JPH0518243B2 - - Google Patents

Info

Publication number
JPH0518243B2
JPH0518243B2 JP58232954A JP23295483A JPH0518243B2 JP H0518243 B2 JPH0518243 B2 JP H0518243B2 JP 58232954 A JP58232954 A JP 58232954A JP 23295483 A JP23295483 A JP 23295483A JP H0518243 B2 JPH0518243 B2 JP H0518243B2
Authority
JP
Japan
Prior art keywords
magnet
orientation
mold
radial
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58232954A
Other languages
Japanese (ja)
Other versions
JPS60124812A (en
Inventor
Masato Fujiwara
Tetsuhiro Oguchi
Eiji Saegusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23295483A priority Critical patent/JPS60124812A/en
Publication of JPS60124812A publication Critical patent/JPS60124812A/en
Publication of JPH0518243B2 publication Critical patent/JPH0518243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は、射出成形法により製造される、ラジ
アル方向に異方性を有する永久磁石およびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet having radial anisotropy manufactured by an injection molding method and a method for manufacturing the same.

本発明の目的は、磁極の発生磁界を高め且つ着
磁波形を正弦波にし、ラジアル磁石の低コスト、
高性能化を目的とする。
The purpose of the present invention is to increase the magnetic field generated by the magnetic poles and make the magnetization waveform a sine wave, thereby reducing the cost of radial magnets.
The purpose is to improve performance.

近年、情報機器やVTRなどの製品が急成長し、
そのモータとして、ステツピングモーターや、サ
ーボモータが多く使用されるようになつた。又、
これらの製品は、小型化、軽量化の要求が強く、
必然的にモータも、小型、軽量で高出力なものが
要望される。その要望に答えるべく開発されたの
が、第1図に示すようなラジアル異方性磁石(内
周から外周に放射状の異方性を有する磁石)であ
る。この磁石は、第2図のように2極以上の多極
着磁をして使用されるが、従来の等方性磁石に比
べ、ラジアル異方性磁石は、磁気性能が1.5〜2
倍強く、小型、軽量、高出力化に大きく寄与でき
る。
In recent years, products such as information equipment and VTRs have grown rapidly,
Stepping motors and servo motors have come to be widely used as such motors. or,
There is a strong demand for these products to be smaller and lighter.
Naturally, motors are also required to be small, lightweight, and high-output. A radially anisotropic magnet (a magnet having radial anisotropy from the inner circumference to the outer circumference) as shown in FIG. 1 was developed to meet this demand. This magnet is used with multipole magnetization of two or more poles as shown in Figure 2. Compared to conventional isotropic magnets, radial anisotropic magnets have a magnetic performance of 1.5 to 2.
It is twice as strong, smaller, lighter, and can greatly contribute to higher output.

しかしこのような磁石は、着磁がむつかしく、
ほとんどの場合第3図のように、N・Sのはつき
りとした台形の着磁波形となつてしまい、モータ
のコキングの原因となつていた。
However, such magnets are difficult to magnetize,
In most cases, as shown in FIG. 3, the magnetization waveform becomes a sharp trapezoid of N and S, which causes coking of the motor.

この改良案として第4図に示すように、極間に
凹を付け、第5図のように凸部に着磁を行うと、
その磁石の内周は、第6図のように、正弦波に近
い着磁波形となり、モータのコキング対策となる
ことがわかつていた。
As an improvement plan, as shown in Fig. 4, if a concave is made between the poles and the convex part is magnetized as shown in Fig. 5,
The inner periphery of the magnet has a magnetization waveform close to a sine wave, as shown in FIG. 6, which is known to be a countermeasure against coking in the motor.

しかし、従来は、第4図の内周部の凹部を、エ
ンドミルなどの加工機で切削していたため、磁石
の変形や切削刃具の摩耗や機械の位置精度不良に
より、寸法精度が悪く、しかも加工コストが非常
に高く、量産性も悪く、工業的には未だ実用化さ
れていなかつた。
However, in the past, the concave part on the inner circumference shown in Figure 4 was cut using a processing machine such as an end mill, which resulted in poor dimensional accuracy due to deformation of the magnet, wear of the cutting tool, and poor positional accuracy of the machine. The cost was extremely high, mass production was poor, and it had not yet been put into practical use industrially.

本発明は、かかる欠点を解決するためのもので
あり、凹凸を付けた金型に磁場中射出成形するこ
とにより、低コストで寸法精度のよい高性能ラジ
アル磁石を製造可能としたものである。
The present invention is intended to solve these drawbacks, and makes it possible to manufacture high-performance radial magnets with good dimensional accuracy at low cost by injection molding in a magnetic field into a mold with projections and depressions.

以下に、実施例に従つて説明する。 Examples will be explained below.

実施例 1 第7図は、本発明の金型の見取図である。A部
は磁性体であり、成形時の磁束は内部から外部に
向けて、放射状に発散されるように設計されてい
る。そして内部の金型は、ワイヤカツト機で、通
常の円周に凸をもうけたように加工してある。金
型をとじて、励磁しながらB部に射出成形すると
簡単に第8図のようなラジアル異方性磁石を得る
ことができた。これは、外径34mm、内径30mm、高
さ4.5mm、内径凹部深さ1mmで行い、A部には低
炭素鋼を使用し、射出成形は、フエライトと希土
類−コバルト磁石の両方で行つた。
Example 1 FIG. 7 is a sketch of a mold of the present invention. Part A is a magnetic material, and is designed so that the magnetic flux during molding is radially diverged from the inside to the outside. The inner mold is machined using a wire cutting machine to create a convex shape on the normal circumference. When the mold was closed and injection molding was performed on part B while being energized, a radially anisotropic magnet as shown in FIG. 8 could be easily obtained. This was done with an outer diameter of 34 mm, an inner diameter of 30 mm, a height of 4.5 mm, and an inner diameter recess depth of 1 mm, low carbon steel was used for part A, and injection molding was performed with both ferrite and rare earth-cobalt magnets.

実施例 2 第9図は、金型の断面図であるが、C部に非磁
性材のベリリユウム銅合金チツプを、ロウ付け
し、より高効率化をはかつたものである。
Embodiment 2 FIG. 9 is a cross-sectional view of a mold, in which a beryllium copper alloy chip, which is a non-magnetic material, is brazed to the C portion to achieve higher efficiency.

すなわち、非磁性体C部では、外周磁性体Aと
のギヤツプが大きくなり、励磁時の磁束は、より
ギヤツプの小さい第10図のD部を通ろうとし、
E部に磁束が集中し、D部で発揮するようにな
る。逆に、D部に射出成形される磁石の異方性
は、完全なラジアル方向よりも、内周にむけ集中
するようになり、従来の切削加工をしたラジアル
磁石よりも集中した分高性能となる。本実験で
は、従来の方法と比べ、磁石を着磁後のD部内周
の発生磁束は希土類−コバルト磁石で6.1%増加
していた。
That is, in the non-magnetic material C part, the gap with the outer circumferential magnetic material A becomes large, and the magnetic flux during excitation tends to pass through the D part in FIG. 10, which has a smaller gap.
Magnetic flux is concentrated in the E section and is exerted in the D section. On the other hand, the anisotropy of the magnet injection molded in the D section is concentrated toward the inner circumference rather than in the complete radial direction, resulting in higher performance than conventional radial magnets that are machined. Become. In this experiment, compared to the conventional method, the magnetic flux generated at the inner periphery of the D section after magnetizing the magnet was increased by 6.1% for the rare earth-cobalt magnet.

実施例 3 第11図は、凹凸を外周部で行つたものであ
る。F部には、外周部に磁束が集中し、成形され
た磁石もF部外周部が強力となる。
Embodiment 3 FIG. 11 shows an example in which unevenness is formed on the outer circumference. Magnetic flux concentrates on the outer circumference of the F section, and the molded magnet also becomes stronger at the F section outer circumference.

以上のように、本発によれば、凹凸のあるラジ
アル磁石を、容易に製造できる。しかも今回の実
験では、寸法のバラツキは、0.03mm以下であり、
高精度化も同時に実現できた。
As described above, according to the present invention, a radial magnet with unevenness can be easily manufactured. Moreover, in this experiment, the variation in dimensions was less than 0.03 mm.
High precision was also achieved at the same time.

尚本発明は、金型材質や磁石の種類や極数(凹
凸の数)には、関係なく有効である。
Note that the present invention is effective regardless of the mold material, the type of magnet, and the number of poles (number of projections and depressions).

