JPH05174836A - Forming method for fuel electrode of solid electrolytic fuel cell - Google Patents

Forming method for fuel electrode of solid electrolytic fuel cell

Info

Publication number
JPH05174836A
JPH05174836A JP3354449A JP35444991A JPH05174836A JP H05174836 A JPH05174836 A JP H05174836A JP 3354449 A JP3354449 A JP 3354449A JP 35444991 A JP35444991 A JP 35444991A JP H05174836 A JPH05174836 A JP H05174836A
Authority
JP
Japan
Prior art keywords
nickel
electrode
green sheet
forming
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3354449A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Hiroshi Seto
浩志 瀬戸
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3354449A priority Critical patent/JPH05174836A/en
Publication of JPH05174836A publication Critical patent/JPH05174836A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To maintain conductive performance even if nickel quantity considerably decreases compared to ceramics quantity by facilitating the production of a green sheet without separating nickel from ceramics caused by a difference in specific gravity, and by totally uniforming the compositions of a formed electrode, and by readily fusing and joining nickel-coated ceramics particulates, themselves, with nickel. itself, having features of mutual contact and high surface solubility in forming an electrode. CONSTITUTION:A fuel electrode is formed by laminating a green sheet for forming a solid electrolyte and a nickel-coated ceramics particulates-containing green sheet for forming an electrode and by burning the resulting laminated compact and by then applying monoblock sintering to the laminated compact. In this lamination, a green sheet for forming an air electrode may be laminated, if necessary. This integrates the fuel electrode with a solid electrolytic plate and simply and efficiently incorporates the fuel electrode into a fuel cell. In this case, there is no development of damage or destruction due to thermal stress caused by other materials. In addition, conductivity is improved and superior gas permeability, electrochemical reaction, and conductivity are available.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池用
燃料電極の形成方法に関し、さらに詳しくは、導電性が
改善され、通気性や電気化学反応性が優れるとともに、
他の部材との間で熱応力による損傷や破壊の生じること
のない燃料電極を固体電解質層と一体焼結して製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a fuel electrode for a solid oxide fuel cell, and more specifically, it has improved conductivity, excellent breathability and electrochemical reactivity, and
The present invention relates to a method for integrally manufacturing a fuel electrode that is not damaged or destroyed by thermal stress with other members and is integrally sintered with a solid electrolyte layer.

【0002】[0002]

【従来の技術】固体電解質燃料電池の燃料電極(アノー
ド)材として、電気化学反応や導電性を高めるためにニ
ッケルなどの導電性金属の焼結体を用いると、これと固
体電解質やセパレータのような集電体などの他の部材と
の間における熱膨張特性の不適合などにより、熱応力に
よる歪みで電池の損傷や破壊が生じやすく、また、金属
電極は高温還元雰囲気下では収縮し、通気性の低下や接
触抵抗の増加により電池の出力を低下させる原因になり
やすい。
2. Description of the Related Art When a sintered body of a conductive metal such as nickel is used as a fuel electrode (anode) material of a solid electrolyte fuel cell in order to enhance an electrochemical reaction and conductivity, the solid electrolyte and a separator are Due to incompatibility of thermal expansion characteristics with other current collectors, it is easy for the battery to be damaged or destroyed due to strain due to thermal stress. It is easy to cause the output of the battery to decrease due to the decrease in battery charge and the increase in contact resistance.

【0003】さらに、熱膨張特性を固体電解質のそれに
近ずけるため、金属とセラミックスの多孔質焼結体、特
にニッケルジルコニアサーメットの燃料電極が提案さ
れ、よく検討されているが、非導電性であるジルコニア
の混合割合には限界があり、金属に比べて導電性の低下
は免れない。また、このニッケルジルコニアサーメット
をニッケル粒子及びジルコニア粒子を含むグリーンシー
ト又はスラリーから電解質板上に形成させる場合、両粒
子の比重差から厚み方向の組成が不均一になりやすいと
いう問題もある。
Further, in order to bring the thermal expansion characteristics closer to those of a solid electrolyte, a porous sintered body of metal and ceramics, especially a fuel electrode of nickel zirconia cermet has been proposed and well studied, but it is non-conductive. There is a limit to the mixing ratio of a certain zirconia, and a decrease in conductivity is inevitable compared to metals. Further, when the nickel zirconia cermet is formed on the electrolyte plate from a green sheet or slurry containing nickel particles and zirconia particles, there is also a problem that the composition in the thickness direction tends to be non-uniform due to the difference in specific gravity between the particles.

【0004】これらの問題を解消すべく、最近、表面に
ニッケル粒子をコーティングしたセラミックス粒子を用
いて板状に成形し、焼成してなる固体電解質燃料電池用
燃料電極が提案されている(特開平3−49156号公
報)。
In order to solve these problems, a fuel electrode for a solid electrolyte fuel cell has recently been proposed, which is formed into a plate shape by using ceramic particles coated with nickel particles on the surface and is fired (see Japanese Patent Laid-Open No. Hei 10 (1999) -264242). 3-49156 publication).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この電
極は前記粒子を成形板に成形加工し、次いで得られた成
形板を焼成して多孔質焼結板として得られるものであっ
て、該電極を用いて固体電解質燃料電池とするには、多
孔質である電極板上へ緻密で均質な電解質膜を形成する
ために、EVDプロセスやプラズマ溶射など煩雑で高度
な処理を必要としコスト高になるのを免れない。
However, this electrode is obtained by forming the particles into a shaped plate and then firing the obtained shaped plate to obtain a porous sintered plate. In order to form a solid electrolyte fuel cell by using it, in order to form a dense and homogeneous electrolyte membrane on a porous electrode plate, complicated and advanced treatment such as EVD process and plasma spraying is required, resulting in high cost. I cannot escape.

【0006】本発明は、このような事情の下、導電性が
改善され、通気性や電気化学反応性が優れるとともに、
他の部材との間で熱応力による損傷や破壊の生じること
のない固体電解質燃料電池用燃料電極を簡単に効率よく
形成させる方法を提供することを目的としてなされたも
のである。
Under the circumstances, the present invention has improved conductivity, excellent breathability and electrochemical reactivity, and
It is an object of the present invention to provide a method for easily and efficiently forming a fuel electrode for a solid electrolyte fuel cell, which is not damaged or destroyed by thermal stress with other members.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する固体電解質燃料電池用燃料電極の形
成方法を開発するために種々研究を重ねた結果、未焼成
の生の固体電解質板形成用グリーンシートと、表面がニ
ッケルで被覆されたセラミックス粒子を含有する電極形
成用グリーンシートと、必要に応じ電解質の他方の面に
配置される空気極(カソード)形成用グリーンシートと
を積層し、焼成し、一体焼結させることにより、電極を
単独に形成するのではなく、固体電解質と電極とを複合
一体化でき、かつ電極自体にも上記の望ましい特性を付
与しえて、その目的を達成しうることを見出し、この知
見に基づいて本発明を完成するに至った。
The inventors of the present invention have conducted various studies to develop a method for forming a fuel electrode for a solid electrolyte fuel cell having the above-mentioned preferable characteristics, and as a result, have unbaked raw solid electrolyte. A plate-forming green sheet, an electrode-forming green sheet containing ceramic particles whose surfaces are coated with nickel, and an air electrode (cathode) -forming green sheet arranged on the other surface of the electrolyte as needed are laminated. Then, the solid electrolyte and the electrode can be compositely integrated with each other by forming the electrode independently by firing and sintering together, and the above-mentioned desirable characteristics can be imparted to the electrode itself. They have found that they can be achieved, and have completed the present invention based on this finding.

【0008】すなわち、本発明は、固体電解質形成用グ
リーンシートと、セラミックス粒子の表面がニッケルで
被覆された粒子(以下、ニッケル被覆セラミックス粒子
という)を含有する電極形成用グリーンシートを積層し
たのち、焼成し、次いで一体焼結させることを特徴とす
る固体電解質燃料電池用燃料電極の形成方法を提供する
ものである。
That is, according to the present invention, after a solid electrolyte forming green sheet and an electrode forming green sheet containing particles whose ceramic particles are coated with nickel (hereinafter referred to as nickel coated ceramic particles) are laminated, The present invention provides a method for forming a fuel electrode for a solid electrolyte fuel cell, which comprises firing and then integrally sintering.

【0009】本発明において、各グリーンシートは、各
電池部材材料を有機系バインダー、可塑剤、溶剤などと
ともに混合したスラリー、ペーストあるいは粘土状物を
ドクターブレード法やカレンダー法で薄板状に成形する
ことによって作製される。
In the present invention, each green sheet is formed by molding a slurry, paste or clay-like material obtained by mixing each battery member material with an organic binder, a plasticizer, a solvent and the like into a thin plate shape by a doctor blade method or a calendar method. Made by.

【0010】本発明に用いるセラミックス粒子は特に制
限されないが、有利にはジルコニア、セリア、イットリ
ア安定化ジルコニア、部分安定化ジルコニアなど、通常
の固体電解質材に用いられるものであってもよいが、線
膨張係数などの熱膨張率の小さいアルミナ、炭化ケイ素
などのセラミックス粒子などであってもよい。
The ceramic particles used in the present invention are not particularly limited, but may be those which are used for ordinary solid electrolyte materials, such as zirconia, ceria, yttria-stabilized zirconia, and partially-stabilized zirconia. It may be ceramic particles such as alumina or silicon carbide having a small coefficient of thermal expansion such as expansion coefficient.

【0011】また、セラミックス粒子の粒径は、通常5
〜70μm、好ましくは10〜50μmの範囲で選ばれ
る。この粒径が5μm未満では形成された燃料電極層の
気孔率を低下させるし、また70μmを超えると電気化
学反応にかかわるニッケルの表面積が小さくなるので好
ましくない。
The particle size of the ceramic particles is usually 5
To 70 μm, preferably 10 to 50 μm. If the particle size is less than 5 μm, the porosity of the formed fuel electrode layer is lowered, and if it exceeds 70 μm, the surface area of nickel involved in the electrochemical reaction is reduced, which is not preferable.

【0012】このセラミックス粒子とニッケルとの使用
割合は、通常95:5〜10:90、好ましくは重量比
で70:30〜30:70の範囲で選ばれる。この割合
が10:90未満では電極と他の燃料電池部材との間の
熱膨張特性の整合性が不十分となるし、また95:5を
超えるとニッケルによる被覆が完全でないか、あるいは
被膜が非常に薄くなるため、導電性が低下するので好ま
しくない。
The use ratio of the ceramic particles and nickel is usually 95: 5 to 10:90, preferably 70:30 to 30:70 by weight. If this ratio is less than 10:90, the matching of the thermal expansion characteristics between the electrode and other fuel cell members will be insufficient, and if it exceeds 95: 5, the nickel coating will not be complete or the coating will be insufficient. Since it becomes extremely thin, the conductivity decreases, which is not preferable.

【0013】上記ニッケル被覆セラミックス粒子のグリ
ーンシート作成のためのペーストあるいはスラリーの調
製には、有利には有機系バインダーや可塑剤、溶剤など
が用いられ、その他必要に応じ分散剤などの任意の添加
成分を加えてもよい。
An organic binder, a plasticizer, a solvent, etc. are advantageously used for preparing a paste or slurry for preparing the green sheet of the above-mentioned nickel-coated ceramic particles, and other optional additives such as a dispersant are added. Ingredients may be added.

【0014】有機系バインダーとしては、例えばポリビ
ニルブチラール、ポリビニルアルコール、メチルセルロ
ース、エチルセルロース、ポリアクリル酸エステル、ポ
リエチレンオキシドなどが挙げられる。該バインダーの
使用割合は、ニッケル被覆セラミックス粒子に対し、通
常3〜30重量%、好ましくは5〜20重量%の範囲で
選ばれる。
Examples of the organic binder include polyvinyl butyral, polyvinyl alcohol, methyl cellulose, ethyl cellulose, polyacrylic acid ester, polyethylene oxide and the like. The proportion of the binder used is usually 3 to 30% by weight, preferably 5 to 20% by weight, based on the nickel-coated ceramic particles.

【0015】また、可塑剤としては、例えばフタル酸ブ
チル、ポリエチレングリコール、グリセリン、ポリオー
ルなどが挙げられる。
Examples of the plasticizer include butyl phthalate, polyethylene glycol, glycerin and polyol.

【0016】また、溶剤としては、例えばテルピネオー
ル、トリクロロエチレン、エチルアルコール、プロピル
アルコール、トルエン、キシレン、酢酸エチル、アセト
ン、又はこれらの混合溶剤などが挙げられる。
Examples of the solvent include terpineol, trichloroethylene, ethyl alcohol, propyl alcohol, toluene, xylene, ethyl acetate, acetone, and mixed solvents thereof.

【0017】また、本発明においては、ニッケル被覆セ
ラミックス粒子を単独で用いるのが好ましいが、その
他、ニッケル被覆セラミックス粒子に少量のニッケル粒
子を添加したものを用いてもよいし、少量のニッケル被
覆されていないセラミックス粒子を添加したものを用い
てもよい。ただし、これらの添加割合は20%以下とす
るのがよい。
In the present invention, it is preferable to use the nickel-coated ceramic particles alone. However, nickel-coated ceramic particles to which a small amount of nickel particles are added may be used, or a small amount of nickel-coated ceramic particles may be coated. You may use the thing which added the ceramic particle which is not. However, the addition ratio of these is preferably 20% or less.

【0018】上記固体電解質形成用材料は、酸素イオン
伝導性を有するものであれば特に制限されず、例えばイ
ットリア安定化ジルコニア(YSZ)、カルシア安定化
ジルコニア(CSZ)のような安定化ジルコニアや、こ
れら安定化ジルコニアにアルミナなどの金属酸化物を添
加したものなどの公知の固体電解質材料である。
The solid electrolyte-forming material is not particularly limited as long as it has oxygen ion conductivity, and for example, stabilized zirconia such as yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ), It is a known solid electrolyte material such as those obtained by adding a metal oxide such as alumina to these stabilized zirconia.

【0019】これらの各グリーンシートの積層成形体の
好適例としては、固体電解質形成用グリーンシートとニ
ッケル被覆セラミックス粒子を含有するアノード形成用
グリーンシートからなる2層積層構造物か、あるいは該
2層積層構造物に電解質層を挟んでアノード層と反対側
にアルカリ土類金属で安定化されたランタンマンガネー
トなどのカソード用材料を含有するカソード形成用グリ
ーンシートを積層した3層積層構造物が挙げられる。
A preferable example of the laminated molded body of each of these green sheets is a two-layer laminated structure comprising a solid electrolyte forming green sheet and an anode forming green sheet containing nickel-coated ceramic particles, or the two layers. A three-layer laminated structure in which a cathode forming green sheet containing a cathode material such as lanthanum manganate stabilized with an alkaline earth metal is laminated on the opposite side of the laminated structure with an electrolyte layer between them Be done.

【0020】本発明方法においては、固体電解質形成用
グリーンシート上に、ニッケル被覆セラミックス粒子を
含有する電極形成用グリーンシートを積層し、場合によ
り別のカソード(空気極)形成用グリーンシートを積層
し、場合により成形したのち、焼成し、次いでさらに高
温において一体焼結させればよい。このようにして、容
易に所要の電極が形成されるとともに、該電極は固体電
解質板と一体化される。
In the method of the present invention, an electrode forming green sheet containing nickel-coated ceramic particles is laminated on the solid electrolyte forming green sheet, and another cathode (air electrode) forming green sheet is laminated as the case may be. In some cases, it may be molded, fired, and then integrally sintered at a higher temperature. In this way, the required electrode is easily formed and the electrode is integrated with the solid electrolyte plate.

【0021】また、本発明方法においては、有利にはグ
リーンシートは集電体と交互に集積したのち、焼成する
のがよい。このようにすると、容易に固体電解質燃料電
池を作製しうる。前記、電解質と両電極を一体に焼結し
たものでは、集電体と交互に積層し、また燃料電極と電
解質の2層を一体に焼結したものでは、カソード材を塗
布したのち、集電体と交互に積層し、電池を組立てても
よい。後者の場合、昇温の過程で溶剤、バインダーなど
が除去される。
Further, in the method of the present invention, it is preferable that the green sheets are alternately accumulated with the current collector and then fired. By doing so, a solid oxide fuel cell can be easily manufactured. In the case where the electrolyte and both electrodes are integrally sintered, the current collector is alternately laminated, and in the case where two layers of the fuel electrode and the electrolyte are integrally sintered, the cathode material is applied and then the current collector is applied. The batteries may be assembled in alternating layers with the body. In the latter case, the solvent, binder, etc. are removed during the process of raising the temperature.

【0022】以下、固体電解質燃料電池の作製方法につ
いて述べる。この電池の部材の集電体は、通常セパレー
タと端子板からなる。
The method for producing the solid oxide fuel cell will be described below. The current collector of this battery member usually comprises a separator and a terminal plate.

【0023】セパレータは、固体電解質板の枚数より1
枚少ない、ガス透過性のない緻密な導電板であり、両面
に通常は互いに交差方向となるように溝が施されてそれ
ぞれ燃料ガス及び酸化剤ガスのガス流路が形成されてい
る。また、端子板は、ガス透過性のない緻密な2枚の導
電板であり、各片面に通常は複数の平行溝加工が施され
てそれぞれ酸化剤ガスのガス流路及び燃料ガスのガス流
路が形成されている。
The separator is 1 from the number of solid electrolyte plates.
It is a small number of dense conductive plates with no gas permeability, and both sides are usually provided with grooves so as to intersect with each other to form gas flow paths for fuel gas and oxidant gas, respectively. In addition, the terminal plate is two dense conductive plates that are not gas permeable, and usually has a plurality of parallel grooves formed on one surface thereof, and has a gas flow path for an oxidant gas and a gas flow path for a fuel gas, respectively. Are formed.

【0024】このように、セパレータは隣接する単セル
の電極間を電気的に接続するとともに、両面に燃料ガス
及び酸化剤ガスの流路となる溝が形成され、各流路はそ
れぞれセルのカソード側及びアノード側における各ガス
の通路を構成する。各ガス通路となる溝は平行に複数配
設され、片面の溝と他面の溝とは互いに交差方向、好ま
しくは直角方向に配置される。このように配置すれば、
セルを集積後、燃料ガスの入口及び出口、酸化剤ガスの
入口及び出口をそれぞれ同じ側端面上に配置することが
でき、集積セルとしてガス供給・排出系の構成を簡単か
つ容易とすることができる。
As described above, the separator electrically connects the electrodes of the adjacent single cells, and has grooves on both sides which serve as flow passages for the fuel gas and the oxidant gas, and each flow passage has its own cathode. The gas passages on the side of the anode and the side of the anode. A plurality of grooves to be the respective gas passages are arranged in parallel, and the groove on one surface and the groove on the other surface are arranged in a direction intersecting with each other, preferably in a right angle direction. If you place it like this,
After the cells are integrated, the inlet and outlet of the fuel gas and the inlet and the outlet of the oxidant gas can be arranged on the same side end face, respectively, and the configuration of the gas supply / exhaust system as an integrated cell can be made simple and easy. it can.

【0025】セパレータ及び端子板に用いる上記導電板
としては、通常、ニッケル、コバルトなどの金属、ニッ
ケル、クロム、コバルト、鉄などを含む耐熱合金、各種
焼結体などが用いられる。この焼結体としては、例えば
アルカリ土類金属及びCo、Ni、Fe、Znその他金
属をドープしたランタンクロマイト系複合酸化物、炭化
ケイ素、ケイ素化モリブデン、ケイ素化クロムなどの導
電性セラミックス、導電性金属材料と耐熱性無機化合物
とを非酸化性雰囲気、例えば還元雰囲気下あるいは真空
中で焼成した焼結体などが挙げられる。上記導電性金属
材料としては、例えばニッケル金属、ニッケル基合金、
コバルト金属、コバルト基合金、鉄金属、鉄基合金など
が挙げられ、このニッケル基合金としては、Ni‐Cr
系合金、Ni‐Cr‐Fe系合金、Ni‐Cr‐Mo系
合金、Ni‐Cr‐Mo‐Co系合金、Ni‐Cr‐M
o‐Fe系合金などが、またコバルト基合金としては、
Co‐Cr系合金、Co‐Cr‐Fe系合金、Co‐C
r‐W系合金、Co‐Cr‐Ni‐W系合金などが、ま
た鉄基合金としては、Fe−Ni‐Cr系合金、Fe‐
Cr‐Ni系合金、Fe‐Cr‐Ni‐Co系合金など
がそれぞれ挙げられる。また、耐熱性無機化合物として
は、例えばアルミナ、シリカ、チタニア、酸化インジウ
ム、酸化第二スズ、炭化ケイ素、窒化ケイ素、ランタン
クロマイト系複合酸化物、イットリウムクロマイト系複
合酸化物などが挙げられる。
As the conductive plate used for the separator and the terminal plate, a metal such as nickel or cobalt, a heat-resistant alloy containing nickel, chromium, cobalt, iron or the like, or various sintered bodies are usually used. Examples of the sintered body include lanthanum chromite complex oxide doped with an alkaline earth metal and Co, Ni, Fe, Zn and other metals, conductive ceramics such as silicon carbide, molybdenum silicide, and chromium silicide, and conductive Examples thereof include a sintered body obtained by firing a metal material and a heat-resistant inorganic compound in a non-oxidizing atmosphere, for example, in a reducing atmosphere or in a vacuum. The conductive metal material, for example, nickel metal, nickel-based alloy,
Cobalt metal, cobalt-based alloys, iron metals, iron-based alloys, etc. may be mentioned, and nickel-based alloys include Ni-Cr.
System alloy, Ni-Cr-Fe system alloy, Ni-Cr-Mo system alloy, Ni-Cr-Mo-Co system alloy, Ni-Cr-M
o-Fe alloys and the like, and cobalt-based alloys,
Co-Cr type alloy, Co-Cr-Fe type alloy, Co-C
r-W series alloys, Co-Cr-Ni-W series alloys, and iron-based alloys include Fe-Ni-Cr series alloys and Fe-
Examples include Cr-Ni based alloys and Fe-Cr-Ni-Co based alloys. Further, examples of the heat-resistant inorganic compound include alumina, silica, titania, indium oxide, stannic oxide, silicon carbide, silicon nitride, lanthanum chromite-based composite oxide, and yttrium chromite-based composite oxide.

【0026】以上の各部材を用いて固体電解質型燃料電
池を以下のようにして作製するのがよい。
A solid oxide fuel cell is preferably manufactured as follows using the above members.

【0027】先ず、上記グリーンシートから形成された
燃料電極と電解質及び空気極(カソード)から構成され
る単電池をセパレータを介して積層し単セルの多段直列
構造体を形成し、単セルの積層数を適宜調整し、両端に
端子板をそれぞれ設けることにより、多数の単セルから
なる直列型の積層多段セルからなる電池を組み立てる。
その際、各単電池とセパレータあるいは単電池と端子板
との間に封止材をセパレータあるいは端子板の溝方向に
沿う端縁部に介在させてガスリークしないように封止す
る。
First, unit cells composed of the fuel electrode formed of the green sheet and the electrolyte and the air electrode (cathode) are laminated with a separator interposed therebetween to form a multi-stage series structure of single cells, and the single cells are laminated. By appropriately adjusting the number and providing terminal plates at both ends, a battery including a series-type stacked multi-stage cell including a large number of single cells is assembled.
At that time, a sealing material is interposed between each unit cell and the separator or between the unit cell and the terminal plate at the edge of the separator or the terminal plate along the groove direction to seal the unit so as not to leak gas.

【0028】こうして組み立てられた電池すなわち積層
多段セルに、燃料ガス、空気などの酸化剤ガスの給、排
気管を備えたマニホールドを取り付けて燃料電池が完成
される。このマニホールドの1例として、その内面と、
これに内接するセルの周面とにより仕切られた四室が燃
料ガス及び酸化剤ガスの供給、排出空間となってガス通
路の形成部材となるとともに外壁にもなる構造のものが
挙げられる。
A fuel cell is completed by attaching a manifold including an exhaust pipe for supplying an oxidant gas such as fuel gas and air to the thus assembled battery, that is, a multi-layered cell. As an example of this manifold, its inner surface,
There is a structure in which four chambers partitioned by the inner surface of the cell inscribed therein serve as supply and discharge spaces for the fuel gas and the oxidant gas and serve as a member for forming a gas passage and also as an outer wall.

【0029】[0029]

【発明の効果】本発明方法によれば、従来方法の問題
点、例えば電極形成用粒子原料として単なるニッケル/
ジルコニア混合物を用いると、ニッケルとジルコニアの
各成分間の比重差が大きいために両者は分離しやすく、
形成される電極は組成が全体的に均一にならない上に、
前記混合物中のニッケルの割合が30重量%よりも少な
くなると、ニッケル同士を焼結させるのが困難となり、
導電性が低下するのを免れないなどの不利を容易に解消
することができ、特に、ニッケル被覆セラミックス粒子
においてはジルコニアなどのセラミックスがニッケルに
より被包されているので、ニッケルとセラミックスとが
比重差で分離するようなことはなくグリーンシートの作
製が容易になり、しかも形成された電極については組成
が全体均一になるとともに、ニッケル被覆セラミックス
粒子同士は相互に接触し合う表面の溶けやすいニッケル
同士で融着等により接合されやすく、ニッケル量がセラ
ミックス量に比し相当程度少なくなっても導電性能を維
持しうるという顕著な効果が奏される。
EFFECTS OF THE INVENTION According to the method of the present invention, there are problems of the conventional method, for example, mere nickel /
When using a zirconia mixture, nickel and zirconia are easily separated from each other because of a large difference in specific gravity between the components,
The composition of the formed electrode is not uniform throughout,
When the proportion of nickel in the mixture is less than 30% by weight, it becomes difficult to sinter the nickel particles together,
It is possible to easily eliminate disadvantages such as decrease in conductivity. Especially, in nickel-coated ceramic particles, since ceramics such as zirconia are covered with nickel, the difference in specific gravity between nickel and ceramics It is easy to produce a green sheet without separating with each other, and the composition of the formed electrode is uniform throughout, and the nickel-coated ceramic particles are in contact with each other because the nickel particles are easily melted. There is a remarkable effect that they are easily joined by fusion or the like, and the conductive performance can be maintained even if the amount of nickel is considerably smaller than the amount of ceramics.

【0030】本発明方法により形成された燃料電極は、
固体電解質板と一体化されているので、燃料電池に簡単
に効率よく組み込むことができ、その場合他の部材との
間で熱応力による損傷や破壊を生じることがない上に、
導電性が改善され、通気性や電気化学反応性にも優れる
という利点を有する。
The fuel electrode formed by the method of the present invention is
Since it is integrated with the solid electrolyte plate, it can be easily and efficiently incorporated into the fuel cell, in which case it does not cause damage or destruction due to thermal stress with other members,
It has the advantages of improved conductivity and excellent breathability and electrochemical reactivity.

【0031】[0031]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0032】実施例 燃料電極、空気極及び固体電解質からなる一体焼結体を
以下のとおり作製した。イットリアを3モル%添加した
部分安定化ジルコニア(以下安定化ジルコニアという)
粉末(平均粒径6μ)100重量部に対し、ポリビニル
ブチラール6重量%のテルピネオール溶液50重量部を
加え、ボールミルでよく混合してペースト状とし、ドク
ターブレード法により50×50×0.4mmの固体電
解質形成用グリーンシートを作成した。
Example An integral sintered body composed of a fuel electrode, an air electrode and a solid electrolyte was prepared as follows. Partially stabilized zirconia containing 3 mol% yttria (hereinafter referred to as stabilized zirconia)
50 parts by weight of a terpineol solution containing 6% by weight of polyvinyl butyral was added to 100 parts by weight of the powder (average particle size: 6μ), and the mixture was mixed well by a ball mill to form a paste, and a solid of 50 × 50 × 0.4 mm was formed by a doctor blade method. An electrolyte-forming green sheet was prepared.

【0033】これとは別に、ランタンマンガネート系の
LaSrMnO粉末(平均粒径5μm)
を上記と同じバインダー溶液とともに混合してペースト
を作成し、ドクターブレード法により50×50×0.
3mmの空気極形成用グリーンシートを作成した。
Separately from this, lanthanum manganate-based La 0 . 9 Sr 0 . 1 MnO 3 powder (average particle size 5 μm)
Is mixed with the same binder solution as above to form a paste, and 50 × 50 × 0.
A 3 mm air electrode forming green sheet was prepared.

【0034】一方、表面をNi被覆した安定化ジルコニ
ア粒子(平均粒径50μm、安定化ジルコニア/Ni重
量比=70/30)を上記と同じバインダー溶液と混合
してペーストを作成し、ドクターブレード法により50
×50×0.3mmの燃料電極形成用グリーンシートを
作成した。
On the other hand, stabilized zirconia particles coated with Ni on the surface (average particle size 50 μm, stabilized zirconia / Ni weight ratio = 70/30) were mixed with the same binder solution as above to prepare a paste, which was prepared by the doctor blade method. By 50
A green sheet for forming a fuel electrode having a size of x50x0.3 mm was prepared.

【0035】これらグリーンシートを電解質層を挟んで
燃料電極と空気極を積層し、50×50mmの正方形状
の3層構造の積層体を作製した。
A fuel electrode and an air electrode were laminated on each of these green sheets with an electrolyte layer sandwiched therebetween to produce a laminate having a 50 × 50 mm square three-layer structure.

【0036】次に、電気炉を使用し、空気雰囲気下、加
熱昇温し、溶媒を除去し、バインダーを焼去し、さらに
引き続く加熱により1500℃まで昇温し、3層複合焼
結体を得た。
Next, using an electric furnace, the temperature was raised by heating in an air atmosphere to remove the solvent, the binder was burned off, and the temperature was raised to 1500 ° C. by subsequent heating to obtain a three-layer composite sintered body. Obtained.

【0037】次に、3段直列セルの固体電解質燃料電池
を以下のように組み立てた。セパレータ及び端子板の集
電体はNi系耐熱合金製の50×50×5mmの正方形
状の平板に溝幅2mm、溝深さ1mmのガス流路を設け
たものを用いた。
Next, a three-stage series cell solid electrolyte fuel cell was assembled as follows. As the current collectors of the separator and the terminal plate, a 50 × 50 × 5 mm square flat plate made of a Ni-based heat-resistant alloy provided with a gas passage having a groove width of 2 mm and a groove depth of 1 mm was used.

【0038】上記3層複合焼結体と集電体を単セルが3
層になるように積層し、該焼結体と集電体の間に軟化点
が約800℃のガラスペーストを介挿してガス封止用と
した。このガラスペーストは電池の作動温度で軟化して
ガスを封止する。
The above three-layer composite sintered body and the current collector are combined into a single cell.
The layers were laminated in layers, and a glass paste having a softening point of about 800 ° C. was interposed between the sintered body and the current collector for gas sealing. This glass paste softens at the operating temperature of the battery and seals the gas.

【0039】こうして集積した電池に円筒状アルミナ製
マニホールドを取り付けた。マニホールドと電池との接
触部分はガラスペーストを介挿してガス封止用とした。
電気の取り出し部である端子には、白金リード線を溶接
し、電気的に接続した。
A cylindrical alumina manifold was attached to the battery thus integrated. The contact portion between the manifold and the battery was sealed with a glass paste for gas sealing.
A platinum lead wire was welded to and electrically connected to the terminal, which is an electrical outlet.

【0040】このようにして作製した燃料電池を加熱し
た。すなわち、室温から150℃までは1℃/分で加熱
し、150℃から300℃までは5℃/分で昇温し、ガ
ラスペーストの溶媒を除去した。300℃以上では、水
素通路側にアノードの酸化を防止するため、窒素ガスを
流し、5℃/分で1000℃まで昇温した。
The fuel cell thus manufactured was heated. That is, heating from room temperature to 150 ° C. was performed at 1 ° C./min, and from 150 ° C. to 300 ° C. was raised at 5 ° C./min to remove the solvent of the glass paste. At a temperature of 300 ° C. or higher, in order to prevent the oxidation of the anode on the hydrogen passage side, nitrogen gas was flown to raise the temperature to 1000 ° C. at 5 ° C./min.

【0041】このようにして得られた燃料電池を100
0℃に保持してアノード側に水素、カソード側に空気を
流し、発電を開始した。開放電圧は1.28V、オーミ
ック抵抗は38mΩ、ガスクロスリークは水素の0.1
%以下であった。
100% of the fuel cell thus obtained was used.
The temperature was maintained at 0 ° C., hydrogen was flown on the anode side and air was flown on the cathode side to start power generation. Open voltage is 1.28V, ohmic resistance is 38mΩ, gas cross leak is 0.1 of hydrogen.
% Or less.

【0042】この電池の電流−電圧特性(放電特性)を
表1に示す。
Table 1 shows the current-voltage characteristics (discharge characteristics) of this battery.

【0043】[0043]

【表1】 [Table 1]

【0044】比較例 実施例のアノード原料のニッケル被覆粒子に代えて平均
粒径5μmのNi粉末と平均粒径50μmの安定化ジル
コニア粉末を重量比55:45の割合で混合した混合物
を用いたこと以外は実施例と同様にして燃料電池を作製
した。この電池を実施例と同様に、加熱後、発電させ
た。開放電圧は1.28V、オーミック抵抗は58m
Ω、ガスクロスリークは水素の0.1%以下であった。
Comparative Example In place of the nickel-coated particles of the anode raw material of the example, a mixture was used in which Ni powder having an average particle size of 5 μm and stabilized zirconia powder having an average particle size of 50 μm were mixed at a weight ratio of 55:45. A fuel cell was produced in the same manner as in Example except for the above. This battery was heated and then generated as in the example. Open voltage is 1.28V, ohmic resistance is 58m
Ω, gas cross leak was 0.1% or less of hydrogen.

【0045】この電池の電流−電圧特性(放電特性)を
表2に示す。
Table 2 shows the current-voltage characteristics (discharge characteristics) of this battery.

【0046】[0046]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Yoshida 1-3-1 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質形成用グリーンシートと、セ
ラミックス粒子の表面がニッケルで被覆された粒子を含
有する電極形成用グリーンシートを積層したのち、焼成
し、次いで一体焼結させることを特徴とする固体電解質
燃料電池用燃料電極の形成方法。
1. A solid electrolyte forming green sheet and an electrode forming green sheet containing particles having ceramic particles whose surfaces are coated with nickel are laminated, fired and then integrally sintered. A method for forming a fuel electrode for a solid oxide fuel cell.
JP3354449A 1991-12-20 1991-12-20 Forming method for fuel electrode of solid electrolytic fuel cell Pending JPH05174836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3354449A JPH05174836A (en) 1991-12-20 1991-12-20 Forming method for fuel electrode of solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3354449A JPH05174836A (en) 1991-12-20 1991-12-20 Forming method for fuel electrode of solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH05174836A true JPH05174836A (en) 1993-07-13

Family

ID=18437642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3354449A Pending JPH05174836A (en) 1991-12-20 1991-12-20 Forming method for fuel electrode of solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH05174836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
JP2014107041A (en) * 2012-11-26 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
US6790474B1 (en) 1996-12-20 2004-09-14 Tokyo Gas Co., Ltd. Fuel electrode of solid oxide fuel cell and process for the production of the same
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
JP2014107041A (en) * 2012-11-26 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US6767662B2 (en) Electrochemical device and process of making
JP2001196069A (en) Fuel cell
JP2004265734A (en) Fuel battery cell
JP4350403B2 (en) Solid oxide fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP4828104B2 (en) Fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
KR20110126786A (en) Porous-metal supported sofc and methods for manufacturing the same
JPH05174836A (en) Forming method for fuel electrode of solid electrolytic fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JP4544874B2 (en) Fuel cell and fuel cell
KR101207122B1 (en) Porous-metal supported sofc and methods for manufacturing the same
JP3547062B2 (en) Sealing material for fuel cells
JP3105052B2 (en) Method of forming fuel electrode for solid oxide fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JPH05174846A (en) Solid electrolyte type fuel cell
JPH06196186A (en) High temperature type fuel cell
JPH06219834A (en) Sintered compact with electric conductivity at high temperature and its production
JPH05174833A (en) Fuel electrode material for solid electrolyte fuel cell
JP2009004221A (en) Method of forming interconnector
JP4557578B2 (en) Fuel cell, cell stack and fuel cell
JPH0681062A (en) Sintered compact with high-temperature electric conductivity and its production
JP3101358B2 (en) Solid oxide fuel cell separator