JP3012066B2 - Extremely anisotropically oriented magnet - Google Patents

Extremely anisotropically oriented magnet

Info

Publication number
JP3012066B2
JP3012066B2 JP3341130A JP34113091A JP3012066B2 JP 3012066 B2 JP3012066 B2 JP 3012066B2 JP 3341130 A JP3341130 A JP 3341130A JP 34113091 A JP34113091 A JP 34113091A JP 3012066 B2 JP3012066 B2 JP 3012066B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
working surface
orientation
anisotropically oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3341130A
Other languages
Japanese (ja)
Other versions
JPH05175035A (en
Inventor
哲 中塚
逸郎 田中
晃一 主代
孝宏 菊地
晃 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP3341130A priority Critical patent/JP3012066B2/en
Publication of JPH05175035A publication Critical patent/JPH05175035A/en
Application granted granted Critical
Publication of JP3012066B2 publication Critical patent/JP3012066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、モータの永久磁石型
ロータ、ステータ等の用途に好適な極異方配向磁石に関
し、特に作用面の実質的な作用領域における表面磁界の
向上を図ろうとするものであり、モータのトルクを向上
させるのに有利である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polar anisotropically oriented magnet suitable for use as a permanent magnet type rotor for a motor, a stator, and the like, and more particularly to an improvement in a surface magnetic field in a substantial working area of a working surface. This is advantageous for improving the torque of the motor.

【0002】[0002]

【従来の技術】従来、モータ用の円筒又は円柱形状の永
久磁石としては、磁粉の磁化容易軸が発現していないか
ランダム配列になる等方性磁石、また磁粉の磁化容易軸
が、半径方向(ラジアル方向)に配向するラジアル異方
性磁石、さらに周面を作用面として極異方に配向する極
異方配向磁石が知られている。
2. Description of the Related Art Conventionally, as a cylindrical or columnar permanent magnet for a motor, an isotropic magnet in which magnetic easy axes of magnetic particles do not appear or have a random arrangement, and an easy axis of magnetic particles have A radially anisotropic magnet oriented in the (radial direction), and a polar anisotropic oriented magnet oriented in a very anisotropic manner with a peripheral surface serving as an active surface are known.

【0003】[0003]

【発明が解決しようとする課題】上記の磁石のうち、極
異方配向磁石は作用面表面の磁束密度を高くとることが
でき、磁気特性が最も良好なものである。しかしなが
ら、このような極異方配向磁石であっても、実際のモー
タに組み込んで、例えばステータに用いる場合には、ロ
ータの回転に寄与する実質的な作用領域は、磁石の高さ
方向中央部のみであって、端部は、モータに配設される
励磁コイルやブラシに対向するので、実際のロータ回転
用の磁束密度には寄与していない。したがってかかる端
部の配向は無駄なものとなっていた。
Among the above-mentioned magnets, the polar anisotropic magnet has the highest magnetic flux density on the working surface and has the best magnetic properties. However, even when such a polar anisotropic magnet is incorporated in an actual motor and used for a stator, for example, the substantial working area contributing to the rotation of the rotor is located at the center in the height direction of the magnet. However, since the end faces the exciting coil and the brush arranged in the motor, it does not contribute to the actual magnetic flux density for rotating the rotor. Therefore, the orientation of such an end is useless.

【0004】この発明は、上記の問題を有利に解決する
もので、磁石の高さ方向端部の磁石配向を有効活用する
ことで、作用面の実作用領域における表面磁界の実質的
な向上を図り、もってモータのトルクを向上させること
のできる極異方配向磁石を提案することを目的とする。
[0004] The present invention advantageously solves the above-mentioned problem, and effectively improves the surface magnetic field in the actual working area of the working surface by effectively utilizing the magnet orientation at the end in the height direction of the magnet. It is an object of the present invention to propose a polar anisotropically oriented magnet capable of improving the motor torque.

【0005】[0005]

【課題を解決するための手段】成形金型の磁気回路に工
夫を加え、磁石材料中における磁粉粒子の配向方向を制
御することによって、極異方配向磁石の実質的な作用面
における表面磁界の向上を図るこの発明の要旨は次のと
おりである。
Means for Solving the Problems By modifying the magnetic circuit of the molding die and controlling the orientation direction of the magnetic powder particles in the magnet material, the surface magnetic field on the substantial working surface of the extremely anisotropically oriented magnet is controlled. The gist of the present invention which aims to improve is as follows.

【0006】円筒又は円柱形状になり、周面の一つを作
用面とすべく中心軸に直交する断面で磁粉の磁化容易軸
が極異方の配向へ揃う磁石において、上記磁粉の磁化容
易軸が、中心軸を含む断面では該作用面の中央寄りに集
束配向してなる極異方配向磁石。
[0006] In a magnet having a cylindrical or columnar shape and having an axis of easy magnetization of magnetic powder in a very anisotropic orientation in a cross section orthogonal to the central axis so that one of the peripheral surfaces is used as a working surface, However, in a cross section including the central axis, a polar anisotropically oriented magnet that is focused and oriented toward the center of the working surface.

【0007】図1〜図3に、この発明の極異方配向磁石
を10極配向の例として斜視及び中心軸を含む断面で示
し、図中で磁粉の配向方向を実線で表した。図1は外周
面を作用面とする円筒極異方配向磁石であり、また図2
は内周面を作用面とする円筒極異方配向磁石であり、さ
らに図3は周面を作用面とする円柱極異方配向磁石であ
る。一方、比較のために従来の(円筒)極異方配向磁石
を図4に示す。図1〜3と図4との対比から明らかなよ
うに、これらの磁石は何れも、中心軸を含む断面で、磁
粉の磁化容易軸が作用面の中央部寄りに集束配向してい
る。
FIGS. 1 to 3 show a polar anisotropically oriented magnet according to the present invention in a cross section including a perspective view and a central axis as an example of 10 poles orientation. In the drawings, the orientation direction of magnetic powder is shown by a solid line. FIG. 1 shows a cylindrical pole anisotropically oriented magnet having an outer peripheral surface as a working surface.
Is a cylindrical pole anisotropically oriented magnet having an inner circumferential surface as a working surface, and FIG. 3 is a cylindrical pole anisotropically oriented magnet having a circumferential surface as a working surface. On the other hand, a conventional (cylindrical) polar anisotropically oriented magnet is shown in FIG. 4 for comparison. As is clear from the comparison between FIGS. 1 to 3 and FIG. 4, in each of these magnets, in the section including the central axis, the axis of easy magnetization of the magnetic powder is focused toward the center of the working surface.

【0008】[0008]

【作用】極異方配向磁石をステータに用いるモータの断
面を図5に、この発明の磁石(同図(a) )と従来の磁石
(同図(b) )とを比較して示す。図中1a ,1b は円筒
磁石、2はモータケース、3はロータ磁極、4はロータ
励磁コイル、5はロータシャフト、6はブラシ、7はブ
ラシに導通するためのリード線、8はロータシャフトの
軸受け、9は板ばね、10はワッシャである。
FIG. 5 shows a cross section of a motor using a polar anisotropically oriented magnet for a stator, comparing the magnet of the present invention (FIG. 5A) with a conventional magnet (FIG. 5B). In the figures, 1a and 1b are cylindrical magnets, 2 is a motor case, 3 is a rotor magnetic pole, 4 is a rotor excitation coil, 5 is a rotor shaft, 6 is a brush, 7 is a lead wire for conducting to the brush, and 8 is a rotor shaft. The bearing, 9 is a leaf spring, and 10 is a washer.

【0009】前述したとおり、従来の磁石(図5(b) 参
照)は、ロータに対向する実作用領域が、磁石の中央寄
りであって、端部は、モータに配設される励磁コイルや
ブラシに対向するのみで、無駄な磁束を生じさせてい
る。これに対してこの発明では、図5(a) に示したとお
り極異方配向磁石の中心軸を含む断面において、磁粉の
磁化容易軸の配向方向を作用面の中央寄り(実作用領
域)に集束させることにより実質的に全ての磁束が実作
用領域に集束するので、端部の磁粉配向を有効に活用し
て実作用領域での表面磁界を実質的に向上させることが
でき、ひいてはトルクの大きなモータを得ることができ
るのである。
As described above, in the conventional magnet (see FIG. 5 (b)), the actual working area facing the rotor is near the center of the magnet, and the end is formed by an exciting coil or the like disposed in the motor. Just facing the brush generates a useless magnetic flux. On the other hand, in the present invention, as shown in FIG. 5 (a), in the section including the central axis of the extremely anisotropically oriented magnet, the orientation direction of the axis of easy magnetization of the magnetic powder is shifted toward the center of the working surface (actual working area). By focusing, substantially all of the magnetic flux is focused on the actual working area, so that the surface magnetic field in the actual working area can be substantially improved by effectively utilizing the orientation of the magnetic particles at the ends, and thus the torque can be reduced. A large motor can be obtained.

【0010】この発明の磁石材料としては、焼結磁石及
び合成樹脂磁石いずれもが利用できる。合成樹脂磁石
は、焼結磁石のように高温焼成することがないので磁石
製品に歪が入らず、またバインダーの存在によって磁石
製品の割れ欠け率が少なく、歩留まりの高い生産ができ
る点、またシャフトやカップと一体成形できる点では有
利である。
As the magnet material of the present invention, both sintered magnets and synthetic resin magnets can be used. Synthetic resin magnets do not sinter at high temperatures unlike sintered magnets, so there is no distortion in the magnet product, and the presence of the binder reduces the rate of cracking and chipping of the magnet product, enabling high-yield production. This is advantageous in that it can be integrally formed with the cup or the cup.

【0011】焼結磁石及び合成樹脂磁石における磁粉と
しては、フェライト系、アルニコ系、サマリウム−コバ
ルト系、ネオジウム−鉄−ボロン系など既に知られたも
のがいずれもが使用できる。また磁粉粒子の平均粒径に
ついても、既に知られた範囲で使用することができる。
たとえばフェライト系では 1.5μm 、希土類系では10〜
50μm が一般的である。
As the magnetic powder for the sintered magnet and the synthetic resin magnet, any of magnetic powders such as ferrite, alnico, samarium-cobalt, and neodymium-iron-boron can be used. Also, the average particle size of the magnetic powder particles can be used within a known range.
For example, 1.5μm for ferrite, 10 ~
50 μm is common.

【0012】また合成樹脂についても従来公知のものが
使用できる。たとえばポリアミド12、ポリアミド6など
のポリアミド系合成樹脂や、ポリ塩化ビニル、その酢酸
ビニル共重合体、MMA,PS,PPS,PE,PP等
の単独又は共重合したビニル系合成樹脂や、ウレタン,
シリコーン,ポリカーボネート,PBT,PET,PE
EK,CPE,ハイパロン,ネオプレン,SBR,NB
R等の合成樹脂、又はエポキシ系、フェノール系等の熱
硬化合成樹脂が使用できる。
Conventional synthetic resins can also be used. For example, polyamide-based synthetic resins such as polyamide 12 and polyamide 6, polyvinyl chloride, vinyl acetate copolymer thereof, homo- or copolymerized vinyl-based synthetic resins such as MMA, PS, PPS, PE, PP, and urethane,
Silicone, polycarbonate, PBT, PET, PE
EK, CPE, Hypalon, Neoprene, SBR, NB
A synthetic resin such as R or a thermosetting synthetic resin such as an epoxy-based or phenol-based resin can be used.

【0013】さらに磁粉とバインダーである合成樹脂の
配合比率は、用途にもよるが一般的には磁粉:40〜70 v
ol%とすることが望ましい。なおその他にも、従来から
常用される可塑剤や滑剤、抗酸化剤、表面処理剤などを
目的に応じて適量使用できるのはいうまでもない。
Further, the mixing ratio of the magnetic powder and the synthetic resin as a binder depends on the use, but generally the magnetic powder is 40 to 70 v.
ol% is desirable. In addition, it goes without saying that appropriate amounts of conventionally used plasticizers, lubricants, antioxidants, surface treatment agents and the like can be used according to the purpose.

【0014】次に、この発明に係る磁場配向成形金型の
磁気回路装置について説明する。図6は、図1に示した
外周面が作用面となる円筒極異方配向磁石を製造する場
合に対応するもので、同図(a) に、中心軸を含む断面で
示し、また同図(b) 、(c) で同図(a) のA-A 断面、B-B
断面を示す。図中番号11a は円筒状キャビティであり、
このキャビティ11a は、外周面の中央領域を極異方配向
用の環状磁石12で、外周面の端部を非磁性体15で、内周
面を非磁性体13で、両端面を強磁性体14で、それぞれ囲
繞して形成される。より好ましくは、内周面の両端部近
傍を非磁性体とする。
Next, a magnetic circuit device for a magnetic field orientation molding die according to the present invention will be described. FIG. 6 corresponds to a case of manufacturing the cylindrical pole anisotropically oriented magnet in which the outer peripheral surface shown in FIG. 1 is the working surface. FIG. 6 (a) shows a cross section including the central axis, and FIG. (b) and (c) show the AA cross section and BB in FIG.
3 shows a cross section. Number 11a in the figure is a cylindrical cavity,
In the cavity 11a, the central region of the outer peripheral surface is a ring magnet 12 for extremely anisotropic orientation, the end of the outer peripheral surface is a non-magnetic material 15, the inner peripheral surface is a non-magnetic material 13, and both end surfaces are ferromagnetic materials. At 14, each is formed to surround. More preferably, the vicinity of both ends of the inner peripheral surface is made of a non-magnetic material.

【0015】このように極異方配向用の環状磁石12を、
つくろうとする磁石の全高よりも短い長さで、磁石の作
用面中央域に配置し、かつ強磁性体14を両端面に配置す
ることが特徴である。
As described above, the ring magnet 12 for polar anisotropic orientation is
It is characterized in that it has a length shorter than the total height of the magnet to be formed, is located in the central area of the working surface of the magnet, and has the ferromagnetic material 14 on both end faces.

【0016】さて図6に示したところにおいて、たとえ
ば射出成形によって円筒状キャビティ11a 内に導入され
た合成樹脂磁石材料は、軟化状態にある間に、外周面に
配設された環状磁石12から磁場を印加されて、極異方の
配向に揃うわけであるが、その際にキャビティ端部では
磁力線は強磁性体14に引き寄せられて、図中矢印(矢印
の向きは不問)で示した方向の磁粉配向になって、その
結果として作用面における集束配向が形成されるのであ
る。
As shown in FIG. 6, the synthetic resin magnet material introduced into the cylindrical cavity 11a by, for example, injection molding is subjected to a magnetic field from the annular magnet 12 disposed on the outer peripheral surface during the softening state. At the end of the cavity, the lines of magnetic force are attracted to the ferromagnetic material 14, and the direction of the arrow shown in the drawing (the direction of the arrow does not matter) is applied. The orientation of the magnetic particles results in the formation of a focused orientation at the working surface.

【0017】なお、円柱形状の極異方磁石の場合も、図
6で示す磁気回路装置を適用して、この発明の極異方配
向を付与させることができる。この場合において、非磁
性体13は不要である。
Incidentally, also in the case of a columnar pole anisotropic magnet, the pole anisotropic orientation of the present invention can be imparted by applying the magnetic circuit device shown in FIG. In this case, the non-magnetic body 13 is unnecessary.

【0018】次に図7に示す磁気回路装置は、図2に示
した内周面が作用面となる円筒極異方配向磁石を製造す
る場合に対応するもので、同図(a) に、中心軸を含む断
面で示し、また同図(b) 、(c) で同図(a) のA-A 断面、
B-B 断面を示す。図中番号11b は円筒状キャビティであ
り、このキャビティ11b は、内周面の中央領域(実作用
領域) 極異方配向用の環状磁石17で、内周面の端部を
非磁性体21で、外周面を非磁性体19で、両端面を強磁性
体20で、それぞれ囲繞して形成される。より好ましく
は、外周面の両端部近傍を非磁性体とする。また18はバ
ックヨーク(強磁性体)である。
Next, the magnetic circuit device shown in FIG. 7 corresponds to the case of manufacturing the cylindrical pole anisotropically oriented magnet having the inner peripheral surface shown in FIG. 2 as the working surface, and FIG. The cross section including the central axis is shown, and (b) and (c) in FIG.
BB section is shown. In the figure, reference numeral 11b denotes a cylindrical cavity. This cavity 11b is a central region (actual working region) of the inner peripheral surface. An annular magnet 17 for polar anisotropic orientation. The outer peripheral surface is surrounded by a non-magnetic material 19, and both end surfaces are surrounded by a ferromagnetic material 20, respectively. More preferably, the vicinity of both ends of the outer peripheral surface is made of a non-magnetic material. Reference numeral 18 denotes a back yoke (ferromagnetic material).