以上の如く、本願発明は、配向度の低い部分の
厚みを配向度の高い部分の厚みより薄くしたこと
により、低コストで成形可能となり、且つ、配向
の方向がランダムであるため実質上不要である配
向度の低い部分の磁束の通る磁路を無くしたの
で、磁束分布が良くなるという顕著な効果を有す
る。
As described above, in the present invention, by making the thickness of the portion with a low degree of orientation thinner than the thickness of the portion with a high degree of orientation, molding is possible at low cost, and since the direction of orientation is random, it is virtually unnecessary. Since the magnetic path through which the magnetic flux passes through a portion with a certain low degree of orientation is eliminated, it has the remarkable effect of improving the magnetic flux distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のラジアル異方性磁石の説明図。
第2図は、その磁石に8極の着磁を行つたものの
説明図。第3図は、第2図の磁石の内周着磁波
形。第4図は、凹を有するラジアル磁石の説明
図。第5図は、その磁石に8極着磁を行つたもの
の説明図。第6図は、第5図の磁石の内周着磁波
形。第7図は、本発明の金型の見取図。第8図
は、その金型で成形した磁石の見取図。第9図
は、第7図の金型の凸部に非磁性体を入れた金型
の断面図。第10図は、第9図の発生磁束の説明
図。第11図は、外周に非磁性体の凸部をつけた
金型の断面図。
FIG. 1 is an explanatory diagram of a conventional radial anisotropic magnet.
FIG. 2 is an explanatory diagram of the magnet magnetized with eight poles. FIG. 3 shows the inner circumferential magnetization waveform of the magnet shown in FIG. 2. FIG. 4 is an explanatory diagram of a radial magnet having a recess. FIG. 5 is an explanatory diagram of the magnet subjected to 8-pole magnetization. FIG. 6 shows the inner circumferential magnetization waveform of the magnet shown in FIG. FIG. 7 is a sketch of the mold of the present invention. Figure 8 is a sketch of the magnet molded with the mold. FIG. 9 is a cross-sectional view of the mold shown in FIG. 7, with a non-magnetic material placed in the convex portion. FIG. 10 is an explanatory diagram of the generated magnetic flux in FIG. 9. FIG. 11 is a cross-sectional view of a mold with a non-magnetic convex portion on the outer periphery.

Claims (1)

【特許請求の範囲】[Claims] 1 ラジアル方向に不均一な配向磁場を印加し、
配向度の低い部分と配向度の高い部分からなる永
久磁石において、前記配向度の低い部分の厚みを
前記配向度の高い部分の厚みより薄くすることを
特徴とする永久磁石。
1 Apply a non-uniform orientation magnetic field in the radial direction,
A permanent magnet comprising a portion with a low degree of orientation and a portion with a high degree of orientation, wherein the thickness of the portion with the low degree of orientation is made thinner than the thickness of the portion with the high degree of orientation.
JP23295483A 1983-12-09 1983-12-09 Manufacture of permanent magnet Granted JPS60124812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23295483A JPS60124812A (en) 1983-12-09 1983-12-09 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23295483A JPS60124812A (en) 1983-12-09 1983-12-09 Manufacture of permanent magnet

Publications (2)

Publication Number Publication Date
JPS60124812A JPS60124812A (en) 1985-07-03
JPH0518243B2 true JPH0518243B2 (en) 1993-03-11

Family

ID=16947464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23295483A Granted JPS60124812A (en) 1983-12-09 1983-12-09 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS60124812A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464208A (en) * 1987-02-07 1989-03-10 Canon Kk Manufacture of magnet roller
JP3008615B2 (en) * 1991-11-15 2000-02-14 大同特殊鋼株式会社 Radial anisotropic ring magnet and method of manufacturing the same
JP4279757B2 (en) 2004-09-22 2009-06-17 三菱電機株式会社 Ring-type magnet molded body manufacturing apparatus and ring-type sintered magnet manufacturing method
CN114496462B (en) * 2022-02-14 2022-11-15 钢铁研究总院有限公司 Permanent magnet ring assembly and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105315A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Manufacturing method of roll-shaped magnet
JPS5737803A (en) * 1980-08-18 1982-03-02 Matsushita Electric Ind Co Ltd Manufacture of anisotropic magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105315A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Manufacturing method of roll-shaped magnet
JPS5737803A (en) * 1980-08-18 1982-03-02 Matsushita Electric Ind Co Ltd Manufacture of anisotropic magnet

Also Published As

Publication number Publication date
JPS60124812A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP4029679B2 (en) Bond magnet for motor and motor
JPS6150368B2 (en)
JP2006230099A (en) Ring magnet and apparatus and method for manufacturing ring magnet
JPH0518243B2 (en)
US5083054A (en) Permanent magnet field type dc machine
JP3008615B2 (en) Radial anisotropic ring magnet and method of manufacturing the same
JPH05175037A (en) Anisotropic magnet
CN106205991B (en) The manufacturing method of unmagnetized permanent magnet
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JPH0698489A (en) Rotor for servo motor
JPH05175038A (en) Anisotropic cylindrical magnet
JP2860858B2 (en) Mold for magnetic powder molding
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2010252472A (en) Magnet for motor, manufacturing method and motor
JP7186956B2 (en) Cylindrical linear motor and method for manufacturing annular magnet
JPH0726804Y2 (en) Cylindrical outer peripheral multi-pole magnet
JP2010148309A (en) Field element and manufacturing method of the same
JPS6348807A (en) Method of magnetization for rotor magnet
JPS61121763A (en) Electromagnetic drive device
JPS6146153A (en) Rotor for stepping motor
JPS60176206A (en) Radial direction bipolar magnet and manufacturing device thereof
JPH05144649A (en) Mold for polar anisotropy magnet