JPH04337055A - Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal - Google Patents

Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Info

Publication number
JPH04337055A
JPH04337055A JP13820291A JP13820291A JPH04337055A JP H04337055 A JPH04337055 A JP H04337055A JP 13820291 A JP13820291 A JP 13820291A JP 13820291 A JP13820291 A JP 13820291A JP H04337055 A JPH04337055 A JP H04337055A
Authority
JP
Japan
Prior art keywords
alloy material
heat treatment
compressive stress
magnetostrictive alloy
giant magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13820291A
Other languages
Japanese (ja)
Inventor
Nobuo Yamagami
伸夫 山上
Katsuhiko Murakami
勝彦 村上
Toshiyuki Nakanishi
俊之 中西
Shunsuke Shimazu
嶋津 俊介
Keiichi Kobayashi
圭一 小林
Takashi Yoshikawa
隆 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO KAGAKU GIJUTSU CENTER
JFE Engineering Corp
Oki Electric Industry Co Ltd
Original Assignee
KAIYO KAGAKU GIJUTSU CENTER
Oki Electric Industry Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO KAGAKU GIJUTSU CENTER, Oki Electric Industry Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical KAIYO KAGAKU GIJUTSU CENTER
Priority to JP13820291A priority Critical patent/JPH04337055A/en
Publication of JPH04337055A publication Critical patent/JPH04337055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce high magnetostrictive characteristics while obviating the necessity of the application of compressive stress during use by subjecting an ultra-magnetostrictive alloy material having a specific composition to heat treatment under specific conditions. CONSTITUTION:An ultra-magnetostrictive alloy material containing, as main phases, Laves type intermetallic compound containing at least one rare earth metal among terbium, dysprosium, samarium, holmium, and praseodymium and at least one transition metal among iron, cobalt, manganese, nickel, and chromium is heat-treated in an inert gas or in vacuum in a temp. region between 900 deg.C and a temp. lower by 100 deg.C than the magnetic transformation point of the alloy while applying a compressive stress of 0.1-30kgf/mm<2>. By this method, high magnetostrictive characteristics can be produced even if compressive stress is not applied during use.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、希土類金属と遷移金
属とからなるラーベス型の金属間化合物を主相とする超
磁歪合金材の熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat treating a giant magnetostrictive alloy material whose main phase is a Laves type intermetallic compound composed of a rare earth metal and a transition metal.

【0002】0002

【従来の技術】例えば10−3以上の磁歪量を有する超
磁歪合金材は、アクチュエーター、低周波音源などの素
子の材料として、近年注目されており、実用化されつつ
ある。このような、超磁歪合金材として、特開昭55−
134150 および特開昭49−2094 には、テ
ルビウム、デイスプロシウムのような希土類金属と、鉄
、マンガン、ニッケルのような遷移金属とからなるラー
ベス型の金属間化合物を主相とする合金が開示されてい
る。
2. Description of the Related Art Giant magnetostrictive alloy materials having a magnetostriction of, for example, 10 -3 or more have recently attracted attention as materials for elements such as actuators and low-frequency sound sources, and are being put into practical use. As such a giant magnetostrictive alloy material, JP-A-55-
134150 and JP-A-49-2094 disclose an alloy whose main phase is a Laves type intermetallic compound consisting of rare earth metals such as terbium and disprosium and transition metals such as iron, manganese and nickel. has been done.

【0003】0003

【発明が解決しようとする課題】上述した、希土類金属
と遷移金属とからなる、ラーベス型の金属間化合物を主
相とする超磁歪合金材の磁歪特性は、A.E.Clar
k 等の論文(J.Appl.Phys.63(8)(
1988)p.3910−3912)に記載されている
ように、超磁歪合金材に対する圧縮応力の負荷に強く依
存している。従って、高い磁歪特性を発揮させるために
は、超磁歪合金材に対し、その使用時に適切な圧縮応力
を負荷する必要がある。このために、超磁歪合金材を、
アクチュエーター、低周波音源などの素子の材料として
使用する場合には、デバイスに圧縮応力の負荷機構を設
けなければならず、従って、構造が複雑になる問題があ
る。
[Problems to be Solved by the Invention] The magnetostrictive properties of the above-mentioned super magnetostrictive alloy material having a Laves-type intermetallic compound as a main phase, which is composed of a rare earth metal and a transition metal, are as follows from A. E. Clar
K et al. (J. Appl. Phys. 63 (8) (
1988) p. 3910-3912), it strongly depends on the compressive stress applied to the giant magnetostrictive alloy material. Therefore, in order to exhibit high magnetostrictive properties, it is necessary to apply appropriate compressive stress to the giant magnetostrictive alloy material during use. For this purpose, we use giant magnetostrictive alloy materials.
When used as a material for elements such as actuators and low-frequency sound sources, the device must be provided with a mechanism for applying compressive stress, resulting in a problem that the structure becomes complicated.

【0004】従って、この発明の目的は、希土類金属と
遷移金属とからなる、ラーベス型の金属間化合物を主相
とする超磁歪合金材の有する上述した問題を解決し、使
用時に圧縮応力を負荷しなくても、高い磁歪特性を発揮
させることができる超磁歪合金材を得るための、超磁歪
合金材の熱処理方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of a giant magnetostrictive alloy material consisting of a rare earth metal and a transition metal and having a Laves-type intermetallic compound as its main phase, and to solve the above-mentioned problems by applying compressive stress during use. It is an object of the present invention to provide a method for heat treating a giant magnetostrictive alloy material in order to obtain a giant magnetostrictive alloy material that can exhibit high magnetostrictive properties without the need for heat treatment.

【0005】[0005]

【課題を解決するための手段〕本発明者等
は、上述した問題を解決すべく鋭意研究を重ねた。その
結果、次の知見を得た。一般に、磁歪合金材は、磁化容
易軸方向に磁気モーメントが向いた磁区構造を有してい
る。一方、磁歪現象は、磁化容易軸方向に結晶格子が歪
むことによって生ずる。従って、磁歪合金材の磁区構造
と磁歪現象とは、強い関連を有している。 【0006】テルビウム、ディスプロシウム、サマリウ
ム、ホロミウムおよびプラセオジウムのうちの少なくと
も1つの希土類金属と、鉄、コバルト、マンガン、ニッ
ケルおよびクロムのうちの少なくとも1つの遷移金属と
からなる、ラーベス型の金属間化合物を主相とする超磁
歪合金材の、上述した磁化容易軸方向の結晶格子の歪み
は、ニッケル、コバルト等からなる普通の磁歪合金材に
比較し、10〜50倍で極めて大である。
[Means for Solving the Problems] The present inventors have conducted extensive research in order to solve the above-mentioned problems. As a result, we obtained the following knowledge. Generally, a magnetostrictive alloy material has a magnetic domain structure in which the magnetic moment is oriented in the direction of the axis of easy magnetization. On the other hand, the magnetostriction phenomenon is caused by distortion of the crystal lattice in the direction of the easy axis of magnetization. Therefore, there is a strong relationship between the magnetic domain structure of the magnetostrictive alloy material and the magnetostriction phenomenon. A Laves-type intermetallic compound comprising at least one rare earth metal among terbium, dysprosium, samarium, holmium, and praseodymium and at least one transition metal among iron, cobalt, manganese, nickel, and chromium. The distortion of the crystal lattice in the direction of the easy axis of magnetization of the giant magnetostrictive alloy material having a compound as the main phase is extremely large, 10 to 50 times, as compared to the normal magnetostrictive alloy material made of nickel, cobalt, etc.

【0007】例えば、テルビウム、ディスプロシウムお
よび鉄からなる超磁歪合金材は、磁化容易軸である<1
11>およびその共役方向に磁気モーメントが向いた磁
区構造を有している。このような超磁歪合金材に、ある
方向から磁界を印加すると、磁界印加方向に近い<11
1>およびその共役方向に磁気モーメントが向いた磁区
の領域が広がるように、磁壁が移動する。この結果、磁
界を印加する前と、磁界を印加した後との、超磁歪合金
材の磁界印加方向の長さに変化が生ずる。
For example, a giant magnetostrictive alloy material consisting of terbium, dysprosium, and iron has an easy magnetization axis of <1
11> and has a magnetic domain structure in which the magnetic moment is oriented in the conjugate direction. When a magnetic field is applied to such a giant magnetostrictive alloy material from a certain direction, <11
1> and its conjugate direction, the domain wall moves so that the region of the magnetic domain whose magnetic moment is oriented in the conjugate direction expands. As a result, the length of the giant magnetostrictive alloy material in the magnetic field application direction changes between before and after the magnetic field is applied.

【0008】前述したように、超磁歪合金材の磁歪特性
は、超磁歪合金材に対する圧縮応力の負荷に強く依存し
ているが、このような、磁歪特性の圧縮応力依存性は、
磁区構造が圧縮応力によって変化することに起因してい
る。即ち、超磁歪合金材に圧縮応力を負荷すると、圧縮
応力の負荷方向に対し直角に近い<111>およびその
共役方向に磁気モーメントが向いた磁区の領域が広がる
ように、磁壁が移動する。
As mentioned above, the magnetostrictive properties of the giant magnetostrictive alloy material strongly depend on the compressive stress applied to the giant magnetostrictive alloy material.
This is due to the fact that the magnetic domain structure changes due to compressive stress. That is, when compressive stress is applied to the giant magnetostrictive alloy material, the domain wall moves so that the region of the magnetic domain whose magnetic moment is oriented in <111> and its conjugate direction, which is perpendicular to the direction in which the compressive stress is applied, expands.

【0009】そこで、超磁歪合金材に、圧縮応力を負荷
した状態で、圧縮応力の負荷方向と平行に磁界を印加す
ると、磁界の印加方向と平行に磁気モーメントが向くよ
うに磁壁が移動する。この結果、磁界を印加する前と、
磁界を印加した後との、超磁歪合金材の磁界印加方向の
長さに変化が生ずる。
[0009] Therefore, when a compressive stress is applied to a giant magnetostrictive alloy material and a magnetic field is applied in parallel to the direction in which the compressive stress is applied, the domain wall moves so that the magnetic moment is oriented parallel to the direction in which the magnetic field is applied. As a result, before applying the magnetic field,
A change occurs in the length of the giant magnetostrictive alloy material in the magnetic field application direction after the magnetic field is applied.

【0010】このようなことから、超磁歪合金材に対し
、所定の圧縮応力を負荷しながら、所定温度で熱処理を
施せば、圧縮応力の負荷方向に対し直角に近い<111
>およびその共役方向に磁気モーメントが向いた磁区の
領域が広がるように磁壁が移動し、そして、このように
磁壁が移動した磁区構造が保たれる。従って、このよう
な磁区構造の超磁歪合金材によれば、使用時に圧縮応力
を負荷しなくても、高い磁歪特性が発揮される。
[0010] From the above, if a giant magnetostrictive alloy material is subjected to heat treatment at a predetermined temperature while applying a predetermined compressive stress, the
> and its conjugate direction, the magnetic domain wall moves so that the region of the magnetic domain whose magnetic moment is oriented in the conjugate direction expands, and the magnetic domain structure in which the domain wall moves in this way is maintained. Therefore, the giant magnetostrictive alloy material having such a magnetic domain structure exhibits high magnetostrictive properties even without applying compressive stress during use.

【0011】この発明は、上記知見に基づいてなされた
ものであって、この発明の方法は、テルビウム、ディス
プロシウム、サマリウム、ホロミウムおよびプラセオジ
ウムのうちの少なくとも1つの希土類金属と、鉄、コバ
ルト、マンガン、ニッケルおよびクロムのうちの少なく
とも1つの遷移金属とからなる金属間化合物を主相とす
る超磁歪合金材に対し、900 ℃から、前記超磁歪合
金材の磁気変態点よりも100 ℃低い温度までの温度
域において、0.1 から30Kgf/mm2 の範囲
内の圧縮応力を負荷しながら、不活性ガス雰囲気中また
は真空中で熱処理を施すことに特徴を有するものである
The present invention has been made based on the above findings, and the method of the present invention comprises at least one rare earth metal selected from terbium, dysprosium, samarium, holmium and praseodymium, iron, cobalt, For a giant magnetostrictive alloy material whose main phase is an intermetallic compound consisting of at least one transition metal of manganese, nickel, and chromium, a temperature from 900 °C to 100 °C lower than the magnetic transformation point of the giant magnetostrictive alloy material. The method is characterized in that the heat treatment is performed in an inert gas atmosphere or in vacuum while applying a compressive stress in the range of 0.1 to 30 Kgf/mm2 at a temperature range of 0.1 to 30 Kgf/mm2.

【0012】0012

【作用】この発明における、超磁歪合金材に対する熱処
理は、上述したように、900 ℃から、前記超磁歪合
金材の磁気変態点よりも100 ℃低い温度までの温度
域において、0.1 から30Kgf/mm2 の範囲
内の圧縮応力を負荷しながら、不活性ガス雰囲気中また
は真空中で施すことが必要である。このような条件によ
って、超磁歪合金材に対し熱処理を施すことにより、前
述したように、圧縮応力の負荷方向に対し直角に近い<
111>およびその共役方向に磁気モーメントが向いた
磁区の領域が広がるように磁壁が移動し、そして、この
ように磁壁が移動した磁区構造が保たれる。従って、使
用時に圧縮応力を負荷しなくても、高い磁歪特性が発揮
される。
[Operation] As mentioned above, the heat treatment of the giant magnetostrictive alloy material in this invention is carried out at a temperature of 0.1 to 30 Kgf in a temperature range from 900°C to a temperature 100°C lower than the magnetic transformation point of the giant magnetostrictive alloy material. It is necessary to carry out the application in an inert gas atmosphere or in a vacuum while applying a compressive stress within the range of /mm2. By applying heat treatment to the giant magnetostrictive alloy material under these conditions, as mentioned above, the
111> and its conjugate direction, the magnetic domain wall moves so that the region of the magnetic domain whose magnetic moment is oriented in the conjugate direction thereof expands, and the magnetic domain structure in which the domain wall moves in this way is maintained. Therefore, high magnetostrictive properties can be exhibited even without applying compressive stress during use.

【0013】公知のブリッジマン法等により、単結晶組
織、または、その軸線に一致する1方向の凝固組織とな
した超磁歪合金材は、多結晶組織の超磁歪合金材に比較
して、結晶粒界による、磁壁移動の障害が極めて小さい
。従って、低磁界によって優れた磁歪特性が発揮される
。例えば、テルビウム、ディスプロシウムおよび鉄から
なる超磁歪合金材の結晶成長は、<112>方向に進む
ことが知られている。従って、このような、結晶組織の
超磁歪合金材は、数百エルステッドであって、1000
ppm を超える伸びを示す。
[0013] A giant magnetostrictive alloy material formed into a single crystal structure or a solidified structure in one direction coinciding with its axis by the well-known Bridgman method etc. has a lower crystalline structure than a giant magnetostrictive alloy material with a polycrystalline structure. Obstacles to domain wall movement due to grain boundaries are extremely small. Therefore, excellent magnetostrictive properties are exhibited by a low magnetic field. For example, it is known that crystal growth of a giant magnetostrictive alloy material made of terbium, dysprosium, and iron proceeds in the <112> direction. Therefore, such a giant magnetostrictive alloy material with a crystalline structure has a tensile strength of several hundred oersteds and 1000 oersteds.
It shows an elongation exceeding ppm.

【0014】しかしながら、上述した結晶組織の超磁歪
合金材は、結晶配向に伴う強い異方性を有している。従
って、圧縮応力の負荷方向は、磁壁を移動させるために
必要な圧縮応力に、大きな影響を及ぼす。このようなこ
とから、単結晶組織、または、その軸線に一致する1方
向の凝固組織を有する、磁歪特性に優れた超磁歪合金材
に対する上述した熱処理は、その結晶優先成長方位であ
る<112>方位より20°以内の方向から行うことが
必要である。この方向から熱処理を施すことにより、前
述したように、圧縮応力の負荷方向に対し直角に近い<
111>およびその共役方向に磁気モーメントが向いた
磁区の領域が広がるように磁壁が移動し、そして、この
ように磁壁が移動した磁区構造が保たれる。従って、使
用時に圧縮応力を負荷しなくても、高い磁歪特性が発揮
される。
However, the giant magnetostrictive alloy material having the above-mentioned crystal structure has strong anisotropy due to crystal orientation. Therefore, the loading direction of the compressive stress has a large effect on the compressive stress required to move the domain wall. For this reason, the above-mentioned heat treatment for a giant magnetostrictive alloy material with excellent magnetostrictive properties, which has a single crystal structure or a solidified structure in one direction that coincides with its axis, is performed in the direction of preferred crystal growth <112> It is necessary to perform this from a direction within 20 degrees from the azimuth. By performing heat treatment from this direction, as mentioned above, the
111> and its conjugate direction, the magnetic domain wall moves so that the region of the magnetic domain whose magnetic moment is oriented in the conjugate direction thereof expands, and the magnetic domain structure in which the domain wall moves in this way is maintained. Therefore, high magnetostrictive properties can be exhibited even without applying compressive stress during use.

【0015】この発明において、超磁歪合金材に対する
熱処理温度は、900℃から、超磁歪合金材の磁気変態
点よりも100 ℃低い温度までの温度域に限定すべき
である。熱処理温度が900 ℃を超えると、超磁歪合
金材が溶融する。一方、熱処理温度が超磁歪合金材の磁
気変態点よりも100 ℃低い温度未満であると、圧縮
応力の負荷方向に対し直角に近い<111>およびその
共役方向に磁気モーメントが向いた磁区の領域が広がる
ような磁壁の移動が生じない。
In the present invention, the heat treatment temperature for the giant magnetostrictive alloy material should be limited to a temperature range from 900° C. to a temperature 100° C. lower than the magnetic transformation point of the giant magnetostrictive alloy material. When the heat treatment temperature exceeds 900°C, the giant magnetostrictive alloy material melts. On the other hand, if the heat treatment temperature is less than 100 °C lower than the magnetic transformation point of the giant magnetostrictive alloy material, the region of the magnetic domain where the magnetic moment is oriented in the <111> and its conjugate directions, which are close to perpendicular to the loading direction of the compressive stress. There is no movement of the domain wall that would cause the domain wall to expand.

【0016】図1に、超磁歪合金材の、磁歪量と熱処理
温度との関係を、以下に述べる条件で調べた結果を示す
。即ち、超磁歪合金材として、ブリッジマン法により、
単結晶組織、または、その軸線に一致する1方向の凝固
組織となしたTb0.3Dy o.7Fe1.95 か
らなる成分組成を有する、磁気変態点:383 ℃、直
径:6mm 、長さ:50mmのロッド状の合金材を使
用した。そして、この合金材に対し、0.8Kgf/m
m2の圧縮応力を負荷しながら、温度を変化させて熱処
理を施したときにおける、超磁歪合金材の、圧縮応力を
負荷しない状態での1KOe の磁歪量を、熱処理温度
との関係において調べた。
FIG. 1 shows the results of investigating the relationship between the amount of magnetostriction and the heat treatment temperature of giant magnetostrictive alloy materials under the conditions described below. That is, as a giant magnetostrictive alloy material, by the Bridgman method,
Tb0.3Dy o. A rod-shaped alloy material having a composition of 7Fe1.95, magnetic transformation point: 383° C., diameter: 6 mm, and length: 50 mm was used. And for this alloy material, 0.8Kgf/m
The amount of magnetostriction of 1 KOe of the giant magnetostrictive alloy material in a state where no compressive stress is applied was investigated in relation to the heat treatment temperature when heat treatment was performed by changing the temperature while applying a compressive stress of m2.

【0017】図1から明らかなように、磁気変態点即ち
383 ℃より100 ℃低い283 ℃未満の温度に
よって熱処理を施した場合の磁歪量は、約400ppm
であって、極めて低い。これに対して、283 ℃以上
の温度によって熱処理を施した場合の磁歪量は、約15
00pp以上となり、使用時に圧縮応力を負荷したとき
のような極めて高い値を示した。
As is clear from FIG. 1, the amount of magnetostriction when heat treatment is performed at a temperature of less than 283°C, which is 100°C lower than the magnetic transformation point, that is, 383°C, is approximately 400 ppm.
However, it is extremely low. On the other hand, the amount of magnetostriction when heat treated at a temperature of 283 °C or higher is approximately 15
00 pp or more, showing an extremely high value similar to when compressive stress is applied during use.

【0018】この発明において、上述した温度域におい
て熱処理を施すときの、超磁歪合金材に負荷する圧縮応
力は、0.1 から30Kgf/mm2 の範囲内に限
定すべきである。超磁歪合金材に負荷する圧縮応力が3
0Kgf/mm2 を超えると、超磁歪合金材にクラッ
クが発生する。一方、圧縮応力が0.1Kgf/mm2
未満では、圧縮応力の負荷方向に対し直角に近い<11
1>およびその共役方向に磁気モーメントが向いた磁区
の領域が広がるような磁壁の移動が生じない
In the present invention, the compressive stress applied to the giant magnetostrictive alloy material during heat treatment in the above-mentioned temperature range should be limited within the range of 0.1 to 30 Kgf/mm2. The compressive stress applied to the giant magnetostrictive alloy material is 3
If it exceeds 0 Kgf/mm2, cracks will occur in the giant magnetostrictive alloy material. On the other hand, the compressive stress is 0.1Kgf/mm2
<11, which is close to perpendicular to the loading direction of the compressive stress.
1> and the domain wall does not move in such a way that the region of the magnetic domain whose magnetic moment is oriented in the conjugate direction expands.

【0019】図2に、超磁歪合金材の、磁歪量と、熱処
理時に負荷する圧縮応力との関係を、以下に述べる条件
で調べた結果を示す。即ち、超磁歪合金材として、アー
ク溶解炉によって溶製した多結晶組織のTb0.3Dy
 o.7Fe1.95 からなる成分組成を有する、磁
気変態点:383 ℃、直径:6mm 、長さ:50m
mのロッド状の合金材を使用した。そして、この合金材
に対し、各種に変化させた圧縮応力を負荷しながら、4
00 ℃の温度によって熱処理を施したときにおける、
超磁歪合金材の、圧縮応力を負荷しない状態での1KO
e の磁歪量を、熱処理時に負荷した圧縮応力との関係
において調べた。
FIG. 2 shows the results of investigating the relationship between the amount of magnetostriction and the compressive stress applied during heat treatment of a giant magnetostrictive alloy material under the conditions described below. That is, as a giant magnetostrictive alloy material, Tb0.3Dy with a polycrystalline structure melted in an arc melting furnace.
o. 7Fe1.95, magnetic transformation point: 383°C, diameter: 6mm, length: 50m
A rod-shaped alloy material of m was used. Then, while applying various compressive stress to this alloy material,
When heat-treated at a temperature of 00°C,
1KO of giant magnetostrictive alloy material without applying compressive stress
The amount of magnetostriction of e was investigated in relation to the compressive stress applied during heat treatment.

【0020】図2から明らかなように、熱処理時に負荷
した圧縮応力が0.1Kgf/mm2未満の場合の磁歪
量は、約400ppmであって、極めて低い。これに対
して、熱処理時に負荷した圧縮応力が0.1Kgf/m
m2以上の場合の磁歪量は、約1500pp以上となり
、使用時に圧縮応力を負荷したときのような極めて高い
値を示した。
As is clear from FIG. 2, when the compressive stress applied during heat treatment is less than 0.1 Kgf/mm2, the amount of magnetostriction is approximately 400 ppm, which is extremely low. On the other hand, the compressive stress applied during heat treatment was 0.1Kgf/m
The magnetostriction amount in the case of m2 or more was about 1500 pp or more, which was an extremely high value similar to that when compressive stress was applied during use.

【0021】テルビウム、ディスプロシウム、サマリウ
ム、ホロミウムおよびプラセオジウムのうちの少なくと
も1つの希土類金属と、鉄、コバルト、マンガン、ニッ
ケルおよびクロムのうちの少なくとも1つの遷移金属と
からなる金属間化合物を主相とする超磁歪合金材は、極
めて活性である。従って、このような超磁歪合金材に対
する上述した熱処理は、不活性雰囲気中または真空中で
行うべきである。
[0021] The main phase is an intermetallic compound consisting of at least one rare earth metal of terbium, dysprosium, samarium, holmium, and praseodymium and at least one transition metal of iron, cobalt, manganese, nickel, and chromium. Giant magnetostrictive alloy materials are extremely active. Therefore, the above-described heat treatment for such giant magnetostrictive alloy materials should be performed in an inert atmosphere or in a vacuum.

【0022】次に、この発明の方法を、実施例により、
比較例と対比しながら、更に詳細に説明する。
[0022] Next, the method of the present invention will be described by way of example.
This will be explained in more detail while comparing with a comparative example.

【実施例1】超磁歪合金材として、アーク溶解炉によっ
て溶製した、多結晶組織のTb0.3Dy o.7Fe
1.95 からなる成分組成を有する、磁気変態点:3
83 ℃、直径:6mm 、長さ:50mmのロッド状
の合金材を使用した。この合金材に対し、不活性ガス雰
囲気の熱処理炉内において、圧縮応力負荷機構により、
表1に示す本発明の範囲内の条件で、昇温から室温に冷
却するまで、一定の圧縮応力を負荷しながら熱処理を施
し、かくして、本発明供試体No. 1〜4を調製した
。比較のために、上記と同じ成分組成、磁気変態点、直
径および長さを有するロッド状の合金材を使用し、表2
に示す本発明の範囲外の条件で熱処理を施し、または、
熱処理を施さずに、比較用供試体No. 1〜5を調製
した。
[Example 1] As a giant magnetostrictive alloy material, a polycrystalline Tb0.3Dy o. 7Fe
Magnetic transformation point: 3 with a component composition of 1.95
A rod-shaped alloy material with a temperature of 83° C., diameter: 6 mm, and length: 50 mm was used. This alloy material is subjected to a compressive stress loading mechanism in a heat treatment furnace with an inert gas atmosphere.
Heat treatment was performed under the conditions within the range of the present invention shown in Table 1, from temperature rise to cooling to room temperature, while applying a constant compressive stress. 1 to 4 were prepared. For comparison, a rod-shaped alloy material having the same composition, magnetic transformation point, diameter, and length as above was used, and Table 2
Heat treatment is performed under conditions outside the scope of the present invention as shown in
Comparative specimen No. 1 was prepared without heat treatment. 1 to 5 were prepared.

【0023】上述のようにして調製した本発明供試体N
o. 1〜4および比較用供試体No. 1〜5の各々
について、以下に述べる方法により磁歪量を測定した。 即ち、各供試体に対し、無負荷または油圧サーボ機構に
より一定の圧縮応力を負荷した状態において、圧縮応力
の負荷方向と平行に、磁界を、ソレノイドでその強度を
変化させながら印加した。このようにして印加した磁界
によって生じた、供試体の長さの変化を、レーザ変位計
により測定した。表1および表2に、各供試体に対する
油圧サーボ機構による圧縮応力の負荷量、および、1K
Oe での磁歪量を示す。
Specimen N of the present invention prepared as described above
o. 1 to 4 and comparative specimen No. For each of Nos. 1 to 5, the amount of magnetostriction was measured by the method described below. That is, a magnetic field was applied to each specimen in parallel to the direction in which the compressive stress was applied, while changing its intensity using a solenoid, with no load or with a constant compressive stress applied by a hydraulic servo mechanism. The change in length of the specimen caused by the magnetic field thus applied was measured using a laser displacement meter. Tables 1 and 2 show the amount of compressive stress applied by the hydraulic servo mechanism to each specimen, and the amount of compressive stress of 1K
The amount of magnetostriction in Oe is shown.

【0024】[0024]

【0025】[0025]

【0026】[0026]

【実施例2】超磁歪合金材として、アーク溶解炉によっ
て溶製し、次いで、ブリッジマン法によって結晶育成を
行った、単結晶組織、または、その軸線に一致する1方
向凝固組織のTb0.3Dy o.7Fe1.95 か
らなる成分組成であるほかは、実施例1と同様の合金材
を使用し、この合金材に対し、不活性ガス雰囲気の熱処
理炉内において、圧縮応力負荷機構により、表3に示す
本発明の範囲内の条件で、昇温から室温に冷却するまで
、一定の圧縮応力を負荷しながら熱処理を施し、かくし
て、本発明供試体No. 5〜8を調製した。比較のた
めに、上記と同じ成分組成、磁気変態点、直径および長
さを有するロッド状の合金材を使用し、表4に示す本発
明の範囲外の条件で熱処理を施し、または、熱処理を施
さずに、比較用供試体No. 6〜11を調製した。
[Example 2] As a giant magnetostrictive alloy material, Tb0.3Dy is melted in an arc melting furnace and then crystal grown by the Bridgman method, and has a single crystal structure or a unidirectional solidification structure that coincides with its axis. o. The same alloy material as in Example 1 was used, except that the composition was 7Fe1.95. Heat treatment was performed under conditions within the scope of the present invention, from temperature rise to cooling to room temperature while applying a constant compressive stress, and thus the present invention specimen No. 5 to 8 were prepared. For comparison, a rod-shaped alloy material having the same composition, magnetic transformation point, diameter, and length as above was used, and heat treatment was performed under conditions outside the scope of the present invention shown in Table 4. Comparative specimen No. 6 to 11 were prepared.

【0027】上述のようにして調製した本発明供試体N
o. 5〜8および比較用供試体No. 6〜11の各
々について、実施例1と同様の方法により磁歪量を測定
した。表3および表4に、各供試体に対する圧縮応力の
負荷量、および、1KOe での磁歪量を示す。
Specimen N of the present invention prepared as described above
o. 5 to 8 and comparative specimen No. For each of Nos. 6 to 11, the amount of magnetostriction was measured by the same method as in Example 1. Tables 3 and 4 show the amount of compressive stress applied to each specimen and the amount of magnetostriction at 1 KOe.

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】表2から明らかなように、熱処理温度が本
発明の範囲を外れて低い比較用供試体No. 1の、1
.0Kgf/mm2の圧縮応力を負荷した場合における
磁歪量は640ppmであるのに対し、圧縮応力を負荷
しない場合の上記磁歪量は僅か90ppm であり、そ
の磁歪量は、圧縮応力に強く依存していた。熱処理時に
負荷する圧縮応力が、本発明の範囲を外れて低い比較用
供試体No. 2の、1.0 Kgf/mm2 の圧縮
応力を負荷した場合における磁歪量は650ppmであ
るのに対し、圧縮応力を負荷しない場合の上記磁歪量は
190ppmであり、その磁歪量は、圧縮応力に強く依
存していた。熱処理を施さなかった比較用供試体No.
 5の磁歪量も、同様に圧縮応力に強く依存していた。 熱処理時に負荷する圧縮応力が、本発明の範囲を外れて
高い比較用供試体No. 3は、熱処理によって割れが
発生したため、磁歪量の測定が不可能であった。そして
、熱処理温度が本発明の範囲を外れて高い比較用供試体
No. 4は、熱処理時に供試体の一部が溶融したため
、磁歪量の測定が不可能であった。
As is clear from Table 2, comparative specimen No. 1, whose heat treatment temperature was lower than the range of the present invention. 1, 1
.. The amount of magnetostriction when a compressive stress of 0 Kgf/mm2 was applied was 640 ppm, whereas the amount of magnetostriction when no compressive stress was applied was only 90 ppm, and the amount of magnetostriction was strongly dependent on the compressive stress. . Comparative specimen No. 1 has a low compressive stress applied during heat treatment, which is outside the range of the present invention. 2, the amount of magnetostriction when a compressive stress of 1.0 Kgf/mm2 is applied is 650 ppm, whereas the amount of magnetostriction when no compressive stress is applied is 190 ppm, and the amount of magnetostriction is due to the compressive stress. strongly dependent on it. Comparative specimen No. which was not subjected to heat treatment.
The magnetostriction amount of No. 5 was also strongly dependent on the compressive stress. Comparative specimen No. 1 has a high compressive stress applied during heat treatment, which is outside the range of the present invention. In No. 3, it was impossible to measure the amount of magnetostriction because cracks occurred due to heat treatment. Comparative specimen No. 1 has a high heat treatment temperature outside the range of the present invention. In No. 4, it was impossible to measure the amount of magnetostriction because a part of the specimen was melted during the heat treatment.

【0032】また、表4から明らかなように、熱処理温
度が本発明の範囲を外れて低い比較用供試体No. 6
、熱処理時の圧縮応力負荷方向が、本発明の範囲を外れ
ている比較用供試体No. 7、熱処理時に負荷する圧
縮応力が、本発明の範囲を外れて低い比較用供試体No
. 8、および、熱処理を施さなかった比較用供試体N
o. 11の磁歪量は、何れも、上述したと同様に圧縮
応力に強く依存していた。熱処理時に負荷する圧縮応力
が、本発明の範囲を外れて高い比較用供試体No. 9
は、熱処理によって割れが発生したため、磁歪量の測定
が不可能であった。そして、熱処理温度が本発明の範囲
を外れて高い比較用供試体No. 10は、熱処理時に
供試体の一部が溶融したため、磁歪量の測定が不可能で
あった。
Furthermore, as is clear from Table 4, comparative specimen No. 1 whose heat treatment temperature was outside the range of the present invention was low. 6
, Comparative specimen No. 1 whose compressive stress load direction during heat treatment is outside the range of the present invention. 7. Comparative specimen No. whose compressive stress applied during heat treatment is low and out of the range of the present invention.
.. 8, and comparative specimen N which was not subjected to heat treatment.
o. The magnetostriction amounts of No. 11 were all strongly dependent on compressive stress as described above. Comparative specimen No. 1 has a high compressive stress applied during heat treatment, which is outside the range of the present invention. 9
It was impossible to measure the amount of magnetostriction because cracks occurred during heat treatment. Comparative specimen No. 1 has a high heat treatment temperature outside the range of the present invention. In No. 10, it was impossible to measure the amount of magnetostriction because a part of the specimen was melted during the heat treatment.

【0033】これに対し、表1および表3から明らかな
ように、本発明供試体No. 1〜8の磁歪量は、圧縮
応力を負荷しなくても、1.0Kgf/mm2の圧縮応
力を負荷した場合に近い、高い磁歪量を示しており、殆
ど圧縮応力に依存していなかった。
On the other hand, as is clear from Tables 1 and 3, the present invention specimen No. The magnetostriction amounts of Nos. 1 to 8 showed high magnetostriction amounts that were close to those obtained when a compressive stress of 1.0 Kgf/mm 2 was applied even when no compressive stress was applied, and were almost independent of the compressive stress.

【0034】[0034]

【発明の効果】以上述べたように、この発明の方法によ
れば、使用時に圧縮応力を負荷する必要なく高い磁歪特
性を発揮させることができる、希土類金属と遷移金属と
からなる、ラーベス型の金属間化合物を主相とする超磁
歪合金材が得られ、従って、このような超磁歪合金材を
、アクチュエーター、低周波音源などの素子の材料とし
て使用する場合に、デバイスに圧縮応力の負荷機構を設
ける必要がなく、その構造が簡単になり、かくして、工
業上有用な効果がもたらされる。
[Effects of the Invention] As described above, according to the method of the present invention, a Laves-type magnet made of a rare earth metal and a transition metal can exhibit high magnetostrictive properties without the need to apply compressive stress during use. A giant magnetostrictive alloy material whose main phase is an intermetallic compound is obtained. Therefore, when such a giant magnetostrictive alloy material is used as a material for elements such as actuators and low-frequency sound sources, it is difficult to apply compressive stress to the device. There is no need to provide a , the structure becomes simple, and thus an industrially useful effect is brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】超磁歪合金材の、磁歪量と熱処理温度との関係
を示したグラフである。
FIG. 1 is a graph showing the relationship between the amount of magnetostriction and the heat treatment temperature of a giant magnetostrictive alloy material.

【図2】超磁歪合金材の、磁歪量と、熱処理時に負荷す
る圧縮応力との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the amount of magnetostriction and compressive stress applied during heat treatment of a giant magnetostrictive alloy material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  テルビウム、ディスプロシウム、サマ
リウム、ホロミウムおよびプラセオジウムのうちの少な
くとも1つの希土類金属と、鉄、コバルト、マンガン、
ニッケルおよびクロムのうちの少なくとも1つの遷移金
属とからなる金属間化合物を主相とする超磁歪合金材に
対し、900 ℃から、前記超磁歪合金材の磁気変態点
よりも100 ℃低い温度までの温度域において、0.
1から30Kgf/mm2 の範囲内の圧縮応力を負荷
しながら、不活性ガス雰囲気中または真空中で熱処理を
施すことを特徴とする、希土類金属と遷移金属とからな
る金属間化合物を主相とする超磁歪合金材の熱処理方法
1. At least one rare earth metal selected from terbium, dysprosium, samarium, holmium, and praseodymium, and iron, cobalt, manganese,
A giant magnetostrictive alloy material whose main phase is an intermetallic compound consisting of at least one transition metal of nickel and chromium is heated from 900 °C to a temperature 100 °C lower than the magnetic transformation point of the giant magnetostrictive alloy material. In the temperature range, 0.
The main phase is an intermetallic compound consisting of a rare earth metal and a transition metal, which is characterized by heat treatment in an inert gas atmosphere or vacuum while applying a compressive stress in the range of 1 to 30 Kgf/mm2. Heat treatment method for giant magnetostrictive alloy materials.
【請求項2】  単結晶組織、または、その軸線に一致
する1方向の凝固組織を有する、磁歪特性に優れた前記
超磁歪合金材に対する前記熱処理を、前記超磁歪合金材
の結晶優先成長方位である<112>方位より20°以
内の方向から行う、請求項1記載の方法。
2. The heat treatment of the giant magnetostrictive alloy material having excellent magnetostrictive properties, which has a single crystal structure or a solidified structure in one direction coinciding with its axis, is carried out in a preferential crystal growth direction of the giant magnetostrictive alloy material. The method according to claim 1, wherein the method is performed from a direction within 20 degrees from a certain <112> direction.
JP13820291A 1991-05-14 1991-05-14 Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal Pending JPH04337055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820291A JPH04337055A (en) 1991-05-14 1991-05-14 Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820291A JPH04337055A (en) 1991-05-14 1991-05-14 Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Publications (1)

Publication Number Publication Date
JPH04337055A true JPH04337055A (en) 1992-11-25

Family

ID=15216471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820291A Pending JPH04337055A (en) 1991-05-14 1991-05-14 Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal

Country Status (1)

Country Link
JP (1) JPH04337055A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517824A (en) * 1991-07-10 1993-01-26 Sumitomo Light Metal Ind Ltd Production of rare earth metal-transition metal type magnetostrictive material
US6139648A (en) * 1999-02-19 2000-10-31 The United States Of America As Represented By The Secretary Of The Navy Prestress imposing treatment of magnetostrictive material
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
CN103555903A (en) * 2013-11-13 2014-02-05 北京科技大学 Preparation method for improving mechanical property of giant magnetostrictive material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517824A (en) * 1991-07-10 1993-01-26 Sumitomo Light Metal Ind Ltd Production of rare earth metal-transition metal type magnetostrictive material
US6139648A (en) * 1999-02-19 2000-10-31 The United States Of America As Represented By The Secretary Of The Navy Prestress imposing treatment of magnetostrictive material
JP2006349624A (en) * 2005-06-20 2006-12-28 Nec Tokin Corp Load sensor and manufacturing method
JP2007033296A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Load sensor, usage thereof, and production method thereof
CN103555903A (en) * 2013-11-13 2014-02-05 北京科技大学 Preparation method for improving mechanical property of giant magnetostrictive material

Similar Documents

Publication Publication Date Title
Klemmer et al. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets
Jiles The development of highly magnetostrictive rare earth-iron alloys
Albertini et al. Structural, magnetic and anisotropic properties of Ni2MnGa melt-spun ribbons
US4475962A (en) Annealing method for amorphous magnetic alloy
Jiles et al. Magnetization and magnetostriction in terbium–dysprosium–iron alloys
JPH04337055A (en) Heat treatment for ultra-magnetostrictive alloy material containing, as main phase, intermetallic compound consisting of rare earth metal and transition metal
Zhao et al. Stress dependence of magnetostrictions and strains in< 111>‐oriented single crystals of Terfenol‐D
US4863530A (en) Fc-Pt-Nb permanent magnet with an ultra-high coercive force and a large maximum energy product, and method for producing the same
JPS582567B2 (en) Method for manufacturing anisotropic Fe-Cr-Co magnet alloy
US6508854B2 (en) Method of preparing magnetostrictive material in microgravity environment
JP4919310B2 (en) Method for manufacturing giant magnetostrictive thin film element
Hasegawa et al. Crystallization Behavior of Fe-MC (M= Ti, Zr, Hf, V, Nb, Ta) Films
Lin et al. Grain size refinement and magnetostriction of ferromagnetic shape memory Fe–Pd–Rh alloys
Koon et al. Composition dependence of the coercive force and microstructure of crystallized amorphous (Fe x B 1-x) 0.9 Tb 0.05 La 0.05 alloys
Kobayashi et al. Magnetic properties and magnetostriction in grain‐oriented (Tb x Dy1− x)(Fe1− y Mn y) 1.95 compounds
KR0120280B1 (en) Making method of rare-earth-ferro magnetic transformation alloys and the same product
JPH03265104A (en) Soft magnetic alloy film
KR0141021B1 (en) Magnetostrictive alloy having ultramicro crystalline structure and the preparation thereof
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
Hwang et al. Effect of heat treatment on the magnetostriction and microstructure of terfenol-d
KR0141022B1 (en) Method for manufacturing tb-fe alloy
JPH02129339A (en) Magnetostrictive material
JPH0517824A (en) Production of rare earth metal-transition metal type magnetostrictive material
KR100243719B1 (en) The film of tb-fe magnetostrictive alloys and the method of same
JPH03115540A (en) Supermagnetostriction alloy