【0019】このように極異方配向用の環状磁石17を、
つくろうとする磁石の全高よりも短い長さ(磁石作用面
の実作用領域に等しい長さ)でつくろうとする磁石の作
用面中央域に配置し、かつ両端面には強磁性体20を配置
することが特徴である。さて図7に示したところにおい
て、たとえば射出成形によって円筒状キャビティ11b 内
に導入された合成樹脂磁石材料は、軟化状態にある間
に、内周面に配設された環状磁石17から磁場を印加され
て、極異方の配向に揃うわけであるが、その際にキャビ
ティ端部では磁力線は強磁性体20に引き寄せられて、図
中矢印(矢印の向きは不問)で示した方向の磁粉配向に
なって、その結果として作用面における集束配向が形成
されるのである。
As described above, the ring magnet 17 for polar anisotropic orientation is
A magnet shorter than the total height of the magnet to be made (length equal to the actual working area of the magnet working face) is arranged in the center area of the working face of the magnet to be made, and ferromagnetic bodies 20 are arranged on both end faces. It is characteristic. Now, as shown in FIG. 7, the synthetic resin magnet material introduced into the cylindrical cavity 11b by, for example, injection molding applies a magnetic field from the annular magnet 17 disposed on the inner peripheral surface while in the softened state. At this time, the magnetic force lines are drawn to the ferromagnetic material 20 at the end of the cavity, and the magnetic particles are oriented in the direction indicated by the arrow in the drawing (the direction of the arrow does not matter). And consequently a focused orientation at the working surface is formed.

【0020】なお、上記した強磁性体14、20の材料は、
S55C,S50C,S40C等の炭素鋼、SKD11, SKD61等のダイス
鋼及びパーメンジュール、純鉄等が使用される。耐摩耗
性向上のために表面硬化処理を施すことは、より有利で
ある。また非磁性体13、15、19及び21の材料は、SUS 30
4 などのオーステナイト系ステンレス鋼、YHD 50等の高
マンガン鋼、銅ベリリウム合金、青銅、真ちゅう及び非
磁性超硬鋼N−7等が用いられる。
The materials of the ferromagnetic bodies 14 and 20 are as follows:
Carbon steel such as S55C, S50C, and S40C, die steel such as SKD11 and SKD61, permendur, and pure iron are used. It is more advantageous to perform a surface hardening treatment for improving abrasion resistance. The material of the non-magnetic materials 13, 15, 19 and 21 is SUS 30
For example, austenitic stainless steel such as No. 4, high manganese steel such as YHD50, copper beryllium alloy, bronze, brass and non-magnetic cemented carbide N-7 are used.

【0021】環状磁石12、17には、既知の磁石が使用で
きる。たとえばサマリウムコバルト系磁石等の永久磁
石、また励磁コイルを強磁性体に券回した電磁石が使用
できる。
Known magnets can be used for the ring magnets 12 and 17. For example, a permanent magnet such as a samarium-cobalt magnet, or an electromagnet in which an exciting coil is made of a ferromagnetic material can be used.

【0022】また磁場中成形方法も、既知の成形方法が
使用可能であり、例えば磁場配向射出成形、磁場配向圧
縮成形及び磁場配向RIM成形などがある。
As the molding method in a magnetic field, known molding methods can be used, and examples thereof include magnetic field orientation injection molding, magnetic field orientation compression molding, and magnetic field orientation RIM molding.

