) Dielectric porcelain composition
JPH06103605B2 (en) Dielectric ceramic composition for temperature compensation
JPH06103604B2 (en) Dielectric ceramic composition for temperature compensation
JPH0815005B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 15