JPH0518187B2 - - Google Patents
Info
- Publication number
- JPH0518187B2 JPH0518187B2 JP60278459A JP27845985A JPH0518187B2 JP H0518187 B2 JPH0518187 B2 JP H0518187B2 JP 60278459 A JP60278459 A JP 60278459A JP 27845985 A JP27845985 A JP 27845985A JP H0518187 B2 JPH0518187 B2 JP H0518187B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- refractive index
- optical recording
- sputtering
- recording device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 15
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- -1 rare earth transition metal Chemical class 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は、光によつて情報の読出しを行う光記
録装置に於いて、記録媒体に何等かの変化を起こ
させて情報の記録を行ない、反射光で情報を読出
す光記録デバイスの製造方法に関するものであ
る。[Detailed Description of the Invention] <Industrial Application Field> The present invention is an optical recording device that reads information using light, in which information is recorded by causing some kind of change in the recording medium. , relates to a method of manufacturing an optical recording device that reads information using reflected light.
<従来の技術>
従来、希土類遷移金属合金(TbFe、GdTbFe、
TbFeCo、TbCo、GdTbCo、GdCo等)の記録媒
体を用いた光磁気記録では、カー回転角が小さい
為に、信号対雑音比(S/N比)を高めることが
困難であつた。この為、SiO、SiO2等の酸化物や
AlN、Si3N4の窒化物、ZnS等の硫化物若しくは
MgF2等の弗化物を記録媒体上に形成し、反射防
止層として、カー回転角を増大し、再生性能を高
める工夫がなされていた。<Conventional technology> Conventionally, rare earth transition metal alloys (TbFe, GdTbFe,
In magneto-optical recording using recording media of TbFeCo, TbCo, GdTbCo, GdCo, etc., it has been difficult to increase the signal-to-noise ratio (S/N ratio) because the Kerr rotation angle is small. For this reason, oxides such as SiO and SiO 2
AlN, nitride of Si 3 N 4 , sulfide such as ZnS, or
Efforts have been made to form a fluoride such as MgF 2 on the recording medium as an antireflection layer to increase the Kerr rotation angle and improve reproduction performance.
又、As−Te−Ge系等の非晶質半導体にレーザ
光を照射し、照射部分の非晶質半導体を結晶化さ
せて、非晶質部分と結晶化部分との反射率の違い
を利用して記録を行なう方式の場合にも、非晶質
部分と結晶化部分との反射率の比が小さく、S/
N比が悪いため、やはり記録媒体上に上記の誘電
体層を形成し、非晶質部分の反射防止層として反
射率比を増大させ、S/N比を高める工夫がなさ
れていた。 In addition, by irradiating an amorphous semiconductor such as As-Te-Ge with laser light and crystallizing the irradiated part of the amorphous semiconductor, the difference in reflectance between the amorphous part and the crystallized part is utilized. Even in the case of the recording method, the ratio of the reflectance between the amorphous part and the crystallized part is small, and the S/
Since the N ratio is poor, efforts have been made to increase the S/N ratio by forming the above-mentioned dielectric layer on the recording medium and using it as an antireflection layer for the amorphous portion to increase the reflectance ratio.
<発明が解決しようとする問題点>
しかし、実際に形成される上記誘電体層の屈折
率は、物質に固有の値を取るため、完全な反射防
止層とはなり得ず、十分にコントラストを高める
ことは困難であつた。<Problems to be Solved by the Invention> However, the refractive index of the dielectric layer that is actually formed takes a value specific to the substance, so it cannot be a perfect anti-reflection layer and cannot provide sufficient contrast. It was difficult to increase it.
そこで、記録媒体上に光学的膜厚が読み出し光
の波長の1/4となるような反射防止層を複数積層
することによつて反射防止機能を高め、例えば、
光磁気記録の場合、カー回転角を十分に増大させ
た例が報告されている{Y.Tomita、T.Yoshino、
J.Opt.Soc.Am.Vol.1、No.8、(1984)、809}。 Therefore, the antireflection function is enhanced by laminating multiple antireflection layers whose optical thickness is 1/4 of the wavelength of the readout light on the recording medium, for example.
In the case of magneto-optical recording, examples of sufficiently increasing the Kerr rotation angle have been reported {Y. Tomita, T. Yoshino,
J.Opt.Soc.Am.Vol.1, No.8, (1984), 809}.
しかしながら、上記反射防止層を積層させる場
合、少なくとも2種類以上の屈折率の異なる誘電
体層が必要であり、信頼性に優れた屈折率の異な
る誘電体を形成する難しさとともに、真空蒸着法
やスパツタリング法で作成する場合、複数の蒸着
源やターゲツトを備えた装置が必要となつてしま
うため、装置の大型化、コスト高につながり、実
用に適さなかつた。 However, when laminating the above-mentioned antireflection layer, at least two types of dielectric layers with different refractive indexes are required, and it is difficult to form dielectric layers with different refractive indexes with excellent reliability, as well as vacuum evaporation method. When the sputtering method is used, an apparatus equipped with multiple deposition sources and targets is required, which leads to an increase in the size and cost of the apparatus and is not suitable for practical use.
又、窒化シリコン膜は、緻密で、酸素を含まな
い窒化膜であるため、光磁気記録媒体の酸化を防
ぐ保護膜として非常に優れた膜であることが報告
されている{有宗、前田ら、電気学会研究会資料
MAG−85−81(1985)}。 In addition, silicon nitride film is a dense nitride film that does not contain oxygen, so it has been reported that it is an excellent protective film for preventing oxidation of magneto-optical recording media {Arimune, Maeda et al. , Institute of Electrical Engineers of Japan study group materials
MAG-85-81 (1985)}.
ところが、窒化シリコン膜をスパツタリング法
で形成する場合、ターゲツトとして窒化シリコン
の焼結体を用いる従来の方法では、焼結体ターゲ
ツト中に含まれる酸素がスパツタリング中に放出
されて記録媒体を酸化する場合があり、あまり好
ましくないという問題点を有していた。 However, when forming a silicon nitride film by sputtering, the conventional method of using a sintered body of silicon nitride as a target has the problem that oxygen contained in the sintered body target is released during sputtering and oxidizes the recording medium. There was a problem that it was not very desirable.
本発明は、このような点に鑑みなされたもので
あり、反射防止機能を十分に果たし得る複数の反
射防止層を形成した光記録デバイスを提供するこ
とを目的としてなされたものである。 The present invention has been made in view of these points, and has been made for the purpose of providing an optical recording device in which a plurality of antireflection layers are formed that can sufficiently perform an antireflection function.
<問題点を解決するための手段>
上記の目的を達成するため、本発明では、窒素
雰囲気中でシリコンターゲツトを用いてスパツタ
リングを行うと共に、その際の窒素分圧を変化さ
せることにより、形成される反射防止層の屈折率
を調整することにした。<Means for Solving the Problems> In order to achieve the above object, the present invention performs sputtering using a silicon target in a nitrogen atmosphere and changes the nitrogen partial pressure at the time. We decided to adjust the refractive index of the antireflection layer.
<実施例>
以下、図示の一実施例に基づき詳細に説明す
る。<Example> Hereinafter, a detailed description will be given based on an example shown in the drawings.
第1図は、本発明の光記録デバイスの一実施例
の構成を示したものであり、1は、ガラス又はポ
リ炭酸エステル重合体(polycarbonate;PC)
やアクリル酸樹脂{例えばメタクリル酸メチル重
合体(polymethyl methacrylate;
PMMA)}、エポキシ樹脂その他のプラスチツク
基板等の基板、2は、屈折率2.3で膜厚850[Å]
の窒化シリコン膜、3は、屈折率2.0で膜厚970
[Å]の窒化シリコン膜、4は、屈折率2.3で膜厚
650[Å]の窒化シリコン膜、5は、膜厚1000[Å]
のTbFeCo非晶質合金膜、6は、屈折率2.0で膜
厚500[Å]の窒化シリコン膜である。 FIG. 1 shows the structure of an embodiment of the optical recording device of the present invention, in which 1 is made of glass or polycarbonate polymer (PC).
or acrylic acid resin {for example , methyl methacrylate polymer ( polymethylmethacrylate ;
PMMA)}, substrate such as epoxy resin or other plastic substrate, 2 has a refractive index of 2.3 and a film thickness of 850 [Å]
Silicon nitride film 3 has a refractive index of 2.0 and a film thickness of 970.
[Å] silicon nitride film, 4 has a refractive index of 2.3 and a film thickness
650 [Å] silicon nitride film, 5 is film thickness 1000 [Å]
The TbFeCo amorphous alloy film 6 is a silicon nitride film with a refractive index of 2.0 and a thickness of 500 [Å].
ここで、上記窒化シリコン2,3,4,6は、
シリコン(Si)ターゲツトを用いて窒素雰囲気中
でスパツタリングすることにより形成する。この
時、スパツタリング時の窒素分圧を変化させるこ
とによつて上記窒化シリコン膜の屈折率が変化す
る。例えば、Siターゲツトを用いた高周波二極マ
グネトロンスパツタリング装置で、アルゴン及び
窒素雰囲気中、入射力1[kw]、反応室内ガス圧
力を6[mTorr]に保ちながら窒素分圧を変化さ
せて、反応性スパツタリングを行なつた時、上記
窒化シリコン膜の屈折率の実数部分について、第
2図に示すような結果が得られた。但し、屈折率
は波長780[nm]のレーザ光を照射した時の値で
あり、窒素分圧が3×10-4[Torr]以下では、波
長780[nm]のレーザ光に対して光の吸収が現れ
た。ここで、光記録デバイスの反射防止層として
用いることができる材料としては、情報の記録及
び読み出しに用いる光に対して透明であることが
必要であるので、波長780[nm]の半導体レーザ
光に対して透明な膜を考えると、第2図から解る
ように、窒素分圧を夫々3.75×10-4[Torr]及び
1.5×10-3[Torr]に設定することにより、屈折率
2.3及び2.0の窒化シリコン膜を形成することがで
きる。 Here, the silicon nitride 2, 3, 4, 6 is
It is formed by sputtering using a silicon (Si) target in a nitrogen atmosphere. At this time, the refractive index of the silicon nitride film is changed by changing the nitrogen partial pressure during sputtering. For example, in a high-frequency bipolar magnetron sputtering device using a Si target, in an argon and nitrogen atmosphere, the nitrogen partial pressure is varied while maintaining the incident power at 1 [kW] and the gas pressure in the reaction chamber at 6 [mTorr]. When reactive sputtering was performed, results as shown in FIG. 2 were obtained regarding the real part of the refractive index of the silicon nitride film. However, the refractive index is the value when laser light with a wavelength of 780 [nm] is irradiated, and when the nitrogen partial pressure is 3 × 10 -4 [Torr] or less, the refractive index is the value when laser light with a wavelength of 780 [nm] is applied. Absorption appeared. Here, the material that can be used as the antireflection layer of an optical recording device must be transparent to the light used for recording and reading information. On the other hand, if we consider a transparent membrane, the nitrogen partial pressure is 3.75×10 -4 [Torr] and 3.75×10 -4 [Torr] and
By setting 1.5×10 -3 [Torr], the refractive index
2.3 and 2.0 silicon nitride films can be formed.
上述の実施例のように、反射防止層をSiターゲ
ツトを用いた反応性スパツタリングにより形成し
た場合、屈折率の異なる2種類の窒化シリコン膜
即ち誘電体層を形成するために、ひとつのターゲ
ツトのみで良いため、スパツタリング装置の大型
化を防ぎ、コストダウンを実現でき、窒化シリコ
ンの焼結体ターゲツトを用いた場合に比べて、酸
素を取り込む虞れがなく、保護膜として信頼性の
高い窒化シリコン膜を形成できるという利点を有
する。 When the antireflection layer is formed by reactive sputtering using a Si target as in the above embodiment, only one target is required to form two types of silicon nitride films with different refractive indexes, that is, dielectric layers. The silicon nitride film is highly reliable as a protective film because it prevents the sputtering equipment from becoming larger and reduces costs, and there is no risk of oxygen being taken in compared to using a sintered silicon nitride target. It has the advantage of being able to form
尚、本実施例に於いては、記録媒体として
TbFeCo非晶質合金膜を用いたが、他の希土類遷
移金属合金(TbFe、GdTbFe、TbCo、GdTbCo
等)や反射率変化を利用して記録・再生を行なう
記録媒体(TeGe、AsTeGe、SnTeSe、TeOx
等)にも適用可能である。更に、本発明の光記録
デバイスの各膜の膜厚、屈折率、形成条件等は、
上記実施例に示すものに限定されず、適宜選択す
れば良い。 In this example, as a recording medium,
Although TbFeCo amorphous alloy film was used, other rare earth transition metal alloys (TbFe, GdTbFe, TbCo, GdTbCo)
etc.) and recording media that perform recording and playback using changes in reflectance (TeGe, AsTeGe, SnTeSe, TeOx)
etc.) is also applicable. Furthermore, the film thickness, refractive index, formation conditions, etc. of each film of the optical recording device of the present invention are as follows:
It is not limited to those shown in the above embodiments, and may be selected as appropriate.
<発明の効果>
以上のように、本発明の光記録デバイスの製造
方法では、単一のターゲツトで最適な屈折率を有
する窒化物からなる誘電体層を容易に形成でき
る。又、屈折率の異なつた、酸素を含まない複数
の誘電体膜即ち反射防止層を形成することが可能
となり、光記録デバイスの再生性能及び信頼性の
著しい向上が期待できる。<Effects of the Invention> As described above, in the method for manufacturing an optical recording device of the present invention, a dielectric layer made of nitride having an optimal refractive index can be easily formed using a single target. Furthermore, it becomes possible to form a plurality of oxygen-free dielectric films having different refractive indexes, that is, antireflection layers, and a significant improvement in the reproduction performance and reliability of optical recording devices can be expected.
第1図は、本発明の光記録デバイスの一実施例
の構成を示す縦断面図、第2図は、同上、本発明
のSiターゲツトの反応性スパツタリングによる窒
化シリコンの屈折率の実数部と窒素分圧との関係
を示す図である。
1……ガラス基板、2,3,4,6……窒化シ
リコン膜、5……TbFeCo非晶質合金膜。
FIG. 1 is a vertical cross-sectional view showing the structure of an embodiment of the optical recording device of the present invention, and FIG. It is a figure showing the relationship with partial pressure. 1... Glass substrate, 2, 3, 4, 6... Silicon nitride film, 5... TbFeCo amorphous alloy film.
Claims (1)
体層とを備えた光記録デバイスの製造方法におい
て、前記窒化物からなる誘電体層をスパツタリン
グによつて形成するに際して、スパツタリング時
の窒素分圧を変化させることによつて前記窒化物
からなる誘電体層の屈折率を調整することを特徴
とする光記録デバイスの製造方法。1. In a method for manufacturing an optical recording device comprising a substrate, a dielectric layer made of nitride, and a recording medium layer, when forming the dielectric layer made of nitride by sputtering, nitrogen content during sputtering is A method for manufacturing an optical recording device, characterized in that the refractive index of the dielectric layer made of nitride is adjusted by changing the pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60278459A JPS62139156A (en) | 1985-12-11 | 1985-12-11 | Optical recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60278459A JPS62139156A (en) | 1985-12-11 | 1985-12-11 | Optical recording device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7259892A Division JPH08190740A (en) | 1995-10-06 | 1995-10-06 | Production of optical recording device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62139156A JPS62139156A (en) | 1987-06-22 |
JPH0518187B2 true JPH0518187B2 (en) | 1993-03-11 |
Family
ID=17597625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60278459A Granted JPS62139156A (en) | 1985-12-11 | 1985-12-11 | Optical recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139156A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190740A (en) * | 1995-10-06 | 1996-07-23 | Sharp Corp | Production of optical recording device |
TW466472B (en) * | 1997-02-24 | 2001-12-01 | Seiko Epson Corp | Original board for manufacturing optical disk stampers, optical disk stamper manufacturing method, and optical disk |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS5956240A (en) * | 1982-09-27 | 1984-03-31 | Canon Inc | Photomagnetic recording medium |
JPS59110052A (en) * | 1982-12-15 | 1984-06-25 | Sharp Corp | Optical memory element and its manufacture |
JPS59185049A (en) * | 1983-03-28 | 1984-10-20 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Optical recording disc |
JPS62114141A (en) * | 1985-11-14 | 1987-05-25 | Sharp Corp | Magnetooptic memory element |
-
1985
- 1985-12-11 JP JP60278459A patent/JPS62139156A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS5956240A (en) * | 1982-09-27 | 1984-03-31 | Canon Inc | Photomagnetic recording medium |
JPS59110052A (en) * | 1982-12-15 | 1984-06-25 | Sharp Corp | Optical memory element and its manufacture |
JPS59185049A (en) * | 1983-03-28 | 1984-10-20 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Optical recording disc |
JPS62114141A (en) * | 1985-11-14 | 1987-05-25 | Sharp Corp | Magnetooptic memory element |
Also Published As
Publication number | Publication date |
---|---|
JPS62139156A (en) | 1987-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2551403B2 (en) | Magneto-optical recording element | |
JPH0335734B2 (en) | ||
JP2889880B2 (en) | Laminate, compound used for laminate, and optical information carrier having laminate | |
JPH0413251A (en) | Magneto-optical recording element and its production | |
EP0231672B1 (en) | Optical memory device and process for fabricating same | |
JPH0518187B2 (en) | ||
JPS62293541A (en) | Magneto-optical recording medium | |
JPH0237548A (en) | Magneto-optical disk | |
JPH0332144B2 (en) | ||
EP0516178B1 (en) | Optical information recording medium in which a protective layer comprises a mixture layer containing ZnS and SiO2 | |
JP2955112B2 (en) | Magneto-optical storage media | |
JP2527762B2 (en) | Magneto-optical recording medium | |
US5292592A (en) | Optical information recording medium in which a protective layer comprises a Ni-Cr alloy layer | |
EP0388852B1 (en) | Magneto-optical recording medium and process for production of the same | |
JPH08190740A (en) | Production of optical recording device | |
JPS62289948A (en) | Magneto-optical recording medium | |
JPH0216419Y2 (en) | ||
JPH0792935B2 (en) | Magneto-optical recording medium | |
JPH02128346A (en) | Magneto-optical disk | |
JP2740814B2 (en) | Magneto-optical recording medium | |
JPH01292649A (en) | Optical information recording medium and production thereof | |
JPS62298954A (en) | Magneto-optical disk | |
JPS62121943A (en) | Optical recording medium | |
JPS62289946A (en) | Magneto-optical recording medium | |
JPS62217439A (en) | Optical recording carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |