JPH05175038A - Anisotropic cylindrical magnet - Google Patents

Anisotropic cylindrical magnet

Info

Publication number
JPH05175038A
JPH05175038A JP34495591A JP34495591A JPH05175038A JP H05175038 A JPH05175038 A JP H05175038A JP 34495591 A JP34495591 A JP 34495591A JP 34495591 A JP34495591 A JP 34495591A JP H05175038 A JPH05175038 A JP H05175038A
Authority
JP
Japan
Prior art keywords
magnet
effectuating
cylindrical magnet
magnetic
substantial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34495591A
Other languages
Japanese (ja)
Other versions
JP3012067B2 (en
Inventor
Satoru Nakatsuka
哲 中塚
Itsuro Tanaka
逸郎 田中
Koichi Nushishiro
晃一 主代
Takahiro Kikuchi
孝宏 菊地
Akira Yasuda
晃 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3344955A priority Critical patent/JP3012067B2/en
Publication of JPH05175038A publication Critical patent/JPH05175038A/en
Application granted granted Critical
Publication of JP3012067B2 publication Critical patent/JP3012067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To distinctively improve surface magnetic flux density at the substantial effectuating surface of a cylindrical magnet or moreover a motor holding torque by directing the axes of easy magnetization of magnetic particles in the boundary regions of respective sections toward the proximity effectuating surface at the section in the longitudinal direction of the magnet. CONSTITUTION:Length of a permanent magnet 3 is set to almost the same length as the substantial effectuating surface of respective divided sections and the external circumference of cavity 1 is alternately surrounded by the poles N and S. Moreover, a ferromagnetic body 4 is arranged at the center of a center core 2. That is, the axes of easy magnetization of the magnetic particles in these boundary regions are arranged toward the proximity effectuating surfaces. Thereby, the magnetic particles in the boundary regions of respective divided sections can be effectively utilized and the surface magnetic flux density at the substantial effectuating surface or moreover a motor holding torque can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、PM型ステッピング
モーターのローター等の用途に供して好適な極異方円筒
状磁石に関し、特に作用面における表面磁界ひいてはト
ルクの有利な向上を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polar anisotropic cylindrical magnet suitable for use in a rotor of a PM type stepping motor, etc., and particularly to an advantageous improvement of the surface magnetic field on the working surface and hence the torque. Is.

【0002】[0002]

【従来の技術】従来、PM型ステッピングモーターに用
いられる円筒状磁石としては、等方性又はラジアル異方
性あるいは極異方性の磁石が知られている。ここに磁気
特性が最も良好なものは、極異方性磁石であるが、それ
でもまだ十分とはいい難く、その改善が望まれていた。
2. Description of the Related Art Conventionally, isotropic or radial anisotropic or polar anisotropic magnets have been known as cylindrical magnets used in PM type stepping motors. A polar anisotropic magnet has the best magnetic properties, but it is still not sufficient, and its improvement has been desired.

【0003】図1(a)に、従来の極異方円筒状磁石M
を、PM型ステッピングモーターのローターとして組み
込んだ場合の断面を示すが、図示したように、円筒状磁
石Mの着磁面はステータSの実質的な作用面に比べて広
く、着磁面の全てが有効に利用されているわけではなか
った。特にローターの軸心方向中央部は構造的にステー
タSの非作用面と対向しているため、トルクやその他モ
ータ特性には全く寄与していない。。
FIG. 1A shows a conventional polar anisotropic cylindrical magnet M.
Shows a cross section when the rotor is incorporated into a PM type stepping motor. As shown in the figure, the magnetized surface of the cylindrical magnet M is wider than the substantially working surface of the stator S, and the entire magnetized surface is Was not used effectively. In particular, since the central portion in the axial direction of the rotor structurally faces the non-acting surface of the stator S, it does not contribute to torque or other motor characteristics at all. .

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、円筒状磁石の有効作用面に
おける表面磁界を増大し、例えばステッピングモーター
特に2相モーターに使用した場合におけるトルクの向上
を望み得る極異方円筒状磁石を提案することを目的とす
る。
SUMMARY OF THE INVENTION The present invention advantageously solves the above problems and increases the surface magnetic field on the effective working surface of a cylindrical magnet, for example when used in stepping motors, especially two-phase motors. The purpose is to propose a polar anisotropic cylindrical magnet that can be expected to improve torque.

【0005】[0005]

【課題を解決するための手段】すなわちこの発明は、横
断面がO型形状になる円筒の内周面又は外周面のいずれ
か一方を作用面とし、かつ該作用面を円筒軸心方向で少
なくとも2区域に分割した極異方円筒状磁石であって、
各区域の境界領域における磁粉粒子につき、その配向方
向が、磁石の長手方向断面において、近接作用面側にそ
れぞれ集束することからなる極異方円筒状磁石である。
That is, according to the present invention, either the inner peripheral surface or the outer peripheral surface of a cylinder having an O-shaped cross section is used as a working surface, and the working surface is at least in the axial direction of the cylinder. A polar anisotropic cylindrical magnet divided into two sections,
The orientation direction of the magnetic powder particles in the boundary region of each section is a polar anisotropic cylindrical magnet that is focused on the proximity action surface side in the longitudinal cross section of the magnet.

【0006】以下、この発明を具体的に説明する。図2
(a),(b)に、外周面又は内周面をそれぞれ作用面
とし、かつ作用面を軸心方向に2分割した、この発明に
従う極異方円筒状磁石の好適例を断面で示す。図中、矢
印は磁化容易軸の配向方向である。同図に示したとお
り、この発明磁石では、各分割区域の境界領域における
磁粉粒子の磁化容易軸が近接作用面側にそれぞれ集束し
て配向しているので、モーターに組み込んだ場合に図1
(b)に示すように全ての磁束に無駄がなく、従って少
なくともその分だけ従来よりも高い表面磁界ひいては高
いトルクが得られるのである。なお図2(c)は、従来
の極異方円筒状磁石の磁粉粒子の配向状態を示したもの
である。
The present invention will be specifically described below. Figure 2
(A) and (b) show cross-sectional views of a preferred example of the polar anisotropic cylindrical magnet according to the present invention in which the outer peripheral surface or the inner peripheral surface is used as a working surface, and the working surface is divided into two in the axial direction. In the figure, the arrow indicates the orientation direction of the easy axis of magnetization. As shown in the figure, in the magnet of the present invention, the easy axis of magnetization of the magnetic particles in the boundary region of each divided area is focused and oriented on the proximity action surface side.
As shown in (b), there is no waste of all the magnetic flux, and therefore at least that much higher surface magnetic field and thus higher torque than before can be obtained. It should be noted that FIG. 2C shows the orientation state of the magnetic powder particles of the conventional polar anisotropic cylindrical magnet.

【0007】[0007]

【作用】この発明の磁石材料としては、焼結磁石及び合
成樹脂磁石いずれもが利用できる。たとえば焼結磁石及
び合成樹脂磁石における磁粉としては、フェライト系、
アルニコ系、サマリウム−コバルト系、ネオジウム−鉄
−ボロン系など既に知られたものいずれもが使用でき
る。また磁粉粒子の平均粒径についても、既に知られた
範囲で使用することができる。たとえばフェライト系で
は 1.5μm 、希土類系では10〜50μm が一般的である。
The magnet material of the present invention may be either a sintered magnet or a synthetic resin magnet. For example, as a magnetic powder in a sintered magnet and a synthetic resin magnet, a ferrite-based material,
Alnico-based, samarium-cobalt-based, neodymium-iron-boron-based, or any other known material can be used. Also, the average particle size of the magnetic powder particles can be used within a known range. For example, it is generally 1.5 μm for ferrite type and 10 to 50 μm for rare earth type.

【0008】また合成樹脂についても従来公知のものが
使用できる。たとえばポリアミド12、ポリアミド6など
のポリアミド系合成樹脂や、ポリ塩化ビニル、その酢酸
ビニル共重合体、MMA,PS,PPS,PE,PP等
の単独又は共重合したビニル系合成樹脂や、ウレタン,
シリコーン,ポリカーボネート,PBT,PET,PE
EK,CPE,ハイパロン,ネオプレン,SBR,NB
R等の合成樹脂、又はエポキシ系、フェノール系等の熱
硬化合成樹脂が使用できる。さらに磁粉とバインダーで
ある合成樹脂の配合比率は、用途にもよるが一般的には
磁粉:40〜70 vol%とすることが望ましい。なおその他
にも、従来から常用される可塑剤や滑剤、抗酸化剤、表
面処理剤などを目的に応じて適量使用できるのはいうま
でもない。
Also, as the synthetic resin, a conventionally known one can be used. For example, polyamide-based synthetic resins such as polyamide 12 and polyamide 6, polyvinyl chloride, vinyl acetate copolymer thereof, homo- or copolymerized vinyl-based synthetic resins such as MMA, PS, PPS, PE and PP, urethane,
Silicone, Polycarbonate, PBT, PET, PE
EK, CPE, Hypalon, Neoprene, SBR, NB
A synthetic resin such as R or a thermosetting synthetic resin such as an epoxy resin or a phenol resin can be used. Further, the compounding ratio of the magnetic powder and the synthetic resin as the binder depends on the application, but it is generally desirable to set the magnetic powder to 40 to 70 vol%. In addition, it goes without saying that appropriate amounts of conventional plasticizers, lubricants, antioxidants, surface treatment agents and the like can be used according to the purpose.

【0009】なお、プラスチック磁石に適用した場合に
は、焼結磁石のように高温で焼成する必要がないので欠
け割れが少なく、歩留りの向上という点で有利である。
また図3に示すように、全体をプラマグ組成物Pで構成
してシャフトShと一体成形をすることができる点でも有
利であり、いずれもコスト低減に寄与する。
When applied to a plastic magnet, it is not necessary to fire it at a high temperature unlike a sintered magnet, and therefore, there are few chipping cracks, which is advantageous in that the yield is improved.
Further, as shown in FIG. 3, it is advantageous in that the entire structure can be formed of the plastic mag composition P and can be integrally molded with the shaft Sh, and any of them contributes to cost reduction.

【0010】次に、図4にこの発明磁石の製造に用いて
好適な磁場配向成形金型の磁気回路装置について説明す
る。図中、番号1は、非磁性体からなるセンターコア2
に設けたキャビティ、3は永久磁石である。この永久磁
石3の長さは、区画分割された各区域の実質的作用面と
ほぼ同じ長さとし、また同図(b)に示したようにキャ
ビティ1の外周をN極とS極で交互に取り囲む配置にな
っている。また4はセンターコア2の中央部に配置した
強磁性体部であり、この強磁性体部4を非作用面側の中
央部に配置することによって、磁粉粒子の磁化容易軸を
この発明に従う集束配向とすることができるのである。
すなわち分割区域の境界領域の非作用面側にかかる強磁
性体を配置することによって、この境界領域における磁
粉粒子の磁化容易軸を近接作用面側にそれぞれ集束配向
させることができるわけである。なお5は強磁性体から
なるヨークである。
Next, FIG. 4 illustrates a magnetic circuit device of a magnetic field orientation molding die suitable for manufacturing the magnet of the present invention. In the figure, number 1 is a center core 2 made of a non-magnetic material.
The cavities 3 provided in 1 are permanent magnets. The length of the permanent magnet 3 is set to be substantially the same as the substantially working surface of each of the divided areas, and the outer periphery of the cavity 1 is alternated between the N pole and the S pole as shown in FIG. It is arranged to surround it. Further, 4 is a ferromagnetic material portion arranged in the central portion of the center core 2. By arranging this ferromagnetic material portion 4 in the central portion on the non-acting surface side, the easy axis of magnetization of the magnetic powder particles is focused according to the present invention. It can be oriented.
That is, by arranging the ferromagnetic material on the non-acting surface side of the boundary area of the divided area, the easy axis of magnetization of the magnetic powder particles in this boundary area can be focused and oriented on the close acting surface side. Reference numeral 5 is a yoke made of a ferromagnetic material.

【0011】以上図4では、円筒状磁石の外周面を作用
面とする場合について説明したが、内周面を作用面とす
る場合の好適磁気回路装置を開示すると、図5に示すと
おりである。
Although the case where the outer peripheral surface of the cylindrical magnet is used as the working surface has been described above with reference to FIG. 4, a suitable magnetic circuit device in the case where the inner peripheral surface is used as the working surface is disclosed as shown in FIG. .

【0012】なお、強磁性体としては、S55C,S50C,S4
5C等の炭素鋼、 SKD11等のダイス鋼その他パメンジュー
ル、純鉄等が使用できるが、耐摩耗性向上のために表面
硬化処理を施すことは一層有利である。また非磁性体と
しては、 SUS 304等のオーステナイト系ステンレス鋼、
YHD 50等のハイマンガン鋼、銅ベリリウム合金及びN−
7等の非磁性超硬鋼等が用いられる。さらに起磁力部分
の磁石としては、これも既に知られたものを使用するこ
とができ、例えばサマリウム−コバルト系磁石等の永久
磁石はとりわけ有利である。その他、励磁コイルを強磁
性体に巻き付けた電磁石を使用することもできる。
As the ferromagnetic material, S55C, S50C, S4
Carbon steel such as 5C, die steel such as SKD11, pamenjour, pure iron and the like can be used, but it is more advantageous to apply a surface hardening treatment to improve wear resistance. As non-magnetic material, austenitic stainless steel such as SUS 304,
High manganese steel such as YHD 50, copper beryllium alloy and N-
A non-magnetic cemented carbide such as No. 7 is used. Further, as the magnet of the magnetomotive force portion, a known magnet can be used, and a permanent magnet such as a samarium-cobalt magnet is particularly advantageous. In addition, an electromagnet in which an exciting coil is wound around a ferromagnetic material can be used.

【0013】[0013]

【実施例】前掲図4に示した磁気回路装置を組み込んだ
金型を用い、図6に示す形状、寸法になる円筒状磁石
を、以下表1〜3に示す条件で製作した。なお希土類磁
粉を用いる場合には、予め磁化容易軸方向に磁気モーメ
ントを揃えるべく、キャビティ内に導入する直前に、パ
ルス状の高磁場処理を施した。
EXAMPLES Using a mold incorporating the magnetic circuit device shown in FIG. 4 above, a cylindrical magnet having the shape and dimensions shown in FIG. 6 was manufactured under the conditions shown in Tables 1 to 3 below. When rare earth magnetic powder is used, pulsed high magnetic field treatment was performed immediately before the introduction into the cavity in order to align the magnetic moment in the easy axis of magnetization in advance.

【0014】[0014]

【表1】 ・原料 磁粉A:フェライト磁粉(平均粒径 1.5μm のマグネト
プランバイト系ストロンチウム系フェライト) 磁粉B:サマリウム−コバルト磁粉(2−17系;平均粒
径15μm )
[Table 1] Raw magnetic powder A: Ferrite magnetic powder (magnetoplumbite strontium ferrite with an average particle size of 1.5 μm) Magnetic powder B: samarium-cobalt magnetic powder (2-17 system; average particle size 15 μm)

【0015】[0015]

【表2】 ・配合 配合A(プラマグ配合) 磁 粉 :63 vol% ポリアミド12 :36 vol% アミノシランA−1100:1 vol% 配合B(焼結配向) 磁 粉 :50wt% 水 :50wt%TABLE 2 - formulation formulation A (plastic magnet formulation) magnetic powder: 63 vol% Polyamide 12: 36 vol% aminosilane A-1100: 1 vol% formulation B (sintered orientation) magnetic powder: 50 wt% Water: 50 wt%

【0016】[0016]

【表3】 ・成形方法A:プラマグ射出成形条件 使用ペレット配合 :配合A 成形機 :コイル内蔵式磁場配向射出成形機 射出シリンダー温度:300 ℃ 金型温度 :100 ℃ 射出圧力 :1500kg/cm2 励磁時間 :15秒 冷却時間 :20秒 射出サイクル :40秒 ・成形方法B:焼結磁石作成条件 使用スラリー :配合B 成形機 :コイル搭載式磁場配向圧縮成形機 水抜き方法 :インジェクション方式 励磁方向 :竪磁場 成形温度 :20℃ 焼成温度 :1250℃ ・ホール素子 70μm 角のガリウム−ひ素
使用
[Table 3] Molding method A: Plamag injection molding conditions Pellets used: Mixing A Molding machine: Magnetic field orientation injection molding machine with built-in coil Injection cylinder temperature: 300 ℃ Mold temperature: 100 ℃ Injection pressure: 1500 kg / cm 2 Excitation Time: 15 seconds Cooling time: 20 seconds Injection cycle: 40 seconds ・ Molding method B: Sintered magnet making conditions Slurry used: Mixing B Molding machine: Coil-mounted magnetic field orientation compression molding machine Draining method: Injection method Excitation direction: Vertical Magnetic field Molding temperature: 20 ℃ Firing temperature: 1250 ℃ ・ Hall element 70μm square gallium-arsenic is used

【0017】かくして得られた極異方筒状磁石の有効作
用面における表面磁束密度及び得られた円筒状磁石をP
M型ステッピングモーターのローターとして使用したと
きのホールディングトルクについて測定した結果を、表
4に示す。
The surface magnetic flux density on the effective working surface of the thus obtained polar anisotropic cylindrical magnet and the obtained cylindrical magnet are P
Table 4 shows the measurement results of the holding torque when used as the rotor of the M-type stepping motor.

【0018】[0018]

【表4】 [Table 4]

【0019】同表より明らかなように、この発明に従う
円筒状磁石は、実質的作用面における表面磁束密度が大
幅に改善され、それに伴いホールディングトルクも向上
している。
As is clear from the table, the cylindrical magnet according to the present invention has a substantially improved surface magnetic flux density on the substantially working surface, and accordingly a holding torque.

【0020】[0020]

【発明の効果】かくしてこの発明によれば、従来有効利
用が図られていなかった分割区域の境界領域における磁
粉粒子を効果的に活用することができ、従って実質的作
用面における表面磁束密度ひいてはモーターホールディ
ングトルクの格段の向上を図ることができる。
As described above, according to the present invention, it is possible to effectively utilize the magnetic powder particles in the boundary region of the divided areas, which has not been effectively utilized in the related art, and therefore, the surface magnetic flux density on the substantial working surface and thus the motor. It is possible to significantly improve the holding torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、従来の円筒状磁石を組み込んだステ
ッピングモーターの断面図である。(b)は、この発明
に従う円筒状磁石を組み込んだステッピングモーターの
断面図である。
FIG. 1A is a cross-sectional view of a stepping motor incorporating a conventional cylindrical magnet. (B) is a sectional view of a stepping motor incorporating a cylindrical magnet according to the present invention.

【図2】円筒状磁石の磁粉粒子の磁化容易軸の配向方向
を示す断面図である。
FIG. 2 is a sectional view showing an orientation direction of an easy axis of magnetization of magnetic powder particles of a cylindrical magnet.

【図3】シャフトと一体成形した円筒状磁石の模式図で
ある。
FIG. 3 is a schematic view of a cylindrical magnet integrally formed with a shaft.

【図4】円筒外周を作用面とするこの発明に従う円筒状
磁石の製造に用いて好適な磁気回路装置を示した図であ
る。
FIG. 4 is a diagram showing a magnetic circuit device suitable for use in manufacturing a cylindrical magnet according to the present invention having a cylinder outer periphery as a working surface.

【図5】円筒内周を作用面とするこの発明に従う円筒状
磁石の製造に用いて好適な磁気回路装置を示した図であ
る。
FIG. 5 is a diagram showing a magnetic circuit device suitable for use in manufacturing a cylindrical magnet according to the present invention having an inner circumference as a working surface.

【図6】実施例で作製した円筒状磁石の寸法、形状を示
した図である。
FIG. 6 is a diagram showing dimensions and shapes of a cylindrical magnet manufactured in an example.

【符号の説明】[Explanation of symbols]

M 異方円筒状磁石 S ステータ Sh シャフト P フラマグ組成物 1 キャビティ 2 センターコア 3 永久磁石 4 センターコアの強磁性体部 5 ヨーク M Anisotropic cylindrical magnet S Stator Sh Shaft P Flamag composition 1 Cavity 2 Center core 3 Permanent magnet 4 Ferromagnetic part of center core 5 Yoke

フロントページの続き (72)発明者 主代 晃一 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 菊地 孝宏 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 安田 晃 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社東京本社内Front Page Continuation (72) Inventor Koichi Daiichi Kawasaki-cho, Chiba City, Chiba Prefecture, Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Takahiro Kikuchi, Kawasaki-machi, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Akira Yasuda 2-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Co., Ltd. Tokyo head office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 横断面がO型形状になる円筒の内周面又
は外周面のいずれか一方を作用面とし、かつ該作用面を
円筒軸心方向で少なくとも2区域に分割した極異方円筒
状磁石であって、各区域の境界領域における磁粉粒子に
つき、その配向方向が、磁石の長手方向断面において、
近接作用面側にそれぞれ集束することを特徴とする極異
方円筒状磁石。
1. A polar anisotropic cylinder in which either the inner peripheral surface or the outer peripheral surface of a cylinder having an O-shaped cross section is used as a working surface, and the working surface is divided into at least two areas in the axial direction of the cylinder. -Shaped magnet, the orientation direction of the magnetic powder particles in the boundary region of each area, in the longitudinal cross section of the magnet,
A polar anisotropic cylindrical magnet characterized by focusing on the proximity action surface side.
JP3344955A 1991-12-26 1991-12-26 Extremely anisotropic cylindrical magnet Expired - Fee Related JP3012067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344955A JP3012067B2 (en) 1991-12-26 1991-12-26 Extremely anisotropic cylindrical magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344955A JP3012067B2 (en) 1991-12-26 1991-12-26 Extremely anisotropic cylindrical magnet

Publications (2)

Publication Number Publication Date
JPH05175038A true JPH05175038A (en) 1993-07-13
JP3012067B2 JP3012067B2 (en) 2000-02-21

Family

ID=18373287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344955A Expired - Fee Related JP3012067B2 (en) 1991-12-26 1991-12-26 Extremely anisotropic cylindrical magnet

Country Status (1)

Country Link
JP (1) JP3012067B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161040A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001161042A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001161041A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001169484A (en) * 1993-12-28 2001-06-22 Sanyo Electric Co Ltd Rotor of motor for compressor
JP2001178046A (en) * 1993-12-28 2001-06-29 Sanyo Electric Co Ltd Compressor
JP2002084691A (en) * 1993-12-28 2002-03-22 Sanyo Electric Co Ltd Sealed compressor
JP2002084694A (en) * 1993-12-28 2002-03-22 Sanyo Electric Co Ltd Sealed compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161040A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001161042A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001161041A (en) * 1993-12-28 2001-06-12 Sanyo Electric Co Ltd Rotor of compressor motor
JP2001169484A (en) * 1993-12-28 2001-06-22 Sanyo Electric Co Ltd Rotor of motor for compressor
JP2001178046A (en) * 1993-12-28 2001-06-29 Sanyo Electric Co Ltd Compressor
JP2002084691A (en) * 1993-12-28 2002-03-22 Sanyo Electric Co Ltd Sealed compressor
JP2002084694A (en) * 1993-12-28 2002-03-22 Sanyo Electric Co Ltd Sealed compressor

Also Published As

Publication number Publication date
JP3012067B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US5223759A (en) DC brushless motor with solid rotor having permanent magnet
TWI289967B (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
US20070170801A1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4029679B2 (en) Bond magnet for motor and motor
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP3007491B2 (en) Side-oriented anisotropic magnet
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP3012049B2 (en) Anisotropic segment type magnet
JPH0452066B2 (en)
JPH01129741A (en) Magnet for rotor
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2004242378A (en) Motor, motor rotor, and compound anisotropic magnet
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP3719782B2 (en) Manufacturing method of surface multipolar anisotropic ring magnet
JP3012066B2 (en) Extremely anisotropically oriented magnet
JPH06349630A (en) Anisortopical magmet
JP2005033844A (en) Motor and its casing
JPH05144632A (en) Bipolar cylindrical magnet
JP3049134B2 (en) 2-pole cylindrical magnet
JP4737202B2 (en) Method for orienting anisotropic bonded magnet for motor
JPH08322175A (en) Permanent magnet stepping motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees