JP2002285240A - Method for manufacturing material having oriented structure or anisotropic structure - Google Patents

Method for manufacturing material having oriented structure or anisotropic structure

Info

Publication number
JP2002285240A
JP2002285240A JP2001087598A JP2001087598A JP2002285240A JP 2002285240 A JP2002285240 A JP 2002285240A JP 2001087598 A JP2001087598 A JP 2001087598A JP 2001087598 A JP2001087598 A JP 2001087598A JP 2002285240 A JP2002285240 A JP 2002285240A
Authority
JP
Japan
Prior art keywords
oriented
anisotropic
magnetic field
magnetic
equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001087598A
Other languages
Japanese (ja)
Other versions
JP3769605B2 (en
Inventor
Itsuo Onaka
逸雄 大中
Hideyuki Yasuda
秀幸 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2001087598A priority Critical patent/JP3769605B2/en
Publication of JP2002285240A publication Critical patent/JP2002285240A/en
Application granted granted Critical
Publication of JP3769605B2 publication Critical patent/JP3769605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a material having oriented structure or anisotropic structure and also having a wide range of application by using magnetic fields. SOLUTION: The method for manufacturing the material having oriented structure or anisotropic structure comprises steps of forming nonequilibrium structure in a material having magnetic anisotropy and applying magnetic annealing to the above material having nonequilibrium structure to form oriented structure or anisotropic structure according to magnetic anisotropy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁場を利用した配
向組織または異方的組織を有する材料の製造方法に関す
る。
The present invention relates to a method for producing a material having an oriented structure or an anisotropic structure using a magnetic field.

【0002】[0002]

【従来の技術】配向組織形成を目的とした磁場凝固プロ
セスが、1990年代の超伝導マグネット技術の進展を
背景に研究されつつあり、配向組織または異方性組織形
成への利用が期待されている。磁場凝固プロセスは、液
相からの冷却過程で磁場を印加することにより、液相中
に分散した固相が結晶磁気異方性または形状磁気異方性
により回転・移動して、配向組織・異方的組織を形成す
るものである。しかし磁場凝固プロセスは、結晶全体を
溶融させて液相からの冷却中に磁場を印加するため、そ
の適用範囲が限られていた。すなわち、ほとんどの強磁
性体は、特に立方晶系について、融点付近では常磁性で
あって異方性が消失しているため、結晶配向が起こらな
かった。また結晶中に部分的に配向組織・異方性組織を
形成することは不可能であった。
2. Description of the Related Art A magnetic solidification process for forming an oriented structure is being studied with the progress of superconducting magnet technology in the 1990s, and is expected to be used for forming an oriented structure or an anisotropic structure. . In the magnetic field solidification process, a solid phase dispersed in the liquid phase is rotated and moved by crystal magnetic anisotropy or shape magnetic anisotropy by applying a magnetic field during the cooling process from the liquid phase, and the orientation structure / different structure. It forms an isotropic organization. However, since the magnetic field solidification process applies a magnetic field during cooling from the liquid phase by melting the entire crystal, its application range has been limited. That is, most of the ferromagnetic materials, especially in the cubic system, were paramagnetic near the melting point and lost anisotropy, so that no crystal orientation occurred. Further, it was impossible to partially form an oriented structure / anisotropic structure in the crystal.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、適用
範囲が拡大された、磁場を利用した配向組織または異方
的組織を有する材料の製造方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a material having an oriented structure or an anisotropic structure utilizing a magnetic field, which has an extended range of application.

【0004】[0004]

【課題を解決するための手段】本発明においては、磁気
異方性を有する材料に非平衡組織を形成する工程と、前
記非平衡組織を有する材料を磁場中で焼鈍して、磁気異
方性に従って配向組織または異方的組織を形成する工程
とを含むことを特徴とする配向組織または異方的組織を
有する材料の製造方法が提供される。
According to the present invention, there is provided a process for forming a non-equilibrium structure in a material having magnetic anisotropy, and annealing the material having non-equilibrium structure in a magnetic field. Forming a texture having an oriented structure or an anisotropic structure according to the following.

【0005】また本発明においては、磁気異方性を有す
る材料に非平衡組織を形成する工程と、前記非平衡組織
を有する材料の特定部分を磁場中で加熱して、磁気異方
性に従って前記特定部分に配向組織または異方的組織を
形成する工程とを含むことを特徴とする配向組織または
異方的組織を有する材料の製造方法が提供される。
Further, in the present invention, a step of forming a non-equilibrium structure in a material having a magnetic anisotropy, and heating a specific portion of the material having the non-equilibrium structure in a magnetic field, and Forming an oriented structure or an anisotropic structure in a specific portion. A method for producing a material having an oriented structure or an anisotropic structure is provided.

【0006】[0006]

【発明の実施の形態】本発明は、特性が結晶方位依存性
を有する磁性材料、超伝導材料、熱電材料などの機能性
材料の製造、および機能性材料の集積化によるデバイス
の製造に適用できる。本発明によって配向させる材料に
は、磁性材料に限らず、磁気的な異方性を有する超伝導
材料、熱電材料も含まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be applied to the manufacture of functional materials such as magnetic materials, superconducting materials, and thermoelectric materials whose properties depend on the crystal orientation, and to the manufacture of devices by integration of functional materials. . The materials to be oriented according to the present invention are not limited to magnetic materials, but also include superconducting materials and thermoelectric materials having magnetic anisotropy.

【0007】本発明においては、急冷凝固をはじめとす
る非平衡プロセスにより作製された熱力学的に不安定な
非平衡組織(非晶質、過飽和固溶体、準安定共晶組織、
ミクロンからサブミクロン程度の微細組織など)を有す
る材料を磁場中で焼鈍することにより、磁気的な異方性
に従った配向組織または異方的組織を有する材料を製造
する。すなわち、急冷凝固により作製された過飽和固溶
体、微細組織などを初期組織として、融点よりも低い温
度で強磁性相を粗大化させることによって、配向組織、
異方的組織を形成する。このため、融点付近では常磁性
体であって磁気異方性が消失する強磁性体についても、
融点を下回る強磁性の温度域で粗大化させて結晶配向で
きる。
In the present invention, a thermodynamically unstable non-equilibrium structure (amorphous, supersaturated solid solution, metastable eutectic structure,
By annealing a material having a microstructure of about one micron to submicron in a magnetic field, a material having an oriented structure or an anisotropic structure according to magnetic anisotropy is manufactured. In other words, the superstructure is prepared by rapid solidification, a supersaturated solid solution, a microstructure, etc., as an initial structure, the ferromagnetic phase is coarsened at a temperature lower than the melting point, the orientation structure,
Form an anisotropic tissue. For this reason, even for ferromagnetic materials that are paramagnetic near the melting point and lose magnetic anisotropy,
Crystal orientation can be achieved by coarsening in a ferromagnetic temperature range below the melting point.

【0008】また本発明においては、非平衡組織を有す
る材料の特定部分を、磁場中でレーザーなどの光学的な
手法を用いて加熱して溶融、半溶融、または焼鈍するこ
とにより、配向組織または異方的組織を目的形状に配置
することができる。この方法は、マイクロマシンなどの
発展により価値が高まることが期待される磁気回路など
の集積化技術に応用できる。
In the present invention, a specific portion of the material having a non-equilibrium structure is heated, melted, semi-melted, or annealed in a magnetic field by using an optical method such as a laser to obtain an oriented structure or a material. The anisotropic tissue can be arranged in a target shape. This method can be applied to an integration technology of a magnetic circuit or the like, whose value is expected to increase with the development of a micromachine or the like.

【0009】言い換えると、本発明は以下の2つの技術
要素から構成される。
In other words, the present invention comprises the following two technical elements.

【0010】(a)非平衡組織を有する材料を磁場中で
焼鈍して、材料が固相状態で平衡状態へ遷移する過程で
磁場を印加する。こうすることにより、材料の結晶磁気
異方性または形状磁気異方性により、結晶方位が配向し
た組織または結晶が異方的な形状をした組織を有する材
料を製造できる。
(A) A material having a non-equilibrium structure is annealed in a magnetic field, and a magnetic field is applied in a process where the material transitions to an equilibrium state in a solid state. This makes it possible to produce a material having a structure in which the crystal orientation is oriented or a structure in which the crystal has an anisotropic shape due to the crystal magnetic anisotropy or shape magnetic anisotropy of the material.

【0011】(b)非平衡組織を有する材料を磁場中で
選択的に加熱して溶融、半溶融、または焼鈍過程を起こ
し、配向組織・異方的組織が形成される範囲を制御す
る。この方法によって、機能性材料を微細に配置した素
子を製造することができる。
(B) A material having a non-equilibrium structure is selectively heated in a magnetic field to cause a melting, semi-melting, or annealing process to control a range in which an oriented structure and an anisotropic structure are formed. By this method, an element in which a functional material is finely arranged can be manufactured.

【0012】なお具体的には、磁場の大きさは0.1〜
10Tであり、好ましくは1〜10Tである。また材料
の焼鈍などの加熱温度、加熱時間等は、結晶配向などが
十分に行われる最適な値を材料ごとに選べば良い。
More specifically, the magnitude of the magnetic field is 0.1 to
10T, preferably 1-10T. As for the heating temperature, heating time, and the like, for example, annealing of the material, an optimum value for sufficiently performing crystal orientation and the like may be selected for each material.

【0013】[0013]

【実施例】(実施例1)大きな結晶磁気異方性を有する
BiMn合金(Bi−20at%Mn)の試料を用い
て、配向組織を有する材料を製造した。まず試料を急冷
凝固して非平衡組織を形成し、次に最大10Tの強磁場
下で240℃のアニールを行った。製造された材料の組
織観察、画像解析、およびVSMによる磁化測定により
異方性を測定した。
EXAMPLES Example 1 A material having an oriented structure was manufactured using a sample of a BiMn alloy (Bi-20 at% Mn) having a large magnetocrystalline anisotropy. First, the sample was rapidly solidified to form a non-equilibrium structure, and then annealed at 240 ° C. under a strong magnetic field of 10 T at the maximum. The anisotropy was measured by observing the structure of the manufactured material, analyzing the image, and measuring the magnetization by VSM.

【0014】BiMn合金を急冷凝固することにより、
Mnを過飽和に固溶したBiマトリックス中に数μm程
度の微細なBiMn化合物が分散した非平衡組織が形成
された。磁場下において固相状態で焼鈍を行うと、過飽
和に固溶したMnによるBiMnの成長およびBiMn
粒子の粗大化が生じ、24時間後には数十μm程度の大
きさになっていた。
By rapidly solidifying a BiMn alloy,
A non-equilibrium structure in which a fine BiMn compound of about several μm was dispersed in a Bi matrix in which Mn was dissolved in supersaturation was formed. When annealing is performed in a solid state under a magnetic field, the growth of BiMn due to supersaturated solid solution of Mn and BiMn
The particles became coarse, and after 24 hours, had a size of about several tens of μm.

【0015】製造された材料に10Tの磁場を印加して
磁化測定を行ったところ、アニール中の磁場方向と同じ
方向について得られた磁化曲線と、それに垂直な方向に
ついて得られた磁化曲線との間に大きな違いが見られ
た。図1に測定結果を示す。この結果、BiMnのc軸
がアニール中の磁場方向に配向した組織が形成されたこ
とが確認された。これは、磁場を印加することによっ
て、c軸と磁場方向とが一致した磁気的エネルギーの低
いBiMn粒子が優先的に成長して粗大化し、配向組織
を有する材料が製造されたためである。配向したBiM
n合金は硬磁性材料として使用できる。
When a magnetization was measured by applying a magnetic field of 10 T to the manufactured material, a magnetization curve obtained in the same direction as the direction of the magnetic field during annealing and a magnetization curve obtained in a direction perpendicular thereto were obtained. There was a big difference between them. FIG. 1 shows the measurement results. As a result, it was confirmed that a structure in which the c-axis of BiMn was oriented in the direction of the magnetic field during annealing was formed. This is because the application of the magnetic field preferentially grows and coarsens the BiMn particles having low magnetic energy whose c-axis and the direction of the magnetic field coincide with each other, thereby producing a material having an oriented structure. Oriented BiM
The n alloy can be used as a hard magnetic material.

【0016】(実施例2)TbFe2、DyFe2などの
鉄系ラーベス相(立方晶)の試料を用いて、配向組織を
有する材料を製造した。これらの結晶は、融点(TbF
2:1187℃、DyFe2:1270℃)付近では常
磁性であり、結晶磁気異方性がない。実施例1と同様
に、まず試料を急冷凝固して非平衡組織を形成し、次に
最大10Tの強磁場下で400〜600℃のアニールを
行った。その結果、<111>軸と磁場方向とが一致し
た磁気的エネルギーの低いTbFe2またはDyFe2
子が優先的に成長して、配向組織・異方性組織が形成さ
れた。この多結晶TbFe2、DyFe2鉄系ラーベス相
は磁歪材料などに応用される。
Example 2 A material having an oriented structure was manufactured using a sample of an iron-based Laves phase (cubic crystal) such as TbFe 2 or DyFe 2 . These crystals have a melting point (TbF
(e 2 : 1187 ° C., DyFe 2 : 1270 ° C.), it is paramagnetic and has no crystalline magnetic anisotropy. As in Example 1, first, the sample was rapidly solidified to form a non-equilibrium structure, and then annealed at 400 to 600 ° C. under a strong magnetic field of 10 T at the maximum. As a result, TbFe 2 or DyFe 2 particles having a low magnetic energy whose <111> axis coincides with the direction of the magnetic field grow preferentially, and an oriented structure / anisotropic structure is formed. The polycrystalline TbFe 2 and DyFe 2 iron-based Laves phases are applied to magnetostrictive materials and the like.

【0017】(実施例3)磁気異方性が小さい面心立方
のCo結晶を非平衡組織から磁場中で粗大化させて、異
方性組織を有する材料を製造した。試料としては、常磁
性のCu中にCoを含有させた組成Cu−30at%C
oのCuCo合金を使用した。実施例1と同様に、まず
試料を急冷凝固して非平衡組織を形成した後、最大10
Tの磁場下で900℃のアニールを行った。その結果、
Cu中でCoが粗大化し、Co粒子が形状磁気異方性エ
ネルギーの低い磁場方向に伸びた形状を有する組織が形
成された。この異方性組織により、磁気的な異方性だけ
でなく、力学的、電気的な異方性も材料に付加できる。
Example 3 A face-centered cubic Co crystal having a small magnetic anisotropy was coarsened from a non-equilibrium structure in a magnetic field to produce a material having an anisotropic structure. As a sample, the composition was Cu-30 at% C in which Co was contained in paramagnetic Cu.
The CuCo alloy of o was used. As in Example 1, the sample was first quenched and solidified to form a non-equilibrium structure, and then a maximum of 10
Annealing was performed at 900 ° C. under a magnetic field of T. as a result,
Co was coarsened in Cu, and a structure was formed in which Co particles had a shape extending in the direction of a magnetic field having low shape magnetic anisotropy energy. With this anisotropic structure, not only magnetic anisotropy but also mechanical and electrical anisotropy can be added to the material.

【0018】(実施例4)Bi−Mn系合金(Mnが5
0at%以下)を急冷凝固して非平衡組織を形成した
後、最大10Tの強磁場中でレーザーを照射して特定部
分のみを加熱した。その結果、加熱部分のみに配向組織
が形成されて強磁性体が作製されたことが確認された。
Bi−Mn系を用いた場合には、永久磁石をミクロンオ
ーダーで配置した構造を簡便に短時間で製造することが
でき、マイクロモーターの磁気回路製造などに応用でき
る。
(Example 4) Bi-Mn alloy (Mn is 5
(0 at% or less) was rapidly solidified to form a non-equilibrium structure, and then a specific portion was heated by irradiating a laser in a strong magnetic field of 10 T at the maximum. As a result, it was confirmed that an oriented structure was formed only in the heated portion to produce a ferromagnetic material.
When a Bi-Mn system is used, a structure in which permanent magnets are arranged on the order of microns can be easily manufactured in a short time, and can be applied to the manufacture of a magnetic circuit of a micromotor.

【0019】[0019]

【発明の効果】以上詳述したように、本発明により、適
用範囲が拡大された磁場を利用した配向組織または異方
的組織を有する材料の製造方法が提供される。その結
果、以下の効果がもたらされる。(1)非平衡組織を初
期組織として焼鈍するため、磁場凝固プロセスよりも低
いプロセス温度で配向組織を形成することができ、磁場
を用いて配向組織を形成できる範囲が拡大される。
(2)加熱個所の制御によって、選択的な配向組織形成
が可能になり、機能材料の微細な配置が可能になる。そ
のため、従来よりも少ない工程で短時間に機能材料を微
細配置できる。(3)初期組織である非平衡相の物性値
と、溶融・焼鈍で形成された相の物性値とは異なるた
め、マトリックス材料中に物性値の異なる材料を配置す
ることが熱処理のみで行える。これは、材料全体を溶融
させる従来の磁場中凝固プロセスでは実現されない。
As described in detail above, the present invention provides a method for producing a material having an oriented structure or an anisotropic structure by using a magnetic field whose application range is expanded. As a result, the following effects are obtained. (1) Since the non-equilibrium structure is annealed as an initial structure, an oriented structure can be formed at a process temperature lower than the magnetic field solidification process, and the range in which the oriented structure can be formed using a magnetic field is expanded.
(2) By controlling the heating location, it is possible to selectively form an oriented structure and to finely arrange the functional material. Therefore, the functional material can be finely arranged in a shorter time in a smaller number of steps than in the related art. (3) Since the physical properties of the non-equilibrium phase, which is the initial structure, are different from the physical properties of the phase formed by melting and annealing, the materials having different physical properties can be arranged in the matrix material only by heat treatment. This is not achieved with a conventional magnetic solidification process that melts the entire material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で得られた磁化曲線の測定結果の一例を
示す図。
FIG. 1 is a diagram showing an example of a measurement result of a magnetization curve obtained in an example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気異方性を有する材料に非平衡組織を
形成する工程と、 前記非平衡組織を有する材料を磁場中で焼鈍して、磁気
異方性に従って配向組織または異方的組織を形成する工
程とを含むことを特徴とする配向組織または異方的組織
を有する材料の製造方法。
1. A step of forming a non-equilibrium structure in a material having magnetic anisotropy, and annealing the material having non-equilibrium structure in a magnetic field to form an oriented structure or an anisotropic structure according to the magnetic anisotropy. Forming a material having an oriented structure or an anisotropic structure.
【請求項2】 磁気異方性を有する材料に非平衡組織を
形成する工程と、 前記非平衡組織を有する材料の特定部分を磁場中で加熱
して、磁気異方性に従って前記特定部分に配向組織また
は異方的組織を形成する工程とを含むことを特徴とする
配向組織または異方的組織を有する材料の製造方法。
Forming a non-equilibrium structure in the material having magnetic anisotropy; heating a specific portion of the material having non-equilibrium structure in a magnetic field to orient the specific portion in accordance with the magnetic anisotropy; Forming a texture or an anisotropic texture. A method for producing a material having an oriented texture or an anisotropic texture.
JP2001087598A 2001-03-26 2001-03-26 Method for producing a material having an oriented structure or an anisotropic structure Expired - Lifetime JP3769605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087598A JP3769605B2 (en) 2001-03-26 2001-03-26 Method for producing a material having an oriented structure or an anisotropic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087598A JP3769605B2 (en) 2001-03-26 2001-03-26 Method for producing a material having an oriented structure or an anisotropic structure

Publications (2)

Publication Number Publication Date
JP2002285240A true JP2002285240A (en) 2002-10-03
JP3769605B2 JP3769605B2 (en) 2006-04-26

Family

ID=18942826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087598A Expired - Lifetime JP3769605B2 (en) 2001-03-26 2001-03-26 Method for producing a material having an oriented structure or an anisotropic structure

Country Status (1)

Country Link
JP (1) JP3769605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244689A (en) * 2003-02-14 2004-09-02 Univ Osaka Method for manufacturing porous material, and porous material
CN112620632A (en) * 2020-11-30 2021-04-09 四川大学 Method for modifying powder metallurgy magnetic material based on pulsed magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244689A (en) * 2003-02-14 2004-09-02 Univ Osaka Method for manufacturing porous material, and porous material
CN112620632A (en) * 2020-11-30 2021-04-09 四川大学 Method for modifying powder metallurgy magnetic material based on pulsed magnetic field

Also Published As

Publication number Publication date
JP3769605B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
Klemmer et al. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets
Zhang et al. Magnetic domains and coercivity in polytwinned ferromagnets
Levin et al. Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd 5 Ge 4 antiferromagnet
Huh et al. Magnetic and Structural Properties of Rapidly Quenched Tetragonal Mn $ _ {3-{\rm x}} $ Ga Nanostructures
Savitsky et al. Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys
JP2016160532A (en) Magnetic phase transformation material, manufacturing method of magnetic phase transformation material and use of magnetic phase transformation material
Murray et al. Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys
Sarkar et al. Synthesizing the hard magnetic low-temperature phase of MnBi alloy: Challenges and prospects
JP2011042852A (en) Fe-BASED FERROMAGNETIC SHAPE MEMORY ALLOY AND APPLICATION THEREOF
US5168096A (en) Method for preparing an oriented and textured magnetic material
JP2010013679A (en) Ferromagnetic shape memory alloy sintered compact and method for manufacturing the same
JP3769605B2 (en) Method for producing a material having an oriented structure or an anisotropic structure
US3206337A (en) Cobalt-platinum alloy and magnets made therefrom
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
Legrand et al. Orientation of samarium–cobalt compounds by solidification in a magnetic field
Pirich et al. Magnetic and metallurgical properties of directionally solidified eutectic Bi/MnBi composites: The effects of annealing
JP3230581B1 (en) Manufacturing method of giant magnetostrictive material under microgravity environment
JP6213726B2 (en) Method for manufacturing permanent magnet
JPH0851007A (en) Permanent magnet and production thereof
JPS60194502A (en) Preparation of permanent magnet blank
Christodoulou et al. Liquidus projection surface and isothermal section at 1000° C of the Co-Pr-B (Co-rich) ternary phase diagram
Mitchell et al. Magnetic properties, microstructure, and domain structure of SmCo3. 25Cu1. 75
JP2007515292A (en) Method for producing magnetically active shape memory metal alloy
Ghasemi et al. The Structural and Magnetic Characteristics of Nanocrystalline Co 82 Zr 18 Alloy
MANTA et al. Processing, Microstructure And Magnetic Properties Of Alnico Ribbons

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Ref document number: 3769605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term