【0023】さらに希土類磁粉を用いる場合には、予め
又はキャビティ内に導入した直後に、パルス状の高磁場
をかけ、磁気モーメントを揃える前処理を施すことが望
ましい。
When a rare earth magnetic powder is used, it is desirable to apply a pulsed high magnetic field in advance or immediately after the rare earth magnetic powder has been introduced, and to perform a pretreatment for equalizing the magnetic moment.

【0024】図8に、合成樹脂磁石を用いて、シャフト
やカップと一体成形した例を示す。
FIG. 8 shows an example in which a synthetic resin magnet is integrally formed with a shaft or a cup.

【0025】[0025]

【実施例】図7に示した金型磁気回路を用いて、図9に
示す内周面を作用面とする円筒極異方配向磁石を磁場配
向射出成形法及び磁場配向圧縮成形法により製造した。
図9の磁石の内径は26mm、外径は36mmであり、また高さ
は32mm、内周面の実作用領域長さは24mmである。
EXAMPLE Using a mold magnetic circuit shown in FIG. 7, a cylindrical pole anisotropically oriented magnet having an inner peripheral surface as a working surface shown in FIG. 9 was produced by a magnetic field orientation injection molding method and a magnetic field orientation compression molding method. .
The inner diameter of the magnet of FIG. 9 is 26 mm, the outer diameter is 36 mm, the height is 32 mm, and the length of the actual working area of the inner peripheral surface is 24 mm.

【0026】磁粉の種類は次の2種とした。 磁粉A:フェライト磁粉(平均粒径1.5 μm のマグネト
プランバイト系ストロンチウム系フェライト) 磁粉B:サマリウムコバルト磁粉(Sm2Co17 系、平均粒
径15μm )
The following two types of magnetic powder were used. Magnetic powder A: Ferrite magnetic powder (magnet plumbite-based strontium-based ferrite having an average particle size of 1.5 μm) Magnetic powder B: Samarium-cobalt magnetic powder (Sm 2 Co 17- based, average particle size of 15 μm)

【0027】磁石原料の配合は、合成樹脂磁石、焼結磁
石を各々1種の次の配合とした。 配合A(合成樹脂磁石配合) 磁粉:63 vol%、ポリアミド12:36 vol%、アミノシラ
ンA-1100:1 vol % 配合B(焼結磁石配合) 磁粉:50 wt %、水50 wt %
The raw materials for the magnets were one type each of a synthetic resin magnet and a sintered magnet. Compound A (compound of synthetic resin magnet) Magnetic powder: 63 vol%, Polyamide 12: 36 vol%, Aminosilane A-1100: 1 vol% Compound B (compound of sintered magnet) Magnetic powder: 50 wt%, water 50 wt%

【0028】成形条件は合成樹脂磁石、焼結磁石を各々
1種の次の条件とした。 成形条件A(合成樹脂磁石) 使用ペレット配合:配合A 成形機 :コイル内蔵式磁場配向射出成形機 射出シリンダ温度:300 ℃ 金型温度 :100 ℃ 射出圧力 :1500kgf/cm2 配向用励磁時間 :15秒 冷却時間 :20秒 射出サイクル :40秒 成形条件B(焼結磁石) 使用スラリー :配合B 成形機 :コイル内蔵式磁場配向圧縮成形機 水抜き方法 :インジェクション方式 励磁方向 :竪磁場 成形温度 :20℃ 焼成温度 :1250℃
The molding conditions were one type of synthetic resin magnet and one sintered magnet, respectively. Molding condition A (synthetic resin magnet) Pellet blending used: blending A Molding machine: Built-in coil type magnetic field injection molding machine Injection cylinder temperature: 300 ° C Mold temperature: 100 ° C Injection pressure: 1500kgf / cm 2 Excitation time for orientation: 15 Second Cooling time: 20 seconds Injection cycle: 40 seconds Molding condition B (sintered magnet) Slurry: Blending B Molding machine: Magnetic coil oriented compression molding machine with coil Drainage method: Injection method Excitation direction: Vertical magnetic field Molding temperature: 20 ℃ Firing temperature : 1250 ℃

【0029】かくして得られた磁石の作用面における表
面磁束密度、ステータとしてモータに組み込んだ場合の
モータホールディングトルク値の測定結果を表1に示
す。また比較のために、中心軸を含む断面において磁粉
が作用面に集束配向していない従来の極異方配向磁石に
ついての測定結果も併記した。なお表面磁束密度は、70
μm 角のガリウムひ素製のホール素子を用いたガウスメ
ータによって測定したものであり、モータホールディン
グトルクは、図5に示したDCモータに組み込んで、比
較例を基準とする相対評価で示した。
Table 1 shows the measurement results of the thus obtained surface magnetic flux density on the working surface of the magnet and the motor holding torque value when the magnet is incorporated in a motor as a stator. For comparison, the measurement results of a conventional extremely anisotropically oriented magnet in which the magnetic powder is not focused and oriented on the working surface in a section including the central axis are also shown. The surface magnetic flux density is 70
It was measured by a Gauss meter using a Hall element made of gallium arsenide of μm square, and the motor holding torque was incorporated in the DC motor shown in FIG. 5 and shown by relative evaluation based on a comparative example.

【0030】[0030]

【表1】 [Table 1]

【0031】同表より明らかなように、この発明に従い
円筒状磁石中の磁粉粒子を作用面中央域に集束配向させ
た実施例1〜4は、作用面における表面磁界が向上し、
それに伴いモータートルクも向上している。
As is clear from the table, in Examples 1 to 4 in which the magnetic powder particles in the cylindrical magnet were focused and oriented in the central region of the working surface according to the present invention, the surface magnetic field on the working surface was improved.
The motor torque has also improved accordingly.

【0032】[0032]

【発明の効果】この発明の極異方配向磁石は、磁粉の磁
化容易軸が、中心軸を含む断面では該作用面の中央寄り
に集束配向してなることから、作用面の実質的な作用領
域における表面磁界の向上を図ることができ、ひいては
モータに組み込んだ場合にトルクを有利に向上させるこ
とができる。
According to the pole-anisotropically oriented magnet of the present invention, since the axis of easy magnetization of the magnetic powder is focused and oriented toward the center of the working surface in a cross section including the central axis, the substantial effect of the working surface is achieved. The surface magnetic field in the region can be improved, and the torque can be advantageously improved when incorporated in the motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の、外周面を作用面とする円筒
極異方配向磁石の説明図である。
FIG. 1 is an explanatory view of a cylindrical pole anisotropically oriented magnet having an outer peripheral surface as a working surface according to the present invention.

【図2】図2は、この発明の、内周面を作用面とする円
筒極異方配向磁石の説明図である。
FIG. 2 is an explanatory diagram of a cylindrical pole anisotropically oriented magnet having an inner peripheral surface as a working surface according to the present invention.

【図3】図3は、この発明の、周面を作用面とする円柱
極異方配向磁石の説明図である。
FIG. 3 is an explanatory view of a cylindrical pole anisotropically oriented magnet having a peripheral surface as a working surface according to the present invention.

【図4】図4は、従来の極異方配向磁石の説明図であ
る。
FIG. 4 is an explanatory view of a conventional polar anisotropically oriented magnet.

【図5】図5は、極異方配向磁石をステータに用いるモ
ータの断面図である。
FIG. 5 is a cross-sectional view of a motor using a polar anisotropically oriented magnet for a stator.

【図6】図6は、図1に対応する外周面が作用面となる
円筒極異方配向磁石の磁場配向成形金型の磁気回路装置
の説明図である。
FIG. 6 is an explanatory view of a magnetic circuit device of a magnetic field orientation molding die of a cylindrical pole anisotropically oriented magnet whose outer peripheral surface corresponding to FIG. 1 is an action surface.

【図7】図7は、図2に対応する内周面が作用面となる
円筒極異方配向磁石の磁場配向成形金型の磁気回路装置
の説明図である。
FIG. 7 is an explanatory view of a magnetic circuit device of a magnetic field orientation molding die of a cylindrical pole anisotropically oriented magnet whose inner peripheral surface corresponds to FIG.

【図8】図8は、シャフトやカップと一体成形してなる
合成樹脂磁石の説明図である。
FIG. 8 is an explanatory diagram of a synthetic resin magnet formed integrally with a shaft and a cup.

【図9】図9は、実施例に供した磁石の寸法形状の説明
図である。
FIG. 9 is an explanatory diagram of the dimensions and shape of the magnet used in the example.

フロントページの続き (72)発明者 菊地 孝宏 千葉県千葉市川崎町1番地 川崎製鉄株 式会社 技術研究本部内 (72)発明者 安田 晃 東京都千代田区内幸町2丁目2番3号 川崎製鉄株式会社 東京本社内 (58)調査した分野(Int.Cl.7,DB名) H01F 7/02 Continuing from the front page (72) Inventor Takahiro Kikuchi 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corp. Technology Research Division (72) Inventor Akira Yasuda 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Corporation Tokyo Head Office (58) Fields surveyed (Int.Cl. 7 , DB name) H01F 7/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円筒又は円柱形状になり、周面の一つを
作用面とすべく中心軸に直交する断面で磁粉の磁化容易
軸が極異方の配向へ揃う磁石において、 上記磁粉の磁化容易軸が、中心軸を含む断面では該作用
面の中央寄りに集束配向してなる極異方配向磁石。
1. A magnet having a cylindrical or columnar shape, wherein an axis of easy magnetization of magnetic powder is aligned in a very anisotropic orientation in a cross section orthogonal to a central axis so that one of the peripheral surfaces is used as a working surface. A polar anisotropically oriented magnet whose easy axis is focused toward the center of the working surface in a cross section including the central axis.
JP3341130A 1991-12-24 1991-12-24 Extremely anisotropically oriented magnet Expired - Fee Related JP3012066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341130A JP3012066B2 (en) 1991-12-24 1991-12-24 Extremely anisotropically oriented magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341130A JP3012066B2 (en) 1991-12-24 1991-12-24 Extremely anisotropically oriented magnet

Publications (2)

Publication Number Publication Date
JPH05175035A JPH05175035A (en) 1993-07-13
JP3012066B2 true JP3012066B2 (en) 2000-02-21

Family

ID=18343538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341130A Expired - Fee Related JP3012066B2 (en) 1991-12-24 1991-12-24 Extremely anisotropically oriented magnet

Country Status (1)

Country Link
JP (1) JP3012066B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286843B2 (en) * 2008-03-12 2013-09-11 パナソニック株式会社 Polar anisotropic magnet mold, motor, electrical equipment
JP6197285B2 (en) * 2012-12-13 2017-09-20 株式会社ジェイテクト Embedded magnet rotor and manufacturing method of embedded magnet rotor

Also Published As

Publication number Publication date
JPH05175035A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP5267459B2 (en) R-TM-B radial anisotropy ring magnet, manufacturing method thereof, mold for manufacturing the same, and rotor for brushless motor
JPWO2005008862A1 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
TWI298892B (en) Radial anisotropic ring magnet and method of manufacturing the ring magnet
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2769061B2 (en) Extremely anisotropically oriented magnet
CN101485065B (en) Permanent magnet rotor and motor using the same
JP4029679B2 (en) Bond magnet for motor and motor
JP3012066B2 (en) Extremely anisotropically oriented magnet
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JPWO2015129549A1 (en) Polar anisotropic ring magnet and rotor using the same
JP3007491B2 (en) Side-oriented anisotropic magnet
CN100521458C (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP3012049B2 (en) Anisotropic segment type magnet
JP3049134B2 (en) 2-pole cylindrical magnet
JP4320710B2 (en) Polar anisotropic ring magnet and molding die
JP3680648B2 (en) Permanent magnet type motor and other permanent magnet application equipment
JP3719782B2 (en) Manufacturing method of surface multipolar anisotropic ring magnet
JPH05144632A (en) Bipolar cylindrical magnet
JP3012051B2 (en) Anisotropic segment type magnet
JP2593252B2 (en) Focused orientation type outsert cylindrical magnet and magnetic field orientation mold
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2006013055A (en) Method for manufacturing anisotropic bond magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees