JPH0517824A - Production of rare earth metal-transition metal type magnetostrictive material - Google Patents

Production of rare earth metal-transition metal type magnetostrictive material

Info

Publication number
JPH0517824A
JPH0517824A JP3195085A JP19508591A JPH0517824A JP H0517824 A JPH0517824 A JP H0517824A JP 3195085 A JP3195085 A JP 3195085A JP 19508591 A JP19508591 A JP 19508591A JP H0517824 A JPH0517824 A JP H0517824A
Authority
JP
Japan
Prior art keywords
rare earth
magnetostrictive material
transition metal
magnetostrictive
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3195085A
Other languages
Japanese (ja)
Inventor
Eiji Nakamura
英次 中村
Hiroyuki Mizutani
博之 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP3195085A priority Critical patent/JPH0517824A/en
Publication of JPH0517824A publication Critical patent/JPH0517824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat treatment method for improving the magnetostrictive characteristics of a rare earth metal-transition metal type magnetostrictive material. CONSTITUTION:A rare earth metal-transition metal type magnetostrictive material consisting of an RTx (where R means Y and one or more rare earth elements, T means one element among Fe, Co, and Ni, and the symbol (x) stands for 1.5-2.0) alloy prepared by a unidirectional solidification process is subjected to homogenizing treatment, to heating, in a state where compressive force is applied in a solidification direction, up to a temp. not lower than the Curie point of the material, and then to cooling in a state where compressive force is applied. By this method, the material in which the necessity of the previous application of prestress to the magnetostrictive material at the time of using the magnetostrictive material and also the necessity of a large-sized magnetic field generator are obviated and which produces large magnetostriction can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属−遷移金属
系磁歪材料の製造方法に関し、特に磁歪特性を向上させ
るための熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth metal-transition metal based magnetostrictive material, and more particularly to a heat treatment method for improving magnetostrictive properties.

【0002】[0002]

【従来の技術】通常、希土類・鉄系磁歪材料は超磁歪材
料と呼ばれ、超音波、音波関連機器、振動子微細位置決
め装置、精密バルブ、センサーなどへの応用が期待され
ている材料であり、最近注目されている。
2. Description of the Related Art Normally, rare earth / iron-based magnetostrictive materials are called giant magnetostrictive materials, and are expected to be applied to ultrasonic waves, sound wave related equipment, vibrator fine positioning devices, precision valves, sensors, etc. , Has been attracting attention recently.

【0003】この磁歪材料としては、一般に希土類金属
(R)−3d遷移金属(T)系金属化合物のうち、RT
2のラーベス相が知られている。具体的には、Rとして
はTb0.3Dy0.7、TとしてはFeの、Tb0.3Dy0.7
Fe2(Fe2は実用上Fe1. 8-1.95である)(USP.
4,308,474)が、その代表例として知られてい
る。これら金属間化合物RT2の磁歪は、異方性があ
り、<111>結晶方向に2000ppm以上の極めて
大きな磁歪を示し、この<111>の大きな磁歪を利用
し実用化されている。
As the magnetostrictive material, RT among the rare earth metal (R) -3d transition metal (T) type metal compounds is generally used.
Two Laves phases are known. Specifically, R is Tb 0.3 Dy 0.7 , T is Fe, and Tb 0.3 Dy 0.7.
Fe 2 (Fe 2 is practically Fe 1. 8-1.95) (USP.
4,308,474) is known as a representative example. The magnetostriction of these intermetallic compounds RT 2 has anisotropy and exhibits an extremely large magnetostriction of 2000 ppm or more in the <111> crystal direction, and it has been put to practical use by utilizing this large <111> magnetostriction.

【0004】大きな磁歪を有する異方性材料を得るに
は、<111>に結晶を揃える必要があり、このために
は単結晶製作方法のブリッジマン法やゾーンメルティン
グ法(USP.4,609,402)、また一方向凝固
法(USP.4,770,704)、さらに粉末法(U
SP.4,152,178)が提案されている。しか
し、この金属間化合物の凝固時の結晶の成長方向は<1
12>であり、上記ブリッジマン法、ゾーンメルティン
グ法、一方向凝固法では、<111>の結晶成長材料は
現時点では得られておらず、<112>の結晶材料が使
用されている。
In order to obtain an anisotropic material having a large magnetostriction, it is necessary to align the crystals in <111>. For this purpose, the Bridgman method and the zone melting method (USP. , 402), unidirectional solidification method (USP. 4,770, 704), and powder method (U
SP. 4,152,178) have been proposed. However, the crystal growth direction during solidification of this intermetallic compound is <1
12>, the crystal growth material of <111> has not been obtained at this point in the Bridgman method, the zone melting method, and the unidirectional solidification method, and the crystal material of <112> is used.

【0005】この長軸方向に<112>結晶方向をもっ
た材料は、<112>を双晶面とした双晶組織であり、
図1に示すように<111>結晶方向は、長軸方向から
19.5°傾いた数1および数2方向と、長軸方向に垂
直な方向を向いた数3および<111>が存在する。
The material having the <112> crystal direction in the major axis direction has a twin structure having <112> twin planes,
As shown in FIG. 1, the <111> crystal direction includes the number 1 and the number 2 directions inclined by 19.5 ° from the major axis direction, and the number 3 and the number <111> oriented in the direction perpendicular to the major axis direction. .

【0006】[0006]

【数1】 [Equation 1]

【0007】[0007]

【数2】 [Equation 2]

【0008】[0008]

【数3】 [Equation 3]

【0009】一般に超磁歪材を使用する際には、予め圧
縮力(以後、プレストレスと呼ぶ)を材料に負荷する。
これにより比較的低い磁場(0〜80KA/m)におけ
る材料の磁歪が向上する。磁歪材料にプレストレスを負
荷したときに磁歪が向上する原理は、次のように説明で
きる。
Generally, when using a giant magnetostrictive material, a compressive force (hereinafter referred to as prestress) is applied to the material in advance.
This improves the magnetostriction of the material at relatively low magnetic fields (0-80 KA / m). The principle that the magnetostriction improves when prestress is applied to the magnetostrictive material can be explained as follows.

【0010】スピンは<111>方向を向いている(図
1中では、スピンは数4・数5・数6・<111>等を
向いている。)。磁歪の発生は、材料の長手方向に磁場
を印加したとき、スピンが印加磁場により向きを変える
際に結晶が歪むことに起因する。スピンの向きの変わり
方には2通りの方法がある。それは、磁壁移動による方
法とスピンそのものが回転する方法(説明図では、磁化
回転と述べている)である。
The spin is oriented in the <111> direction (in FIG. 1, the spin is oriented in the number 4, the number 5, the number 6, the <111>, etc.). The magnetostriction is caused by the fact that when a magnetic field is applied in the longitudinal direction of the material, the crystal is distorted when the spin changes its direction due to the applied magnetic field. There are two ways to change the spin direction. It is a method of moving the domain wall and a method of rotating the spin itself (in the explanatory diagram, it is referred to as magnetization rotation).

【0011】[0011]

【数4】 [Equation 4]

【0012】[0012]

【数5】 [Equation 5]

【0013】[0013]

【数6】 [Equation 6]

【0014】例えば図1の長手方向に磁場を印加した場
合、低い印加磁場中では図2に示すごとく、長手方向に
垂直な方向(<111>および数7)を向いているスピ
ンが、印加磁場により長手方向に19.5°傾いた数8
および数9に向きを変え磁歪が発生する。これは磁壁移
動によりおこるものであり、数10から数11(あるい
は<111>から数12)という磁化容易軸方向へ向き
を変えるので、比較的低い静磁エネルギー(低い印加磁
場)で向きを変えることができる。
For example, when a magnetic field is applied in the longitudinal direction of FIG. 1, spins oriented in a direction perpendicular to the longitudinal direction (<111> and equation 7) are applied in a low applied magnetic field as shown in FIG. Number 8 tilted 19.5 ° in the longitudinal direction by
Then, the direction is changed to Expression 9 and magnetostriction occurs. This is caused by the domain wall movement, and the direction is changed to the easy axis of magnetization of Mathematical 10 to Mathematical 11 (or <111> to Mathematical 12), so the orientation is changed with relatively low magnetostatic energy (low applied magnetic field). be able to.

【0015】[0015]

【数7】 [Equation 7]

【0016】[0016]

【数8】 [Equation 8]

【0017】[0017]

【数9】 [Equation 9]

【0018】[0018]

【数10】 [Equation 10]

【0019】[0019]

【数11】 [Equation 11]

【0020】[0020]

【数12】 [Equation 12]

【0021】さらにより大きな磁場を印加すると図3に
示すごとく長手方向に19.5°傾いた数13及び数1
4を向いたスピンが印加磁場方向(数15および数1
6)に回転し磁歪が発生する。これは、数17から数1
8(あるいは数19から数20)という磁化難易軸方向
へ向きを変えるのでかなり大きな静磁エネルギーを必要
とする。
When a still larger magnetic field is applied, as shown in FIG. 3, the numbers 13 and 1 tilted by 19.5 ° in the longitudinal direction.
4 spins are applied magnetic field directions (Equation 15 and Equation 1)
Rotate to 6) and magnetostriction occurs. This is from number 17 to number 1
Since the direction is changed to the direction of the easy axis of magnetization of 8 (or 19 to 20), a considerably large magnetostatic energy is required.

【0022】[0022]

【数13】 [Equation 13]

【0023】[0023]

【数14】 [Equation 14]

【0024】[0024]

【数15】 [Equation 15]

【0025】[0025]

【数16】 [Equation 16]

【0026】[0026]

【数17】 [Equation 17]

【0027】[0027]

【数18】 [Equation 18]

【0028】[0028]

【数19】 [Formula 19]

【0029】[0029]

【数20】 [Equation 20]

【0030】ゆえに、比較的低い印加磁場においては、
長手方向に対し垂直方向を向いたスピンは大きく磁歪に
寄与するが、長手方向に対し19.5°傾いたスピンは
磁歪に寄与しないことがわかる。
Therefore, at a relatively low applied magnetic field,
It can be seen that spins oriented in the direction perpendicular to the longitudinal direction largely contribute to magnetostriction, but spins inclined by 19.5 ° with respect to the longitudinal direction do not contribute to magnetostriction.

【0031】材料にプレストレスをかけると、図4に示
すように逆磁歪効果により長手方向に対し19.5°傾
いたスピン(数21および数22)は長手方向に垂直な
方向(数23および<111>)に向きを変える。すな
わち、最適なプレストレス状態では、全てのスピンが長
手方向に垂直な方向を向いている。この状態では、プレ
ストレスなしの状態に比べ、長手方向に対し垂直方向を
向いたスピンの相対量が多くなる。そこで、長手方向に
磁場を印加した場合、長手方向に垂直な方向を向いたス
ピン全てが一気に、長手方向に対し19.5°向きを変
えるため、巨大な磁歪が発生する。この現象は<111
>に成長した超磁歪材においても観察され、磁歪のジャ
ンプと呼ばれている。しかし、超磁歪材の金属組織にお
いて、異相や不均一相が存在すると、このようにプレス
トレスをかけても磁歪特性は向上しない。
When the material is prestressed, as shown in FIG. 4, spins (Equations 21 and 22) inclined by 19.5 ° with respect to the longitudinal direction due to the inverse magnetostrictive effect are generated in the direction perpendicular to the longitudinal direction (Equations 23 and 23). Turn to <111>). That is, in the optimum prestressed state, all spins are oriented in the direction perpendicular to the longitudinal direction. In this state, the relative amount of spins oriented in the direction perpendicular to the longitudinal direction is larger than in the state without prestress. Therefore, when a magnetic field is applied in the longitudinal direction, all the spins oriented in the direction perpendicular to the longitudinal direction change their orientations by 19.5 ° with respect to the longitudinal direction at once, so that a huge magnetostriction occurs. This phenomenon is <111
It is also observed in the giant magnetostrictive material grown to>, and it is called a magnetostrictive jump. However, in the metallographic structure of the giant magnetostrictive material, if a different phase or a heterogeneous phase exists, the magnetostrictive characteristics will not be improved even if such prestress is applied.

【0032】[0032]

【数21】 [Equation 21]

【0033】[0033]

【数22】 [Equation 22]

【0034】[0034]

【数23】 [Equation 23]

【0035】超磁歪材を熱処理することにより、異相を
除去し相平衡を得て組織を均一にするとプレストレスの
効果が現れ、磁歪特性が向上する。この方法としては、
900〜1100℃で5〜7日間熱処理する方法が知ら
れている。また、最近では、この組織の均一化のために
前者にかわる熱処理方法として、800〜1100℃で
20分〜60hr保持する熱処理方法(特開平1−12
3021号公報)、1100〜1200℃で0.5〜1
0hr保持した後825〜1100℃で0.5〜20h
rの2段熱処理をする方法(特開平1−176024号
公報)が提案されている。以上は、異相の除去や相平衡
を得て、組織を均一化するための熱処理方法である。
The heat treatment of the giant magnetostrictive material removes the heterogeneous phase to obtain the phase equilibrium and make the structure uniform, so that the effect of prestress appears and the magnetostrictive characteristic is improved. For this method,
A method of performing heat treatment at 900 to 1100 ° C. for 5 to 7 days is known. Further, recently, as a heat treatment method which is an alternative to the former for homogenizing the structure, a heat treatment method of holding at 800 to 1100 ° C. for 20 minutes to 60 hours (Japanese Patent Laid-Open No. 1-12).
No. 3021), 0.5-1 at 1100-1200 ° C.
0.5 to 20 hours at 825 to 1100 ° C after holding for 0 hours
A method of performing a two-stage heat treatment of r (Japanese Patent Laid-Open No. 1-176024) has been proposed. The above is a heat treatment method for homogenizing the structure by removing the heterogeneous phase and obtaining phase equilibrium.

【0036】これに対し、同じような熱処理方法とし
て、最近では前述した組織の均一化の熱処理後に、磁場
を長手方向に印加しキュリー温度(450℃)以上に加
熱した後に、磁場を長手方向に垂直な方向に印加したま
ま冷却する熱処理方法が提案されている(USP.4,
818,304)。これは磁場中でキュリー点以上の温
度(450℃)から、材料の長軸方向に垂直な方向に磁
場を印加しながら冷却すると、プレストレスをかけたと
き発生する逆磁場効果にみられたように、スピンが図1
中の数24あるいは<111>に向けられ、そのままの
状態で凍結される。その結果、磁歪材料に磁場をかける
と、プレストレスなしでも低い磁場で磁歪が大きくなる
(磁歪のジャンプ現象が起きる)と述べている。
On the other hand, as a similar heat treatment method, recently, after the above-described heat treatment for homogenizing the tissue, a magnetic field is applied in the longitudinal direction and heated to a Curie temperature (450 ° C.) or higher, and then the magnetic field is applied in the longitudinal direction. A heat treatment method of cooling while applying in a vertical direction has been proposed (USP. 4,
818, 304). This seems to be due to the reverse magnetic field effect that occurs when prestressed when cooled from a temperature above the Curie point (450 ° C) in a magnetic field while applying a magnetic field in the direction perpendicular to the long axis direction of the material. In addition, spin is
It is directed to the number 24 or <111> in the inside and frozen as it is. As a result, it is stated that when a magnetic field is applied to the magnetostrictive material, the magnetostriction increases (a magnetostrictive jump phenomenon occurs) at a low magnetic field without prestress.

【0037】[0037]

【数24】 [Equation 24]

【0038】[0038]

【発明が解決しようとする課題】しかし、上記特開平1
−123021号公報や特開平1−176024号公報
の方法は、材料組織を均質化し、異相や析出物を除去す
るための熱処理として、処理時間を短縮するものである
が、磁歪材料の磁歪を使用中に大きくするためには、磁
歪材料に予めプレストレスを負荷するような構造にする
必要があるという欠点がある。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
The methods of -1223021 and Japanese Patent Application Laid-Open No. 1-176024 use the magnetostriction of a magnetostrictive material, although the treatment time is shortened as a heat treatment for homogenizing the material structure and removing different phases and precipitates. In order to increase the size inside, there is a drawback that it is necessary to have a structure in which the magnetostrictive material is prestressed in advance.

【0039】また、USP4,818,304の方法
は、使用中に磁歪材料に予めプレストレスを負荷する必
要はないが、熱処理装置に大きな磁界発生装置を必要と
するという欠点がある。そこで本発明は、前記した従来
技術の問題点を解消し、磁歪材料の使用中に、磁歪材料
に予めプレストレスをかける必要がなく、また熱処理装
置に大きな磁界発生装置を必要としないで、大きな磁歪
が得られる磁歪材料の製造方法を提供することを目的と
している。
Further, the method of USP 4,818,304 does not require pre-stressing of the magnetostrictive material during use, but it has a drawback that a large magnetic field generator is required for the heat treatment apparatus. Therefore, the present invention eliminates the above-mentioned problems of the prior art, it is not necessary to pre-stress the magnetostrictive material during the use of the magnetostrictive material, and the heat treatment apparatus does not require a large magnetic field generation device, and a large It is an object of the present invention to provide a method for manufacturing a magnetostrictive material that can obtain magnetostriction.

【0040】[0040]

【課題を解決するための手段】上記目的を達成するため
本発明者らは、一方向凝固法で製造された磁歪材料の磁
歪の大きさを大きくする方法について鋭意研究を重ねた
結果、磁歪材料に予め圧縮力をかけた状態で、加熱・冷
却する処理を行なうのみで、プレストレスを負荷しなく
とも磁歪が大きくなることを知見し、本発明を完成する
に至った。
In order to achieve the above object, the inventors of the present invention have conducted extensive studies on a method of increasing the magnitude of magnetostriction of a magnetostrictive material manufactured by a unidirectional solidification method, and as a result, The inventors have found that the magnetostriction increases without applying a prestress only by performing a heating / cooling process while applying a compressive force in advance, and thus completed the present invention.

【0041】すなわち本発明は、一方向凝固法で製造さ
れた希土類金属−遷移金属系磁歪材料を均質化処理した
後、凝固方向に圧縮力を加えた状態で、材料のキューリ
ー点以上の温度に加熱し、圧縮力を加えた状態で冷却す
ることを特徴とする希土類金属−遷移金属系磁歪材料の
製造方法を要旨としている。そして前記希土類金属−遷
移金属系磁歪材料としては、RTx系(RはY及び1種
以上の希土類元素を表し、TはFe,Co,Niの1種
を表しxは1.5〜2.0を表す。)合金に適用される
ものである。
That is, according to the present invention, after the rare earth metal-transition metal magnetostrictive material produced by the unidirectional solidification method is homogenized, a compressive force is applied in the solidification direction to a temperature above the Curie point of the material. The gist is a method for producing a rare earth metal-transition metal-based magnetostrictive material, which comprises heating and cooling while applying a compressive force. And the rare earth metal - transition metal-based magnetostrictive material, RT x system (R represents Y and one or more rare earth elements, T is the x represents Fe, Co, one of Ni 1.5 to 2. It represents 0.) It is applied to alloys.

【0042】[0042]

【作用】本発明の構成と作用を説明する。本発明におい
て用いられる磁歪材料は、RTx系(RはY及び1種以
上の希土類元素を表わし、TはFe,Co,Niの1種
を表わし、xは1.5〜2.0を表す。)合金であり、
例えばTb0.3Dy0.7Fe2の他に、TbFe2等があげ
られる。
The structure and operation of the present invention will be described. The magnetostrictive material used in the present invention is an RT x system (R represents Y and one or more kinds of rare earth elements, T represents one kind of Fe, Co and Ni, and x represents 1.5 to 2.0. It's an alloy,
For example, in addition to Tb 0.3 Dy 0.7 Fe 2 , TbFe 2 and the like can be mentioned.

【0043】超磁歪材料の磁歪の大きさを大きくするに
は、スピンを凍結するとよい。すなわち、一方向凝固法
で製造された磁歪材料を均質化処理した後、凝固方向に
圧縮力を加えた状態で、材料のキューリー点以上の温度
に加熱し、圧縮力を加えた状態で冷却すると、圧縮力に
よる逆磁歪効果を発生させた状態で加熱冷却されるの
で、スピンを長軸方向に垂直な方向に凍結させることが
可能となる。これにより磁場を印加すると、プレストレ
スを負荷しなくても、磁歪のジャンプ現象がみられ、材
料の磁歪の大きさが大きくなる。前記均質化処理は、一
方向凝固法で製造された磁歪材料を900〜1100℃
で5〜7日間熱処理し、材料の結晶組織を均一なものと
する。
In order to increase the magnitude of magnetostriction of the giant magnetostrictive material, the spin may be frozen. That is, after homogenizing the magnetostrictive material produced by the unidirectional solidification method, in a state where a compressive force is applied in the solidification direction, the material is heated to a temperature above the Curie point and cooled in a state where a compressive force is applied. Since it is heated and cooled while the inverse magnetostrictive effect due to the compressive force is generated, the spin can be frozen in the direction perpendicular to the long axis direction. As a result, when a magnetic field is applied, a magnetostrictive jump phenomenon is observed without applying prestress, and the magnitude of magnetostriction of the material increases. The homogenization treatment is performed on the magnetostrictive material manufactured by the unidirectional solidification method at 900 to 1100 ° C.
Heat treatment for 5 to 7 days to make the crystal structure of the material uniform.

【0044】[0044]

【実施例】本発明の実施例を説明するが、これにより本
発明が限定されるものではない。Tb0.3Dy0.7Fe
1.9組成の合金粉末を原料として、プラズマアーク溶解
炉で鋳塊引下法により、直径6mm、長さ10mmの一
方向凝固磁歪材料を製造した。これを1000℃で7日
間の熱処理を行ない、ひずみゲージ法により磁歪量を測
定した。
EXAMPLES Examples of the present invention will be described, but the present invention is not limited thereto. Tb 0.3 Dy 0.7 Fe
A unidirectionally solidified magnetostrictive material having a diameter of 6 mm and a length of 10 mm was manufactured by an ingot lowering method in a plasma arc melting furnace using an alloy powder of 1.9 composition as a raw material. This was heat-treated at 1000 ° C. for 7 days, and the amount of magnetostriction was measured by the strain gauge method.

【0045】なお、圧縮力の負荷は高温圧縮試験機を使
用しアルゴン雰囲気にて400℃まで昇温し、所定の圧
縮力に加圧し、この温度で1時間保持した後、圧縮力を
負荷した状態で炉冷(この時の冷却速度は、150℃/
hrであった。)した。
The compressive force was applied by using a high-temperature compression tester to raise the temperature to 400 ° C. in an argon atmosphere, pressurizing it to a predetermined compressive force, holding it at this temperature for 1 hour, and then applying the compressive force. Furnace cooling in this state (cooling rate at this time is 150 ° C /
It was hr. )did.

【0046】また、比較例として、1000℃で7日間
の熱処理したままの材料、加圧力のみを与えた材料、4
00℃に加熱・冷却した材料、1000℃で2時間の熱
処理をした材料、磁場をかけた状態で450℃に加熱・
冷却した材料を用意した。得られた磁歪量の大きさを表
1に示す。
Further, as comparative examples, a material that has been heat-treated at 1000 ° C. for 7 days, a material that has been given only a pressure, 4
Material heated / cooled to 00 ° C, material heat-treated at 1000 ° C for 2 hours, heated to 450 ° C under magnetic field
The cooled material was prepared. Table 1 shows the magnitude of the obtained magnetostriction amount.

【0047】[0047]

【表1】 [Table 1]

【0048】これらの結果から、加圧・熱処理を行なっ
たNo.1〜4材は、いずれも磁歪値の増加が17%以
上得られ、加圧力の増加とともに磁歪値が増加する。N
o.5材は加圧力のみを与え加熱・冷却していないので
スピンの凍結ができず、磁歪値の増加は得られなかっ
た。No.6材は450℃に加熱し、磁場をかけながら
冷却したものであり、磁歪値の増加率は85%で120
0ppmの磁歪が得られ、本発明方法とほぼ同様の性能
が得られた。
Based on these results, No. In all of the Nos. 1 to 4, an increase in magnetostriction value of 17% or more is obtained, and the magnetostriction value increases as the applied pressure increases. N
o. Since the 5 materials were not heated and cooled by applying only a pressing force, the spins could not be frozen, and an increase in the magnetostriction value could not be obtained. No. The six materials were heated to 450 ° C. and cooled while applying a magnetic field, and the increase rate of the magnetostriction value was 85% and 120%.
A magnetostriction of 0 ppm was obtained, and the performance almost similar to that of the method of the present invention was obtained.

【0049】[0049]

【発明の効果】本発明は、以上説明したように構成され
ているから、一方向凝固法で製造された磁歪材料を均質
化処理したのち、凝固方向に圧縮力を加えた状態で、材
料のキューリー点以上の温度に加熱し、圧縮力を加えた
状態で冷却することにより、スピンが凍結できる。従っ
て、磁歪材料を使用するとき、あらかじめ磁歪材料にプ
レストレスをかけたり、また、大きな磁界発生装置の必
要がなく、大きな磁歪を発生する材料が得られ、産業上
極めて有用である。
Since the present invention is constructed as described above, the magnetostrictive material produced by the unidirectional solidification method is homogenized, and then a compressive force is applied in the solidification direction. The spin can be frozen by heating to a temperature above the Curie point and cooling with a compressive force applied. Therefore, when a magnetostrictive material is used, it is possible to pre-stress the magnetostrictive material in advance or to obtain a material that generates a large magnetostriction without the need for a large magnetic field generator, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁歪材料にプレストレスをかけたことによる磁
歪向上の原理の説明図である。
FIG. 1 is an explanatory diagram of a principle of improving magnetostriction by applying prestress to a magnetostrictive material.

【図2】常温低磁場における磁壁移動による磁化の変化
の説明図である。
FIG. 2 is an explanatory diagram of changes in magnetization due to domain wall movement in a room temperature and low magnetic field.

【図3】高磁場における磁化の変化の説明図である。FIG. 3 is an explanatory diagram of a change in magnetization in a high magnetic field.

【図4】プレストレスをかけたときの磁化の変化の説明
図である。
FIG. 4 is an explanatory diagram of a change in magnetization when prestressing is applied.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方向凝固法で製造された希土類金属−
遷移金属系磁歪材料を均質化処理した後、凝固方向に圧
縮力を加えた状態で、材料のキューリー点以上の温度に
加熱し、圧縮力を加えた状態で冷却することを特徴とす
る希土類金属−遷移金属系磁歪材料の製造方法。
1. A rare earth metal produced by a unidirectional solidification method.
A rare earth metal characterized by heating a transition metal-based magnetostrictive material to a temperature higher than the Curie point of the material with a compressive force applied in the direction of solidification, and then cooling with a compressive force applied after homogenizing the material. -A method for manufacturing a transition metal-based magnetostrictive material.
【請求項2】 上記希土類金属−遷移金属系磁歪材料
が、RTx系(RはY及び1種以上の希土類元素を表
し、TはFe,Co,Niの1種を表しxは1.5〜
2.0を表す。)合金である請求項1記載の希土類金属
−遷移金属系磁歪材料の製造方法。
2. The rare earth metal-transition metal-based magnetostrictive material is an RT x -based material (R represents Y and one or more rare earth elements, T represents one of Fe, Co and Ni, and x is 1.5. ~
Represents 2.0. ) The method for producing a rare earth metal-transition metal-based magnetostrictive material according to claim 1, which is an alloy.
【請求項3】 900〜1100℃で5〜7日間の均質
化処理をする請求項1又は2記載の希土類金属−遷移金
属系磁歪材料の製造方法。
3. The method for producing a rare earth metal-transition metal magnetostrictive material according to claim 1, wherein homogenization treatment is performed at 900 to 1100 ° C. for 5 to 7 days.
JP3195085A 1991-07-10 1991-07-10 Production of rare earth metal-transition metal type magnetostrictive material Pending JPH0517824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3195085A JPH0517824A (en) 1991-07-10 1991-07-10 Production of rare earth metal-transition metal type magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3195085A JPH0517824A (en) 1991-07-10 1991-07-10 Production of rare earth metal-transition metal type magnetostrictive material

Publications (1)

Publication Number Publication Date
JPH0517824A true JPH0517824A (en) 1993-01-26

Family

ID=16335297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3195085A Pending JPH0517824A (en) 1991-07-10 1991-07-10 Production of rare earth metal-transition metal type magnetostrictive material

Country Status (1)

Country Link
JP (1) JPH0517824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
JP2009273207A (en) * 2008-05-02 2009-11-19 Mechano Transformer Corp Magnetostrictive actuator with displacement magnifying mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779158A (en) * 1980-10-31 1982-05-18 Matsushita Electric Ind Co Ltd Heat treatment of thin strip of amorphous magnetic alloy
JPS5848606A (en) * 1981-09-18 1983-03-22 Tohoku Metal Ind Ltd Production of permanent magnet of rare earths
JPH04337055A (en) * 1991-05-14 1992-11-25 Nkk Corp Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779158A (en) * 1980-10-31 1982-05-18 Matsushita Electric Ind Co Ltd Heat treatment of thin strip of amorphous magnetic alloy
JPS5848606A (en) * 1981-09-18 1983-03-22 Tohoku Metal Ind Ltd Production of permanent magnet of rare earths
JPH04337055A (en) * 1991-05-14 1992-11-25 Nkk Corp Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
JP2009273207A (en) * 2008-05-02 2009-11-19 Mechano Transformer Corp Magnetostrictive actuator with displacement magnifying mechanism

Similar Documents

Publication Publication Date Title
US4308474A (en) Rare earth-iron magnetostrictive materials and devices using these materials
Huang et al. Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni–Mn-based alloys
JP6293803B2 (en) Magnetic phase transformation material, method for producing magnetic phase transformation material and use of magnetic phase transformation material
JPH11509368A (en) Method for generating motion and force by controlling orientation of twin structure of material and use thereof
Murray et al. Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JPH01123021A (en) Heat-treatment for increasing magnetostriction response of rare earth metal-iron alloy rod
Nesbitt et al. Physical Structure and Magnetic Anisotropy of Alnico 5. Part II
JPH0517824A (en) Production of rare earth metal-transition metal type magnetostrictive material
Zhao et al. Stress dependence of magnetostrictions and strains in< 111>‐oriented single crystals of Terfenol‐D
JP2513679B2 (en) Ultra-high coercive force permanent magnet with large maximum energy product and method for manufacturing the same
CN114395718A (en) Preparation method of NiCoMnIn magnetic shape memory alloy micron-sized particles
JP3230581B1 (en) Manufacturing method of giant magnetostrictive material under microgravity environment
Tu et al. Enhancement of magnetostrictive performance of Tb0. 27Dy0. 73Fe1. 95 by solidification in high magnetic field gradient
JP2791564B2 (en) Magnetostrictive material
Wang et al. Textures and compressive properties of ferromagnetic shape-memory alloy Ni48Mn25Ga22Co5 prepared by isothermal forging process
JPH04337055A (en) Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal
JP2004292886A (en) Rare earth-added ferromagnetic shape memory alloy
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JPH0436401A (en) Manufacture of super magnetostrictive material
JP3769605B2 (en) Method for producing a material having an oriented structure or an anisotropic structure
EP0140523B1 (en) Directional solidification of bi/mnbi compositions
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
Liu et al. Magnetic field induced reversible strain in Co-Ni single crystal