JPH08190740A - Production of optical recording device - Google Patents

Production of optical recording device

Info

Publication number
JPH08190740A
JPH08190740A JP7259892A JP25989295A JPH08190740A JP H08190740 A JPH08190740 A JP H08190740A JP 7259892 A JP7259892 A JP 7259892A JP 25989295 A JP25989295 A JP 25989295A JP H08190740 A JPH08190740 A JP H08190740A
Authority
JP
Japan
Prior art keywords
refractive index
silicon nitride
nitride film
optical recording
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7259892A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
康幸 伊藤
Nobuo Hara
伸生 原
Tateo Takase
建雄 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7259892A priority Critical patent/JPH08190740A/en
Publication of JPH08190740A publication Critical patent/JPH08190740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE: To regulate the refractive index of a formed dielectric layer by varying the partial pressure of nitrogen when sputtering is carried out using a silicon target in a nitrogen atmosphere. CONSTITUTION: A silicon nitride film 2 having a refractive index of 2.3 and 850Å thickness, a silicon nitride film 3 having a refractive index of 2.0 and 970Å thickness, a silicon nitride film 4 having a refractive index of 2.3 and 650Å thickness, an amorphous TbFeCo alloy film 5 having 1,000Å thickness and a silicon nitride film 6 having a refractive index of 2.0 and 500Åthickness are disposed on a glass or plastic substrate 1 to obtain the objective optical recording device. The silicon nitride films 2, 3, 4, 6 are formed by sputtering using a silicon target in a nitrogen atmosphere. The refractive index of a silicon nitride film is varied by varying the partial pressure of nitrogen at the time of sputtering. By this method, the nitride dielectric layers each having the optimum refractive index are easily formed using the single silicon target and the reproducing performance of the resultant optical recording device can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光によって情報の
読出しを行う光記録装置において、記録媒体に何等かの
変化を起こさせて情報の記録を行い、反射光で情報を読
出す光記録デバイスの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording device for reading information by light, recording the information by causing some change in a recording medium, and reading the information by reflected light. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】従来、希土類遷移金属合金(TbFe、
GdTbFe、TbFeCo、TbCo、GbTbC
o、GdCo等)の記録媒体を用いた光磁気記録では、
カー回転角が小さい為に、信号対雑音比(S/N比)を
高めることが困難であった。この為、SiO、SiO2
等の酸化物やAlN、Si34の窒化物、ZnS等の硫
化物若しくはMgF2等のフッ化物を記録媒体上に形成
し、反射防止層として、カー回転角を増大し、再生性能
を高める工夫がなされていた。
2. Description of the Related Art Conventionally, rare earth transition metal alloys (TbFe,
GdTbFe, TbFeCo, TbCo, GbTbC
o, GdCo, etc.) in magneto-optical recording using a recording medium,
Since the Kerr rotation angle is small, it is difficult to increase the signal-to-noise ratio (S / N ratio). Therefore, SiO, SiO 2
And other oxides, AlN, Si 3 N 4 nitrides, ZnS and other sulfides, and MgF 2 and other fluorides are formed on the recording medium to increase the Kerr rotation angle as an antireflection layer and improve the reproduction performance. It was designed to raise it.

【0003】また、As−Te−Ge系等の非晶質半導
体にレーザ光を照射し、照射部分の非晶質半導体を結晶
化させて、非晶質部分と結晶化部分との反射率の違いを
利用して記録を行う方式の場合にも、非晶質部分と結晶
化部分との反射率の比が小さく、S/N比が悪いため、
やはり記録媒体上に上記の誘電体層を形成し、非晶質部
分の反射防止層として反射率比を増大させ、S/N比を
高める工夫がなされていた。
Further, an amorphous semiconductor such as As-Te-Ge system is irradiated with laser light to crystallize the amorphous semiconductor in the irradiated portion, and the reflectance of the amorphous portion and the crystallized portion is changed. Even in the case of recording by utilizing the difference, the reflectance ratio between the amorphous portion and the crystallized portion is small, and the S / N ratio is poor.
Again, the above-mentioned dielectric layer was formed on the recording medium to increase the reflectance ratio and the S / N ratio as an antireflection layer in an amorphous portion.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際に形成さ
れる上記誘電体層の屈折率は、物質に固有の値を取るた
め、完全な反射防止層とはなり得ず、十分なコントラス
トを高めることは困難であった。
However, the refractive index of the actually formed dielectric layer cannot be a perfect antireflection layer because it takes a value peculiar to the substance, so that a sufficient contrast is enhanced. It was difficult.

【0005】そこで、記録媒体上に光学的膜厚が読み出
し光の波長の1/4となるような反射防止層を複数積層
することによって反射防止機能を高め、例えば、光磁気
記録の場合、カー回転角を十分に増大させた例が報告さ
れている(Y.Tomita、T.Yoshino、J.Opt.Soc.A
m.Vol.1、No.8、(1984)、809)。
Therefore, the antireflection function is enhanced by laminating a plurality of antireflection layers having an optical film thickness of ¼ of the wavelength of the read light on the recording medium. For example, in the case of magneto-optical recording, It has been reported that the rotation angle is sufficiently increased (Y. Tomita, T. Yoshino, J. Op. Soc. A).
m. Vol. 1, No. 8, (1984), 809).

【0006】しかしながら、上記反射防止層を積層させ
る場合、少なくとも2種類以上の屈折率の異なる誘電体
層が必要であり、信頼性に優れた屈折率の異なる誘電体
を形成する難しさとともに、真空蒸着法やスパッタリン
グ法で作成する場合、複数の蒸着源やターゲットを備え
た装置が必要となってしまうため、装置の大型化、コス
ト高につながり、実用に適さなかった。
However, when the antireflection layer is laminated, at least two kinds of dielectric layers having different refractive indexes are required, and it is difficult to form a highly reliable dielectric material having a different refractive index, and at the same time, a vacuum is formed. In the case of forming by the vapor deposition method or the sputtering method, an apparatus equipped with a plurality of vapor deposition sources and targets is required, which leads to an increase in the size of the apparatus and cost, which is not suitable for practical use.

【0007】また、窒化シリコン膜は、緻密で、酸素を
含まない窒化膜であるため、光磁気記録媒休の酸化を防
ぐ保護膜として非常に優れた膜であることが報告されて
いる(有宗、前田ら、電気学会研究会資料MAG−85−
81(1985)。
Since the silicon nitride film is a dense nitride film containing no oxygen, it has been reported that it is a very excellent protective film for preventing oxidation of the magneto-optical recording medium (existing). Mune, Maeda et al., IEEJ Study Group Material MAG-85-
81 (1985).

【0008】ところが、窒化シリコン膜をスパッタリン
グ法で形成する場合、ターゲットとして窯化シリコンの
焼結体を用いる従来の方法では、焼結体ターゲット中に
含まれる酸素がスパッタリング中に放出されて記録媒体
を酸化する場合があり、あまり好ましくないという問題
点を有していた。
However, when a silicon nitride film is formed by a sputtering method, in the conventional method using a sintered body of siliconized ceramics as a target, oxygen contained in the sintered body target is released during the sputtering to cause a recording medium. However, there is a problem in that it is not preferable because it may be oxidized.

【0009】本発明は、このような点に鑑みなされたも
のであり、反射防止機能を十分に果たし得る誘電体層を
形成した光記録デバイスを提供することを目的としてな
されたものである。
The present invention has been made in view of the above points, and an object thereof is to provide an optical recording device having a dielectric layer capable of sufficiently performing an antireflection function.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、窒素雰囲気中でシリコンターゲットを
用いてスパッタリングを行うとともに、その際の窒素分
圧を変化させることにより、形成される誘電体層の屈折
率を調整するものである。
In order to achieve the above object, in the present invention, sputtering is performed using a silicon target in a nitrogen atmosphere, and the partial pressure of nitrogen at that time is changed to form the film. The refractive index of the dielectric layer is adjusted.

【0011】[0011]

【発明の実施の形態】以下、図示の一実施例に基づき詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A detailed description will be given below based on an embodiment shown in the drawings.

【0012】図1は、本発明の光記録デバイスの一実施
例の構成を示したものであり、1は、ガラス又はポリ炭
酸エステル重合休(polycarbonate;PC)やアクリル酸
樹脂{例えばメタクリル酸メチル重合体(polymethyl m
ethacrylate;PMMA)}、エポキシ樹脂その他のプラ
スチック基板等の基板、2は、屈折率2.3で膜厚85
0[Å]の窒化シリコン膜、3は、屈折率2.0で膜厚
970[Å]の窒化シリコン膜、4は、屈折率2.3で
膜厚650[Å]の窒化シリコン膜、5は、膜厚1000
[Å]のTbFeCo非晶質合金膜、6は、屈折率2.
0で膜厚500[Å]の窒化シリコン膜である。
[0012] Figure 1 is shows the configuration of an embodiment of an optical recording device of the present invention, 1, glass or polycarbonate polymerization rest (p oly c arbonate; PC) or acrylic acid resin {e.g. Methyl methacrylate polymer ( p oly m ethyl m
eth a crylate; PMMA)}, a substrate such as an epoxy resin or other plastic substrate, 2 has a refractive index of 2.3 and a film thickness of 85
0 [Å] silicon nitride film, 3 is a silicon nitride film with a refractive index of 2.0 and a film thickness of 970 [Å], 4 is a silicon nitride film with a refractive index of 2.3 and a film thickness of 650 [Å], 5 Is 1000
The TbFeCo amorphous alloy film of [Å], 6 has a refractive index of 2.
It is a silicon nitride film having a thickness of 0 and a film thickness of 500 [Å].

【0013】ここで、上記窒化シリコン2,3,4,6
は、シリコン(Si)ターゲットを用いて窒素雰囲気中
でスパッタリングすることにより形成する。この時、ス
パッタリング時の窒素分圧を変化させることによって上
記窒化シリコン膜の屈折率が変化する。例えば、Siタ
ーゲットを用いた高周波二極マグネトロンスパッタリン
グ装置で、アルゴン及び窒素雰囲気中、入射力1[k
w]、反応室内ガス圧力を6[mTorr]に保ちなが
ら窒素分圧を変化させて、反応性スパッタリングを行な
った時、上記窒化シリコン膜の屈折率の実数部分につい
て、図2に示すような結果が得られた。但し、屈折率は
波長780[nm]のレーザ光を照射した時の値であ
り、窒素分圧が3×10-4[Torr]以下では、波長
780[nm]のレーザ光に対して光の吸収が現れた。
ここで、光記録デバイスの反射防止層として用いること
ができる材料としては、情報の記録及び読み出しに用い
る光に対して透明であることが必要であるので、波長7
80[nm]の半導体レーザ光に対して透明な膜を考え
ると、図2から解るように、窒素分圧を夫々3.75×
10-4[Torr]及び1.5×10-3[Torr]に
設定することにより、屈折率2.3及び2.0の窒化シ
リコン膜を作成することができる。
Here, the silicon nitride 2, 3, 4, 6
Is formed by sputtering in a nitrogen atmosphere using a silicon (Si) target. At this time, the refractive index of the silicon nitride film is changed by changing the nitrogen partial pressure during sputtering. For example, in a high frequency bipolar magnetron sputtering device using a Si target, an incident force of 1 [k
w], the partial pressure of nitrogen in the reaction chamber was changed to 6 [mTorr] while the reactive partial sputtering was performed, and the real part of the refractive index of the silicon nitride film was measured as shown in FIG. was gotten. However, the refractive index is a value when a laser beam having a wavelength of 780 [nm] is irradiated, and when the nitrogen partial pressure is 3 × 10 −4 [Torr] or less, the refractive index of the laser beam having a wavelength of 780 [nm] is Absorption appeared.
Here, as a material that can be used as the antireflection layer of the optical recording device, it is necessary to be transparent to the light used for recording and reading information.
Considering a film transparent to a semiconductor laser beam of 80 [nm], as shown in FIG.
By setting to 10 −4 [Torr] and 1.5 × 10 −3 [Torr], a silicon nitride film having a refractive index of 2.3 and 2.0 can be formed.

【0014】上述の実施例のように、反射防止層をSi
ターゲットを用いた反応性スパッタリングにより形成し
た場合、屈折率の異なる2種類の窒化シリコン膜、即ち
誘電体層を形成するために、ひとつのターゲットのみで
良いため、スパッタリング装置の大型化を防ぎ、コスト
グウンを実現でき、窒化シリコンの焼結体ターゲットを
用いた場合に比べて、酸素を取り込む虞れがなく、保護
膜として信頼性の高い窒化シリコン膜を形成できるとい
う利点を有する。
As in the above embodiment, the antireflection layer is made of Si.
When formed by reactive sputtering using a target, only one target is required to form two types of silicon nitride films having different refractive indexes, that is, a dielectric layer, preventing the sputtering apparatus from increasing in size and reducing cost. In comparison with the case where a silicon nitride sintered body target is used, there is an advantage that oxygen is not taken in and a highly reliable silicon nitride film can be formed as a protective film.

【0015】尚、本実施例に於いては、記録媒体として
TbFeCo非晶質合金膜を用いたが、他の希土類遷移
金属合金(TbFe、GdTbFe、TbCo、GdT
bCo等)や反射率変化を利用して記録・再生を行なう
記録媒体(TeGe、AsTeGe、SnTeSe、T
eOx等)にも適用可能である。更に、本発明の光記録
デバイスの各膜の膜厚、屈折率、形成条件等は、上記実
施例に示すものに限定されず、適宜選択すればよい。
Although the TbFeCo amorphous alloy film was used as the recording medium in this embodiment, other rare earth transition metal alloys (TbFe, GdTbFe, TbCo, GdT) are used.
bCo, etc.) and recording mediums (TeGe, AsTeGe, SnTeSe, T) that perform recording / reproduction by utilizing reflectance changes.
eOx). Furthermore, the film thickness, refractive index, forming conditions, etc. of each film of the optical recording device of the present invention are not limited to those shown in the above-mentioned examples, and may be appropriately selected.

【0016】[0016]

【発明の効果】以上のように、本発明の光記録デバイス
の製造方法では、単一のシリコンターゲットで最適な屈
折率を有する窒化物からなる誘電体層を容易に形成でき
る。また、屈折率の異なった、酸素を含まない誘電体層
即ち反射防止層を形成することができ、光記録デバイス
の再生性能及び信頼性の著しい向上が期待できる。
As described above, according to the method of manufacturing an optical recording device of the present invention, the dielectric layer made of nitride having the optimum refractive index can be easily formed with a single silicon target. Further, it is possible to form an oxygen-free dielectric layer having a different refractive index, that is, an antireflection layer, and it is expected that the reproduction performance and reliability of the optical recording device will be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光記録デバイスの一実施例の構成を示
す縦断面図である。
FIG. 1 is a vertical sectional view showing the configuration of an embodiment of an optical recording device of the present invention.

【図2】本発明のSiターゲットの反応性スパッタリン
グによる窒化シリコンの屈折率の実数部と窒素分圧との
関係を示す図である。
FIG. 2 is a diagram showing a relationship between a real part of a refractive index of silicon nitride by reactive sputtering of a Si target of the present invention and a nitrogen partial pressure.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2、3、4、6 窒化シリコン膜 5 TbFeCo非晶質合金膜 1 Glass substrate 2, 3, 4, 6 Silicon nitride film 5 TbFeCo amorphous alloy film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板と、窒化物からなる誘電体層と、記
録媒体層とを備えた光記録デバイスの製造方法におい
て、前記窒化物誘電体層をスパッタリングによって形成
するに際して、シリコンターゲットを用いてスパッタリ
ング時の窒素分圧を変化させることにより、前記窒化物
からなる誘電体層の屈折率を調整することを特徴とする
光記録デバイスの製造方法。
1. A method of manufacturing an optical recording device comprising a substrate, a dielectric layer made of nitride, and a recording medium layer, wherein a silicon target is used when the nitride dielectric layer is formed by sputtering. A method for manufacturing an optical recording device, characterized in that the refractive index of the dielectric layer made of the nitride is adjusted by changing the partial pressure of nitrogen during sputtering.
JP7259892A 1995-10-06 1995-10-06 Production of optical recording device Pending JPH08190740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7259892A JPH08190740A (en) 1995-10-06 1995-10-06 Production of optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7259892A JPH08190740A (en) 1995-10-06 1995-10-06 Production of optical recording device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60278459A Division JPS62139156A (en) 1985-12-11 1985-12-11 Optical recording device

Publications (1)

Publication Number Publication Date
JPH08190740A true JPH08190740A (en) 1996-07-23

Family

ID=17340394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7259892A Pending JPH08190740A (en) 1995-10-06 1995-10-06 Production of optical recording device

Country Status (1)

Country Link
JP (1) JPH08190740A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139156A (en) * 1985-12-11 1987-06-22 Sharp Corp Optical recording device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139156A (en) * 1985-12-11 1987-06-22 Sharp Corp Optical recording device

Similar Documents

Publication Publication Date Title
JP2551403B2 (en) Magneto-optical recording element
JP2889880B2 (en) Laminate, compound used for laminate, and optical information carrier having laminate
JPH08190740A (en) Production of optical recording device
EP0516178B1 (en) Optical information recording medium in which a protective layer comprises a mixture layer containing ZnS and SiO2
JPH0518187B2 (en)
AU649818B2 (en) Optical information recording medium in which a protective layer comprises a Ni-Cr alloy layer
EP0762408A1 (en) Multi-layer optical disk
JPS62289948A (en) Magneto-optical recording medium
JPS62293542A (en) Magneto-optical recording medium
JP3148017B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS6129439A (en) Photomagnetic recording medium
JPS6310355A (en) Magneto-optical recording medium
JPH04360047A (en) Magneto-optical recording medium
JPH0512718A (en) Production of optical recording medium
JPH03132942A (en) Magneto-optical recording medium
JPH01292649A (en) Optical information recording medium and production thereof
JP2551403C (en)
JPH0562243A (en) Optical recording medium
JPS62293538A (en) Production of magneto-optical recording medium
JPH04105232A (en) Magneto-optical disk
JPH05266521A (en) Optical information recording medium
JPS63281247A (en) Magneto-optical recording medium
JPH10320837A (en) Method for initializing optical recording medium and initialization assistance layer
JPS62226451A (en) Photomagnetic recording medium
JPH04219644A (en) Magneto-optical recording medium