JP3769605B2 - Method for producing a material having an oriented structure or an anisotropic structure - Google Patents
Method for producing a material having an oriented structure or an anisotropic structure Download PDFInfo
- Publication number
- JP3769605B2 JP3769605B2 JP2001087598A JP2001087598A JP3769605B2 JP 3769605 B2 JP3769605 B2 JP 3769605B2 JP 2001087598 A JP2001087598 A JP 2001087598A JP 2001087598 A JP2001087598 A JP 2001087598A JP 3769605 B2 JP3769605 B2 JP 3769605B2
- Authority
- JP
- Japan
- Prior art keywords
- oriented
- magnetic field
- anisotropic
- magnetic
- equilibrium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Hard Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、磁場を利用した配向組織または異方的組織を有する材料の製造方法に関する。
【0002】
【従来の技術】
配向組織形成を目的とした磁場凝固プロセスが、1990年代の超伝導マグネット技術の進展を背景に研究されつつあり、配向組織または異方性組織形成への利用が期待されている。磁場凝固プロセスは、液相からの冷却過程で磁場を印加することにより、液相中に分散した固相が結晶磁気異方性または形状磁気異方性により回転・移動して、配向組織・異方的組織を形成するものである。しかし磁場凝固プロセスは、結晶全体を溶融させて液相からの冷却中に磁場を印加するため、その適用範囲が限られていた。すなわち、ほとんどの強磁性体は、特に立方晶系について、融点付近では常磁性であって異方性が消失しているため、結晶配向が起こらなかった。また結晶中に部分的に配向組織・異方性組織を形成することは不可能であった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、適用範囲が拡大された、磁場を利用した配向組織または異方的組織を有する材料の製造方法を提供することである。
【0004】
【課題を解決するための手段】
本発明の一実施形態に係る配向組織または異方的組織を有する材料の製造方法は、マトリックス中に、BiMn化合物、TbFe 2 化合物、DyFe 2 化合物およびCoからなる群より選択される結晶磁気異方性または形状磁気異方性を有する粒子が分散した非平衡組織を有する材料を形成する工程と、前記非平衡組織を有する材料を磁場中で焼鈍して前記粒子を成長させ、結晶磁気異方性または形状磁気異方性に従って配向組織または異方的組織を形成する工程とを含むことを特徴とする。
【0005】
本発明の他の実施形態においては、前記非平衡組織を有する材料の特定部分を磁場中で加熱して前記粒子を成長させ、結晶磁気異方性または形状磁気異方性に従って前記特定部分に配向組織または異方的組織を形成してもよい。
【0006】
【発明の実施の形態】
本発明は、特性が結晶方位依存性を有する磁性材料、超伝導材料、熱電材料などの機能性材料の製造、および機能性材料の集積化によるデバイスの製造に適用できる。本発明によって配向させる材料には、磁性材料に限らず、磁気的な異方性を有する超伝導材料、熱電材料も含まれる。
【0007】
本発明においては、急冷凝固をはじめとする非平衡プロセスにより作製された、マトリックス中に結晶磁気異方性または形状磁気異方性を有する粒子が分散した熱力学的に不安定な非平衡組織(過飽和固溶体、準安定共晶組織、ミクロンからサブミクロン程度の微細組織など)を有する材料を磁場中で焼鈍することにより、磁気的な異方性に従った配向組織または異方的組織を有する材料を製造する。すなわち、急冷凝固により作製された過飽和固溶体、微細組織などを初期組織として、融点よりも低い温度で強磁性相を粗大化させることによって、配向組織、異方的組織を形成する。このため、融点付近では常磁性体であって磁気異方性が消失する強磁性体についても、融点を下回る強磁性の温度域で粗大化させて結晶配向できる。
【0008】
また本発明においては、非平衡組織を有する材料の特定部分を、磁場中でレーザーなどの光学的な手法を用いて加熱して溶融、半溶融、または焼鈍することにより、配向組織または異方的組織を目的形状に配置することができる。この方法は、マイクロマシンなどの発展により価値が高まることが期待される磁気回路などの集積化技術に応用できる。
【0009】
言い換えると、本発明は以下の2つの技術要素から構成される。
【0010】
(a)非平衡組織を有する材料を磁場中で焼鈍して、材料が固相状態で平衡状態へ遷移する過程で磁場を印加する。こうすることにより、材料の結晶磁気異方性または形状磁気異方性により、結晶方位が配向した組織または結晶が異方的な形状をした組織を有する材料を製造できる。
【0011】
(b)非平衡組織を有する材料を磁場中で選択的に加熱して溶融、半溶融、または焼鈍過程を起こし、配向組織・異方的組織が形成される範囲を制御する。この方法によって、機能性材料を微細に配置した素子を製造することができる。
【0012】
なお具体的には、磁場の大きさは0.1〜10Tであり、好ましくは1〜10Tである。また材料の焼鈍などの加熱温度、加熱時間等は、結晶配向などが十分に行われる最適な値を材料ごとに選べば良い。
【0013】
【実施例】
(実施例1)
大きな結晶磁気異方性を有するBiMn合金(Bi−20at%Mn)の試料を用いて、配向組織を有する材料を製造した。まず試料を急冷凝固して非平衡組織を形成し、次に最大10Tの強磁場下で240℃のアニールを行った。製造された材料の組織観察、画像解析、およびVSMによる磁化測定により異方性を測定した。
【0014】
BiMn合金を急冷凝固することにより、Mnを過飽和に固溶したBiマトリックス中に数μm程度の微細なBiMn化合物が分散した非平衡組織が形成された。磁場下において固相状態で焼鈍を行うと、過飽和に固溶したMnによるBiMnの成長およびBiMn粒子の粗大化が生じ、24時間後には数十μm程度の大きさになっていた。
【0015】
製造された材料に10Tの磁場を印加して磁化測定を行ったところ、アニール中の磁場方向と同じ方向について得られた磁化曲線と、それに垂直な方向について得られた磁化曲線との間に大きな違いが見られた。図1に測定結果を示す。この結果、BiMnのc軸がアニール中の磁場方向に配向した組織が形成されたことが確認された。これは、磁場を印加することによって、c軸と磁場方向とが一致した磁気的エネルギーの低いBiMn粒子が優先的に成長して粗大化し、配向組織を有する材料が製造されたためである。配向したBiMn合金は硬磁性材料として使用できる。
【0016】
(実施例2)
TbFe2、DyFe2などの鉄系ラーベス相(立方晶)の試料を用いて、配向組織を有する材料を製造した。これらの結晶は、融点(TbFe2:1187℃、DyFe2:1270℃)付近では常磁性であり、結晶磁気異方性がない。実施例1と同様に、まず試料を急冷凝固して非平衡組織を形成し、次に最大10Tの強磁場下で400〜600℃のアニールを行った。その結果、<111>軸と磁場方向とが一致した磁気的エネルギーの低いTbFe2またはDyFe2粒子が優先的に成長して、配向組織・異方性組織が形成された。この多結晶TbFe2、DyFe2鉄系ラーベス相は磁歪材料などに応用される。
【0017】
(実施例3)
磁気異方性が小さい面心立方のCo結晶を非平衡組織から磁場中で粗大化させて、異方性組織を有する材料を製造した。試料としては、常磁性のCu中にCoを含有させた組成Cu−30at%CoのCuCo合金を使用した。実施例1と同様に、まず試料を急冷凝固して非平衡組織を形成した後、最大10Tの磁場下で900℃のアニールを行った。その結果、Cu中でCoが粗大化し、Co粒子が形状磁気異方性エネルギーの低い磁場方向に伸びた形状を有する組織が形成された。この異方性組織により、磁気的な異方性だけでなく、力学的、電気的な異方性も材料に付加できる。
【0018】
(実施例4)
Bi−Mn系合金(Mnが50at%以下)を急冷凝固して非平衡組織を形成した後、最大10Tの強磁場中でレーザーを照射して特定部分のみを加熱した。その結果、加熱部分のみに配向組織が形成されて強磁性体が作製されたことが確認された。Bi−Mn系を用いた場合には、永久磁石をミクロンオーダーで配置した構造を簡便に短時間で製造することができ、マイクロモーターの磁気回路製造などに応用できる。
【0019】
【発明の効果】
以上詳述したように、本発明により、適用範囲が拡大された磁場を利用した配向組織または異方的組織を有する材料の製造方法が提供される。その結果、以下の効果がもたらされる。(1)非平衡組織を初期組織として焼鈍するため、磁場凝固プロセスよりも低いプロセス温度で配向組織を形成することができ、磁場を用いて配向組織を形成できる範囲が拡大される。(2)加熱個所の制御によって、選択的な配向組織形成が可能になり、機能材料の微細な配置が可能になる。そのため、従来よりも少ない工程で短時間に機能材料を微細配置できる。(3)初期組織である非平衡相の物性値と、溶融・焼鈍で形成された相の物性値とは異なるため、マトリックス材料中に物性値の異なる材料を配置することが熱処理のみで行える。これは、材料全体を溶融させる従来の磁場中凝固プロセスでは実現されない。
【図面の簡単な説明】
【図1】実施例で得られた磁化曲線の測定結果の一例を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a material having an oriented structure or an anisotropic structure using a magnetic field.
[0002]
[Prior art]
A magnetic field solidification process aimed at forming an oriented structure is being studied against the background of the progress of superconducting magnet technology in the 1990s, and is expected to be used for forming an oriented structure or an anisotropic structure. In the magnetic field solidification process, by applying a magnetic field during the cooling process from the liquid phase, the solid phase dispersed in the liquid phase rotates and moves due to crystal magnetic anisotropy or shape magnetic anisotropy. Forming a directional organization. However, the application range of the magnetic field solidification process is limited because the entire crystal is melted and a magnetic field is applied during cooling from the liquid phase. That is, most of the ferromagnetic materials, particularly in the cubic system, were paramagnetic and lost anisotropy near the melting point, so that no crystal orientation occurred. In addition, it was impossible to partially form an oriented structure / anisotropic structure in the crystal.
[0003]
[Problems to be solved by the invention]
The objective of this invention is providing the manufacturing method of the material which has the orientation structure | tissue or anisotropic structure | tissue using a magnetic field by which the application range was expanded.
[0004]
[Means for Solving the Problems]
According to one embodiment of the present invention, there is provided a method for producing a material having an oriented structure or an anisotropic structure, wherein a crystalline magnetic anisotropy selected from the group consisting of a BiMn compound, a TbFe 2 compound, a DyFe 2 compound, and Co in a matrix. Forming a material having a non-equilibrium structure in which particles having magnetic property or shape magnetic anisotropy are dispersed, and growing the particles by annealing the material having the non-equilibrium structure in a magnetic field, and crystal magnetic anisotropy Or forming an oriented structure or an anisotropic structure in accordance with the shape magnetic anisotropy.
[0005]
In another embodiment of the present invention, a specific portion of the material having the nonequilibrium structure is heated in a magnetic field to grow the particles, and oriented in the specific portion according to crystalline magnetic anisotropy or shape magnetic anisotropy. A tissue or anisotropic tissue may be formed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be applied to the manufacture of functional materials such as magnetic materials, superconducting materials, and thermoelectric materials whose characteristics depend on crystal orientation, and the manufacture of devices by integrating the functional materials. The materials to be oriented according to the present invention are not limited to magnetic materials but also include superconducting materials and thermoelectric materials having magnetic anisotropy.
[0007]
In the present invention, a thermodynamically unstable non-equilibrium structure (particles having crystalline magnetic anisotropy or shape magnetic anisotropy dispersed in a matrix, produced by a non-equilibrium process such as rapid solidification ) A material having an oriented or anisotropic structure according to magnetic anisotropy by annealing a material having a supersaturated solid solution, a metastable eutectic structure, or a fine structure of micron to submicron in a magnetic field. Manufacturing. That is, an oriented structure and an anisotropic structure are formed by coarsening a ferromagnetic phase at a temperature lower than the melting point using a supersaturated solid solution, a fine structure or the like prepared by rapid solidification as an initial structure. For this reason, even a ferromagnetic material which is a paramagnetic material near the melting point and loses magnetic anisotropy can be crystallized by being coarsened in a ferromagnetic temperature range below the melting point.
[0008]
In the present invention, a specific portion of a material having a non-equilibrium structure is heated, melted, semi-molten, or annealed by using an optical technique such as a laser in a magnetic field, so that an oriented structure or an anisotropic structure is obtained. The tissue can be placed in a target shape. This method can be applied to an integration technique such as a magnetic circuit that is expected to increase in value due to the development of a micromachine or the like.
[0009]
In other words, the present invention is composed of the following two technical elements.
[0010]
(A) A material having a non-equilibrium structure is annealed in a magnetic field, and a magnetic field is applied in a process in which the material transitions to an equilibrium state in a solid state. By doing so, it is possible to manufacture a material having a structure in which crystal orientation is oriented or a structure in which crystals are anisotropically shaped due to the magnetocrystalline anisotropy or shape magnetic anisotropy of the material.
[0011]
(B) A material having a non-equilibrium structure is selectively heated in a magnetic field to cause a melting, semi-melting, or annealing process to control a range in which an oriented structure or an anisotropic structure is formed. By this method, an element in which the functional material is finely arranged can be manufactured.
[0012]
Specifically, the magnitude of the magnetic field is 0.1 to 10T, preferably 1 to 10T. In addition, as for the heating temperature such as annealing of the material, the heating time, and the like, it is sufficient to select an optimum value for sufficient crystal orientation for each material.
[0013]
【Example】
Example 1
A material having an oriented structure was manufactured using a sample of BiMn alloy (Bi-20 at% Mn) having a large magnetocrystalline anisotropy. First, the sample was rapidly solidified to form a non-equilibrium structure, and then annealed at 240 ° C. under a strong magnetic field of maximum 10 T. Anisotropy was measured by texture observation of the manufactured material, image analysis, and magnetization measurement by VSM.
[0014]
By rapidly solidifying the BiMn alloy, a non-equilibrium structure in which a fine BiMn compound of about several μm was dispersed in a Bi matrix in which Mn was supersaturated was formed. When annealing was performed in a solid phase under a magnetic field, BiMn growth and BiMn particle coarsening occurred due to supersaturated Mn, and the size became several tens of μm after 24 hours.
[0015]
When magnetization was measured by applying a magnetic field of 10 T to the manufactured material, there was a large gap between the magnetization curve obtained in the same direction as the magnetic field direction during annealing and the magnetization curve obtained in the direction perpendicular thereto. There was a difference. FIG. 1 shows the measurement results. As a result, it was confirmed that a structure in which the c-axis of BiMn was oriented in the direction of the magnetic field during annealing was formed. This is because by applying a magnetic field, BiMn particles with low magnetic energy whose c-axis and magnetic field direction coincide with each other grow preferentially and become coarse, and a material having an oriented structure is manufactured. The oriented BiMn alloy can be used as a hard magnetic material.
[0016]
(Example 2)
A material having an oriented structure was manufactured using a sample of an iron-based Laves phase (cubic crystal) such as TbFe 2 and DyFe 2 . These crystals are paramagnetic near the melting point (TbFe 2 : 1187 ° C., DyFe 2 : 1270 ° C.) and have no magnetocrystalline anisotropy. As in Example 1, the sample was first rapidly solidified to form a non-equilibrium structure, and then annealed at 400 to 600 ° C. under a strong magnetic field of 10 T at maximum. As a result, TbFe 2 or DyFe 2 particles having a low magnetic energy whose <111> axis coincided with the magnetic field direction preferentially grew to form an oriented structure / anisotropic structure. This polycrystalline TbFe 2 , DyFe 2 iron-based Laves phase is applied to a magnetostrictive material or the like.
[0017]
Example 3
A face-centered cubic Co crystal having a small magnetic anisotropy was coarsened from a non-equilibrium structure in a magnetic field to produce a material having an anisotropic structure. As a sample, a CuCo alloy having a composition of Cu-30 at% Co in which Co is contained in paramagnetic Cu was used. As in Example 1, first, the sample was rapidly solidified to form a non-equilibrium structure, and then annealed at 900 ° C. under a magnetic field of 10 T at maximum. As a result, Co coarsened in Cu, and a structure having a shape in which Co particles extended in the magnetic field direction with low shape magnetic anisotropy energy was formed. With this anisotropic structure, not only magnetic anisotropy but also mechanical and electrical anisotropy can be added to the material.
[0018]
(Example 4)
A Bi—Mn alloy (Mn is 50 at% or less) was rapidly solidified to form a non-equilibrium structure, and then a specific portion was heated by laser irradiation in a strong magnetic field of 10 T at maximum. As a result, it was confirmed that an oriented structure was formed only in the heated portion to produce a ferromagnetic material. When the Bi-Mn system is used, a structure in which permanent magnets are arranged on the micron order can be easily manufactured in a short time, and can be applied to manufacturing a magnetic circuit of a micromotor.
[0019]
【The invention's effect】
As described in detail above, the present invention provides a method for producing a material having an oriented structure or an anisotropic structure using a magnetic field with an expanded application range. As a result, the following effects are brought about. (1) Since the non-equilibrium structure is annealed as the initial structure, the oriented structure can be formed at a lower process temperature than the magnetic solidification process, and the range in which the oriented structure can be formed using a magnetic field is expanded. (2) By controlling the heating location, it becomes possible to form a selectively oriented structure and finely dispose the functional material. Therefore, the functional material can be finely arranged in a short time with fewer steps than conventional. (3) Since the physical property value of the non-equilibrium phase, which is the initial structure, is different from the physical property value of the phase formed by melting and annealing, it is possible to dispose materials having different physical property values in the matrix material only by heat treatment. This is not achieved with a conventional solidification process in a magnetic field that melts the entire material.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a measurement result of a magnetization curve obtained in an example.
Claims (2)
前記非平衡組織を有する材料を磁場中で焼鈍して前記粒子を成長させ、結晶磁気異方性または形状磁気異方性に従って配向組織または異方的組織を形成する工程と
を含むことを特徴とする配向組織または異方的組織を有する材料の製造方法。 Forming a material having a non-equilibrium structure in which particles having crystal magnetic anisotropy or shape magnetic anisotropy selected from the group consisting of a BiMn compound, a TbFe 2 compound, a DyFe 2 compound, and Co are dispersed in a matrix When,
Annealing the material having the non-equilibrium structure in a magnetic field to grow the particles, and forming an oriented structure or an anisotropic structure according to crystalline magnetic anisotropy or shape magnetic anisotropy. A method for producing a material having an oriented structure or an anisotropic structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001087598A JP3769605B2 (en) | 2001-03-26 | 2001-03-26 | Method for producing a material having an oriented structure or an anisotropic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001087598A JP3769605B2 (en) | 2001-03-26 | 2001-03-26 | Method for producing a material having an oriented structure or an anisotropic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002285240A JP2002285240A (en) | 2002-10-03 |
JP3769605B2 true JP3769605B2 (en) | 2006-04-26 |
Family
ID=18942826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001087598A Expired - Lifetime JP3769605B2 (en) | 2001-03-26 | 2001-03-26 | Method for producing a material having an oriented structure or an anisotropic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3769605B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4247379B2 (en) * | 2003-02-14 | 2009-04-02 | 国立大学法人大阪大学 | Method for producing porous body |
CN112620632B (en) * | 2020-11-30 | 2022-09-06 | 成都昆吾科技有限公司 | Method for modifying powder metallurgy magnetic material based on pulsed magnetic field |
-
2001
- 2001-03-26 JP JP2001087598A patent/JP3769605B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002285240A (en) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Klemmer et al. | Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets | |
Nesbitt | New permanent magnet materials containing rare‐earth metals | |
JP6293803B2 (en) | Magnetic phase transformation material, method for producing magnetic phase transformation material and use of magnetic phase transformation material | |
Levin et al. | Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd 5 Ge 4 antiferromagnet | |
JP2713404B2 (en) | Magnetic material for permanent magnet comprising iron, boron and rare earth metal and method for producing the same | |
Murray et al. | Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys | |
JP4468584B2 (en) | Sm (Co, Fe, Cu, Zr, C) composition and method for producing the same | |
JP2011042852A (en) | Fe-BASED FERROMAGNETIC SHAPE MEMORY ALLOY AND APPLICATION THEREOF | |
JP3769605B2 (en) | Method for producing a material having an oriented structure or an anisotropic structure | |
JP2010013679A (en) | Ferromagnetic shape memory alloy sintered compact and method for manufacturing the same | |
JPH07235438A (en) | Method for preparing magnetic compound which is oriented andset in system | |
Marin et al. | Influence of Cu and Nb on relaxation and crystallization of amorphous FeSiB (CuNb) wires | |
JP3230581B1 (en) | Manufacturing method of giant magnetostrictive material under microgravity environment | |
Legrand et al. | Orientation of samarium–cobalt compounds by solidification in a magnetic field | |
JP2017179396A (en) | Manufacturing method of ferromagnetic alloy | |
Roth et al. | Magneto-mechanical behaviour of textured Polycrystals of NiMnGa ferromagnetic Shape Memory Alloys | |
CN108281247A (en) | A kind of method that uniaxial tension constrained transition prepares the single variants of anisotropy MnAlC | |
JPS63213324A (en) | Resin-bonded rare earth magnet | |
JP2007515292A (en) | Method for producing magnetically active shape memory metal alloy | |
Livingston | Properties of aligned Co-Si eutectoid | |
JP3380575B2 (en) | RB-Fe cast magnet | |
JP3367069B2 (en) | Manufacturing method of giant magnetostrictive alloy rod | |
JPH01168844A (en) | Permanent magnet material | |
TWI307367B (en) | Method for producing magnetically active shape memory metal alloy | |
Lograsso et al. | Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd5Ge4 antiferromagnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041101 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3769605 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |