JPH05174846A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH05174846A
JPH05174846A JP3182865A JP18286591A JPH05174846A JP H05174846 A JPH05174846 A JP H05174846A JP 3182865 A JP3182865 A JP 3182865A JP 18286591 A JP18286591 A JP 18286591A JP H05174846 A JPH05174846 A JP H05174846A
Authority
JP
Japan
Prior art keywords
separator
gas
electrode
fuel cell
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3182865A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Hiroshi Seto
浩志 瀬戸
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3182865A priority Critical patent/JPH05174846A/en
Publication of JPH05174846A publication Critical patent/JPH05174846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the leakage of gas with a simple structure by arranging the dense film side of an unit cell electrode on a holed face of a separator and sealing the four peripheral sides so as to supply gas from the separator through the holes. CONSTITUTION:An unit cell of a fuel cell consists of a 3-layered plate constructed with a platelike porous positive electrode 13, a dense solid electrolyte film 11 produced on the electrode 13 and a negative electrode 12 of a specified metal coated on the film 11. On one face of a separator 14, grooves 14a are provided as fuel gas channels, and on the other face of the separator 14 a large number of holes 14c are provided for supplying gas. In addition, channels 14b connected through to the holes 14c in the inner portion of the separator are provided so as to open on the both sides of the separator where no grooves 14a are provided. These separators 14 are laminated so as that the holed face of a separator 14 is positioned in the electrode side of another separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスシール性の良好な
固体電解質型燃料電池に関するものである。さらに詳し
くいえば、本発明は、セパレータの片面にガス供給用の
穴に設け、これを側端部へ開口する内部通路と連通させ
た、構造に起因するガスリークを防止しうる支持膜型固
体電解質燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell having a good gas sealing property. More specifically, the present invention provides a support membrane type solid electrolyte capable of preventing a gas leak due to the structure, which is provided with a hole for gas supply on one surface of a separator and communicates with an internal passage opening to a side end. It relates to a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃焼性化学物質やそれを含有する燃料を活物質に
用い、該化学物質や燃料の酸化反応を電気化学的に行わ
せ、酸化過程におけるエネルギー変化を直接的に電気エ
ネルギーに変換させる電池であって、高いエネルギー変
換効率を期待しうるものである。
2. Description of the Related Art A fuel cell uses a combustible chemical substance such as hydrogen, carbon monoxide, or hydrocarbon, or a fuel containing the same as an active material, and causes an oxidation reaction of the chemical substance or fuel to be performed electrochemically. A battery that directly converts energy changes in the oxidation process into electric energy, and is expected to have high energy conversion efficiency.

【0003】中でも特に高い効率を期待しうるものとし
て、近年、第一世代のリン酸型、第二世代の溶融炭酸塩
型に続く第三世代の固体電解質型燃料電池、中でも集積
度の高い平板型のものが注目されている。
Among them, particularly high efficiency can be expected, and in recent years, the third generation solid oxide fuel cell following the first generation phosphoric acid type and the second generation molten carbonate type, especially the flat plate having a high degree of integration The type is drawing attention.

【0004】平板型固体電解質型燃料電池は通常マニホ
ールドに収納されるとともに、ガス通路が形成される
が、このような電池の問題点の一つにガスリークがあ
る。このガスリーク対策は特に平板状多孔質電極を支持
体とし、その上に緻密な電解質膜を形成して成るスタッ
クにおいて重要視され、種々のガスリークを防止するガ
ス封止方法が提案されている。例えば、多孔質電極の側
面にも緻密膜を形成して該側面からのガスリークを防止
する方法(実開平2−62659号公報、特開平2−2
552号公報)や、ガスを中央から供給し外周部に流出
させる方法(特開平2−168568号公報、特開平2
−26869号公報、特開平2−28662号公報)な
どがある。
A flat plate solid oxide fuel cell is usually housed in a manifold and has a gas passage formed therein. One of the problems with such a cell is gas leakage. This measure against gas leak is particularly important in a stack in which a flat plate-like porous electrode is used as a support and a dense electrolyte membrane is formed thereon, and various gas sealing methods for preventing gas leak have been proposed. For example, a method of forming a dense film on the side surface of the porous electrode to prevent gas leakage from the side surface (Japanese Utility Model Laid-Open No. 2-62659, Japanese Patent Laid-Open No. 2-2).
552) or a method of supplying gas from the center and flowing out to the outer peripheral portion (JP-A-2-168568 and JP-A-2).
No. 26869, JP-A-2-28662) and the like.

【0005】しかしながら、前者は多孔質電極支持体に
部分的に緻密部を形成させるのが困難であるし、後者は
外周部での燃料ガスの燃焼による温度上昇の制御が困難
である上に、構造が複雑でコスト高になるのを免れな
い。
However, it is difficult for the former to partially form a dense portion on the porous electrode support, and for the latter, it is difficult to control the temperature rise due to combustion of the fuel gas in the outer peripheral portion. It is unavoidable that the structure is complicated and costly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の多孔質電極支持体と緻密電解質膜を有するスタッ
クについてのガス封止技術の欠点を克服し、技術的に困
難な多孔質体の部分緻密化を必要とせず、簡単な構造で
ガス封止しうる固体電解質型燃料電池を提供することを
目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the gas sealing technology for a stack having such a conventional porous electrode support and a dense electrolyte membrane and is a technically difficult porous body. The object of the present invention is to provide a solid oxide fuel cell that does not require partial densification and can be gas-sealed with a simple structure.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する固体電解質型燃料電池を開発するた
めに種々研究を重ねた結果、電極のうちの緻密膜側をセ
パレータの穴あき面上に配置し、常法で四辺を封止して
セパレータより穴を通してガスを供給することにより、
その目的を達成しうることを見出し、本発明をなすに至
った。
The inventors of the present invention have conducted various studies to develop a solid oxide fuel cell having the above-mentioned preferable characteristics, and as a result, the dense membrane side of the electrode has a separator hole. Placed on the surface, by sealing the four sides in the usual way and supplying gas through the holes from the separator,
The inventors have found that the object can be achieved and completed the present invention.

【0008】すなわち、本発明は、平板状多孔質電極を
支持体とし、その上に緻密な固体電解質膜を形成させ、
さらにその上に緻密膜からなる他方の電極を形成した3
層構造板からなる単位セルをセパレータを介して積層し
た電池において、セパレータの片面に複数の溝を設け所
定のガス流路を形成させるとともに、その他面にガス供
給用の穴を設けるとともに、該穴と連通する通路を、セ
パレータ内部から対応する一対の側端部へ開口するよう
に設け、セパレータの他面を上記他方の電極側になるよ
うに配設したことを特徴とする固体電解質型燃料電池を
提供するものである。
That is, according to the present invention, a flat plate-like porous electrode is used as a support, and a dense solid electrolyte membrane is formed thereon,
Further, the other electrode composed of a dense film was formed thereon 3
In a battery in which unit cells composed of a layered structure plate are laminated via a separator, a plurality of grooves are provided on one surface of the separator to form a predetermined gas flow path, and a hole for gas supply is provided on the other surface, and the hole is provided. A solid oxide fuel cell characterized in that a passage communicating with the inside of the separator is provided so as to open to a corresponding pair of side end portions, and the other surface of the separator is arranged so as to be on the side of the other electrode. Is provided.

【0009】本発明に用いる単セルは、平板状多孔質電
極を支持体とし、その上に緻密な固体電解質膜をほぼ全
面にプラズマ溶射法、熱CVD法、電子ビーム蒸着法、
スパッタ法などにより形成させ、さらにその上に他方の
電極を好ましくは一方の一対の側縁部を残したまま形成
させた3層構造板からなるものである。この平板状多孔
質電極としてはアノード及び/又はカソードが用いられ
る。
The unit cell used in the present invention has a flat plate-like porous electrode as a support, and a dense solid electrolyte membrane on almost the entire surface thereof by plasma spraying, thermal CVD, electron beam evaporation,
The three-layer structure plate is formed by a sputtering method or the like, and the other electrode is preferably formed thereon with one pair of side edge portions left. An anode and / or a cathode is used as this flat plate-shaped porous electrode.

【0010】上記固体電解質膜は酸素イオン導電性を有
するものであれば特に制限されず、例えばイットリア安
定化ジルコニア(YSZ)、カルシア安定化ジルコニア
(CSZ)のような安定化ジルコニアなどの公知の固体
電解質材料、あるいは安定化ジルコニアとアルミナ等の
金属酸化物からなる多結晶焼結体固体電解質材料を上記
平板状多孔質電極上に緻密に形成したものであり、その
厚さは通常0.01〜0.3mm程度、好ましくは0.
02〜0.25mm程度が適当である。この厚さが0.
3mmを超えると抵抗が大きくなりすぎて好ましくな
い。
The solid electrolyte membrane is not particularly limited as long as it has oxygen ion conductivity, and known solids such as stabilized zirconia such as yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ). An electrolyte material or a polycrystalline sintered solid electrolyte material composed of stabilized zirconia and a metal oxide such as alumina is densely formed on the flat plate-like porous electrode, and the thickness thereof is usually 0.01 to 0.3 mm, preferably 0.
About 0.2 to 0.25 mm is suitable. This thickness is 0.
If it exceeds 3 mm, the resistance becomes too large, which is not preferable.

【0011】本発明に用いる電極としてのカソード及び
アノードは高温下でそれぞれ酸化剤ガス及び燃料ガスに
対して耐食性のある導電性材料であれば特に制限されな
いが、LaSr1−xMnOをカソード材、Ni‐
ZrOサーメットをアノード材とするのが好ましい。
電解質膜形成用基板としての電極でない側の電極は、通
常上記固体電解質板上に所定の粉末をはけ塗り法やスク
リーン印刷法などで塗布する方法の他、プラズマ溶射法
を用いて被着される。この塗布により形成させた電極は
乾燥あるいはバーンアウトしてバインダー及び/又は媒
体を除去するようにする。
The cathode and the anode as the electrodes used in the present invention are not particularly limited as long as they are conductive materials having corrosion resistance to the oxidant gas and the fuel gas, respectively, at high temperature, but La x Sr 1-x MnO 3 is used. Cathode material, Ni-
It is preferable to use ZrO 2 cermet as the anode material.
The electrode on the side other than the electrode as the substrate for forming an electrolyte membrane is usually deposited by using a plasma spraying method in addition to a method of applying a predetermined powder on the solid electrolyte plate by a brush coating method or a screen printing method. It The electrode formed by this coating is dried or burned out to remove the binder and / or the medium.

【0012】本発明に用いるセパレータは、通常上記3
層構造板の枚数より1枚少ない、ガスリークのないち密
な導電板の片面に複数の溝を設け所定のガス流路、通常
は燃料ガス流路を形成させたものであって、しかもその
他面にガス供給用の穴を設けるとともに、該穴と連通す
る通路を、セパレータ内部から対応する一対の側端部好
ましくは上記溝の開設されていない一対の側端部へ開口
するように設けたものである。セパレータは他面が緻密
膜からなる上記他方の電極側になるように配設される。
The separator used in the present invention is usually the above-mentioned 3
It is one in which a plurality of grooves are provided on one side of a dense conductive plate with no gas leak, which is one less than the number of layer structure plates, and a predetermined gas flow path, usually a fuel gas flow path, is formed on the other surface. A gas supply hole is provided, and a passage communicating with the hole is provided so as to open from the inside of the separator to a corresponding pair of side end portions, preferably to the pair of side end portions where the groove is not formed. is there. The separator is arranged so that the other surface is on the side of the other electrode made of a dense film.

【0013】また、積層セルの両端の外部端子板は、ガ
スリークのないち密な2枚の導電板にそれぞれ燃料ガス
のガス流路及び酸化剤ガスのガス流路を形成させたもの
であり、各対応電極に適合したセパレータの一面の構造
を有している。すなわち、アノード側が対面する外部端
子はその対面側すなわち内側にのみガス通路としての溝
を有し、かつ他面側すなわち外側は平面としたものであ
り、またカソード側が対面する外部端子はその対面側す
なわち内側にのみガス供給用の穴を有するとともに、該
穴と連通する通路を、外部端子内部から対応する一対の
側端部好ましくはセパレータの上記溝の開設されていな
い一対の側端部と同じ側へ開口するように設け、かつ他
面側すなわち外側は平面としたものである。
Further, the external terminal plates at both ends of the laminated cell are two dense conductive plates having no gas leak, each having a gas flow path for fuel gas and a gas flow path for oxidant gas formed therein. It has a structure on one side of a separator that is compatible with the corresponding electrode. That is, the external terminal facing the anode side has a groove as a gas passage only on the facing side, that is, the inside, and the other side, that is, the outside is a flat surface, and the external terminal facing the cathode side is the facing side. That is, it has a hole for gas supply only on the inner side, and a passage communicating with the hole is formed from the inside of the external terminal to a pair of corresponding side end portions, preferably the same as the pair of side end portions where the groove is not formed in the separator. It is provided so as to open to the side, and the other side, that is, the outside is a flat surface.

【0014】このように、セパレータは隣接する単セル
の電極間を電気的に接続するとともに、片面に一方のガ
ス流路となる溝が形成され、他面に他方のガスの供給用
穴を設けこの穴に内部で連通する通路が側端部に開口し
て他方のガス流路を形成し、各流路はそれぞれセルの各
電極側における各ガスの通路を構成する。各ガス通路は
複数配設され、好ましくは互いに交差方向、特に直角方
向に配置される。このように配置すれば、セルを集積
後、燃料ガスの入口及び出口、酸化剤ガスの入口及び出
口をそれぞれ同じ側端面上に配置することができ、集積
セルとしてガス供給・排出系の構成を簡単かつ容易とす
ることができる。上記穴は、例えば格子点あるいは升目
状、千鳥格子点状の他、縦、横あるいは斜めの長孔状な
ど種々の形態を有する。また、この穴に連通する通路
は、幅広のスリット、多数の平行な貫通孔など種々の形
態を有する。
As described above, the separator electrically connects the electrodes of the adjacent single cells, has a groove for one gas flow passage on one surface, and has a gas supply hole for the other gas on the other surface. A passage internally communicating with this hole opens at a side end portion to form the other gas flow passage, and each flow passage constitutes a passage for each gas on each electrode side of the cell. A plurality of gas passages are arranged, and preferably, they are arranged in a direction intersecting with each other, particularly in a direction perpendicular to each other. With this arrangement, after the cells are integrated, the inlet and outlet of the fuel gas and the inlet and the outlet of the oxidant gas can be arranged on the same side end face, and the gas supply / exhaust system is configured as an integrated cell. Can be simple and easy. The holes have various shapes such as a grid point or a grid shape, a zigzag grid point shape, and a vertical, horizontal, or oblique long hole shape. The passage communicating with this hole has various shapes such as a wide slit and a large number of parallel through holes.

【0015】セパレータ及び端子板に用いる上記導電板
としては、ニッケル、コバルトなどの金属、ニッケル、
クロム、コバルトなどを含む合金、各種焼結体、例えば
アルカリ土類金属及びCo、Ni、Fe、Znその他金
属をドープしたランタンクロマイト系複合酸化物、炭化
ケイ素、ケイ素化モリブデン、ケイ素化クロムなどの導
電性セラミックスや、ニッケル金属、ニッケル基合金、
コバルト金属又はコバルト基合金と、アルミナ、シリ
カ、チタニア、酸化インジウム、酸化第二スズ、炭化ケ
イ素及び窒化ケイ素の中から選ばれた少なくとも1種の
無機系化合物あるいはランタンクロマイト系複合酸化物
やイットリウムクロマイト系複合酸化物などの導電性無
機酸化物とを非酸化性雰囲気、例えば還元雰囲気下ある
いは真空中で焼成した焼結体などが挙げられる。
As the conductive plate used for the separator and the terminal plate, a metal such as nickel or cobalt, nickel,
Alloys containing chromium, cobalt, etc., various sintered bodies such as lanthanum chromite composite oxides doped with alkaline earth metals and Co, Ni, Fe, Zn and other metals, silicon carbide, molybdenum silicide, chromium silicide, etc. Conductive ceramics, nickel metal, nickel-based alloy,
Cobalt metal or cobalt-based alloy and at least one inorganic compound selected from alumina, silica, titania, indium oxide, stannic oxide, silicon carbide and silicon nitride, or lanthanum chromite complex oxide or yttrium chromite. Examples thereof include a sintered body obtained by firing a conductive inorganic oxide such as a complex oxide with a non-oxidizing atmosphere, for example, in a reducing atmosphere or in a vacuum.

【0016】上記ニッケル基合金としては、Ni‐Cr
系合金、Ni‐Cr‐Fe系合金、Ni‐Cr‐Mo系
合金、Ni‐Cr‐Mo‐Co系合金、Ni‐Cr‐M
o‐Fe系合金などが、またコバルト基合金としては、
Co‐Cr系合金、Co‐Cr‐Fe系合金、Co‐C
r‐W系合金、Co‐Cr‐Ni‐W系合金などが挙げ
られる。
The nickel-based alloy is Ni-Cr.
System alloy, Ni-Cr-Fe system alloy, Ni-Cr-Mo system alloy, Ni-Cr-Mo-Co system alloy, Ni-Cr-M
o-Fe alloys and the like, and cobalt-based alloys,
Co-Cr type alloy, Co-Cr-Fe type alloy, Co-C
Examples thereof include r-W based alloys and Co-Cr-Ni-W based alloys.

【0017】本発明においては、これら3層構造板より
なる単位セル、セパレータ、及び外部端子板を用い、こ
れを所定段数積層し単セルの多段直列構造体を形成し、
単セルの積層数を適宜調整し、両端に外部端子板をそれ
ぞれ設けることにより、多数の単セルからなる直列型の
積層多段セルからなる電池本体が組み立てられる。その
際、セパレータ同士、3層構造板とセパレータ、セパレ
ータと外部端子板あるいは3層構造板と外部端子板との
間に封止剤を介在させてガス漏れしないように封止す
る。
In the present invention, a unit cell composed of these three-layer structure plates, a separator, and an external terminal board are used, and a predetermined number of these are stacked to form a single-cell multi-stage series structure.
By properly adjusting the number of stacked single cells and providing external terminal plates at both ends, a battery body composed of a series-type stacked multi-stage cell composed of a large number of single cells can be assembled. In that case, a separator is interposed between the separators, the three-layer structure plate and the separator, the separator and the external terminal plate, or the three-layer structure plate and the external terminal plate so as to prevent gas from leaking.

【0018】これら3層構造板、セパレータ及び外部端
子板を前記したように積層して電池本体を形成する際に
用いられる前記封止剤は、電池の作動温度において軟化
状態となるか、あるいは該作動温度以上の軟化温度を有
し、該作動温度で固化するものであって、しかも該作動
温度で燃料ガスや酸化剤ガス等の原料ガス及び発生ガス
に対して耐食性があるもの、例えば燃料ガスに水素、酸
化剤ガスに酸素又は空気を用いた場合、耐還元性、耐酸
化性及び耐水蒸気性があるものであれば特に制限されな
いが、軟化点が500℃以上好ましくは600℃〜12
00℃のガラスが好ましい。このようなガラスとして
は、例えばソーダライムガラス、硼酸塩ガラス、硼ケイ
酸ガラス、アルミノケイ酸ガラスなどが挙げられる。こ
れらのガラスは板状、フェルト状として用いる他、有機
バインダーなどの有機物質に分散させてペースト状と
し、これを所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質をバーンアウトして該ガラスを復元させ
るようにしてもよい。
The encapsulant used when forming the battery body by laminating the three-layer structure plate, the separator and the external terminal plate as described above becomes a softened state at the operating temperature of the battery, or Those having a softening temperature equal to or higher than the operating temperature and solidifying at the operating temperature, and having corrosion resistance to the raw material gas such as fuel gas and oxidant gas and the generated gas at the operating temperature, for example, fuel gas When hydrogen or oxygen or air is used as the oxidant gas, it is not particularly limited as long as it has reduction resistance, oxidation resistance and water vapor resistance, but has a softening point of 500 ° C. or higher, preferably 600 ° C. to 12 ° C.
Glass at 00 ° C is preferred. Examples of such glass include soda lime glass, borate glass, borosilicate glass, and aluminosilicate glass. These glasses are used in the form of plates and felts, or they are dispersed in an organic substance such as an organic binder to form a paste, which is applied to the required sealing part, and after assembling a battery, the organic substance is burned out. Then, the glass may be restored.

【0019】軟化点が電池の作動温度(900〜110
0℃)以下のガラスとしては、電池の作動温度で粘度が
10〜10ポアズであるものが望ましい。また、軟
化点が電池の作動温度(900〜1100℃)以上のガ
ラスの場合には、一度軟化点以上の温度まで昇温した
後、作動温度まで降温して固化した状態でガスをシール
する。この場合、ガラスの熱膨張係数は6×10−6
12×10−6cm−1が望ましい。また、高温下、長
期間の使用とともにガラス相からより安定な結晶相へ相
転位するものであってもよい。
The softening point is the operating temperature of the battery (900 to 110).
The glass having a temperature of 0 ° C. or less is preferably one having a viscosity of 10 2 to 10 7 poise at the operating temperature of the battery. When the glass has a softening point of not less than the operating temperature of the battery (900 to 1100 ° C.), the temperature is once raised to the softening point or more and then lowered to the operating temperature to solidify the gas. In this case, the coefficient of thermal expansion of glass is 6 × 10 −6
12 × 10 −6 cm −1 is desirable. Further, it may be one that undergoes a phase transition from a glass phase to a more stable crystal phase with long-term use at high temperature.

【0020】上記封止剤の介在手段としては、例えば電
極を形成した固体電解質板及びセパレータの少なくとも
一方の表面に上記ペースト状のガラスすなわちガラスペ
ーストを塗布して積層する手段、電極を形成した固体電
解質板とセパレータの間に上記ガラスを挟持して積層す
る手段、電極を形成した固体電解質板及びセパレータの
少なくとも一方の表面に上記ガラスペーストを塗布し、
これらの間に上記ガラスを介在させて積層する手段など
が挙げられる。
The means for interposing the above-mentioned sealant is, for example, means for applying and laminating the above paste-like glass, that is, glass paste, on at least one surface of the solid electrolyte plate and the separator on which electrodes are formed, and the solid for which electrodes are formed. Means for sandwiching and laminating the glass between the electrolyte plate and the separator, applying the glass paste on at least one surface of the solid electrolyte plate and the separator on which the electrode is formed,
Means for laminating with the glass interposed therebetween may be used.

【0021】また、ガスリーク防止用封止剤を有機物質
に分散させてペースト状として用いる場合には、該ペー
スト状物を所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質を乾燥、蒸発あるいはバーンアウトによ
り除去してガスリーク防止用封止材を復元させるように
する。
When the sealing agent for preventing gas leak is dispersed in an organic substance to be used as a paste, the paste is applied to a required sealing portion to assemble a battery, and then the organic substance is added. The sealing material for gas leak prevention is restored by removing it by drying, evaporation or burnout.

【0022】次に、本発明においては、こうして組み立
てられた電池本体すなわち積層多段セルをマニホールド
内へ収容して所望の燃料電池が作製される。このマニホ
ールドは、その内面と、これに内接するセルの周面とに
より仕切られた四室が燃料ガス及び酸化剤ガスの供給、
排出空間となってガス通路の形成部材となるとともに外
壁にもなる構造を有する。
Next, in the present invention, the desired fuel cell is manufactured by accommodating the thus assembled cell body, that is, the laminated multi-stage cells in the manifold. In this manifold, four chambers partitioned by the inner surface of the manifold and the peripheral surface of the cell inscribed therein supply fuel gas and oxidant gas,
It has a structure that serves as a discharge space, serves as a member for forming a gas passage, and also serves as an outer wall.

【0023】[0023]

【実施例】図1の集合様式に従い、3段直列セルからな
る固体電解質型燃料電池本体を以下のとおり作製した。
各セルにおいてNi/ZrO(1/1重量比)サーメ
ットからなる厚さ1.0mmの平板状多孔質アノード1
3上に、イットリアを8モル%添加した安定化ジルコニ
アをプラズマ照射して厚さ0.05mmの緻密な電解質
11を形成させた。電解質11上にLaSr
MnO粉末を有機バインダーに分散させて厚さ0.
2mmに塗布してカソードとした。このようにして多孔
質アノード、電解質及びカソードからなる3層構造板が
作製された。
EXAMPLE A solid oxide fuel cell main body consisting of three-stage series cells was produced as follows according to the assembly mode of FIG.
A plate-like porous anode 1 made of Ni / ZrO 2 (1/1 weight ratio) cermet and having a thickness of 1.0 mm in each cell 1
A stabilized zirconia containing 8 mol% of yttria was plasma-irradiated on the surface of No. 3 to form a dense electrolyte 11 having a thickness of 0.05 mm. La 0 . 9 Sr 0 .
1 MnO 3 powder is dispersed in an organic binder to a thickness of 0.
2 mm was applied to make a cathode. In this way, a three-layer structure plate composed of the porous anode, the electrolyte and the cathode was produced.

【0024】セパレータ14はNi系合金製で、その片
面に複数の溝14aを設け燃料ガス流路を形成させると
ともに、その他面にガス供給用の穴14cを設けるとと
もに、該穴と連通する通路14bを、セパレータ内部か
ら上記溝の開設されていない一対の側端部へ開口するよ
うに設けたものである。この他面が緻密膜からなる上記
他方の電極側になるように積層される。
The separator 14 is made of a Ni-based alloy and has a plurality of grooves 14a formed on one surface thereof to form a fuel gas flow path, and a gas supply hole 14c formed on the other surface thereof, and a passage 14b communicating with the holes. Is provided so as to open from the inside of the separator to the pair of side end portions where the groove is not opened. The other surface is laminated so that it is on the side of the other electrode made of a dense film.

【0025】また、積層セルの両端の外部端子板15,
16はNi系合金製で、各対応電極に適合したセパレー
タの一面の構造を有している。すなわち、アノード側が
対面する外部端子15はその対面側すなわち内側にのみ
ガス通路としての溝を有し、かつ他面側すなわち外側は
平面としたものであり、またカソード側が対面する外部
端子16はその対面側すなわち内側にのみガス供給用の
穴を有するとともに、該穴と連通する通路が、外部端子
内部から、セパレータの上記溝の開設されていない一対
の側端部と同じ側へ開口するように設けられ、かつ他面
側すなわち外側は平面としたものである。
Further, the external terminal boards 15 at both ends of the laminated cell,
Reference numeral 16 is made of a Ni-based alloy and has a structure of one surface of a separator suitable for each corresponding electrode. That is, the external terminal 15 facing the anode side has a groove as a gas passage only on the facing side, that is, the inner side, and the other surface side, that is, the outer side is a flat surface, and the external terminal 16 facing the cathode side is the same. While having a hole for gas supply only on the facing side, that is, on the inner side, the passage communicating with the hole is opened from the inside of the external terminal to the same side as the pair of side end portions where the groove of the separator is not opened. It is provided and the other surface side, that is, the outer side, is a flat surface.

【0026】この3層構造板からなる単位セルとセパレ
ータ、外部端子を単セルが3層になるように集積した。
単セルは多孔質アノード13が溝14a側に、カソード
12が穴14c側になるように積層する。
The unit cell composed of this three-layer structure plate, the separator, and the external terminal were integrated so that each single cell had three layers.
The single cell is laminated such that the porous anode 13 is on the groove 14a side and the cathode 12 is on the hole 14c side.

【0027】図2に集積セルのガス封止方法を示す。多
孔質アノード13の側面から流出する燃料ガスはセパレ
ータ14の穴14cの上面と緻密な電解質11との間
で、また上下のセパレータの接触部分14dで封止され
る。また、酸化剤ガスはセパレータ14の穴14cの上
面と緻密な電解質11との間で封止される。上下のセパ
レータの接触部分14dには電気的に絶縁するためにア
ルミナ膜が溶射されている。これらの封止部分は軟化点
が約800℃のガラスペーストを塗布してガス封止をし
た。このガラスペーストは電池の作動温度では十分に軟
化してガスを封止する。
FIG. 2 shows a gas sealing method for the integrated cell. The fuel gas flowing out from the side surface of the porous anode 13 is sealed between the upper surface of the hole 14c of the separator 14 and the dense electrolyte 11 and the contact portions 14d of the upper and lower separators. Further, the oxidant gas is sealed between the upper surface of the hole 14c of the separator 14 and the dense electrolyte 11. An alumina film is sprayed on the contact portions 14d of the upper and lower separators for electrical insulation. A glass paste having a softening point of about 800 ° C. was applied to these sealed portions for gas sealing. This glass paste softens sufficiently at the operating temperature of the battery to seal the gas.

【0028】このようにして作製した積層型セルを図3
のように円筒状マニホールド32内に挿入し、溝14
a、通路14bの出口が管壁に面するように配置した。
電池本体31とマニホールド32の接触箇所(4ケ所)
を上記と同じガラスペーストでガス封止すれば、溝14
a、通路14bのそれぞれの両端がそれぞれマニホール
ド32の壁と電池本体31で形成された4つのガス通路
33〜36と対応する。また、電気の取り出し部の外部
端子には白金リード線を溶接し、電気的に接続した。
The laminated cell manufactured in this manner is shown in FIG.
Insert into the cylindrical manifold 32 as shown in
a, the outlet of the passage 14b is arranged so as to face the tube wall.
Contact points between battery body 31 and manifold 32 (4 locations)
If gas is sealed with the same glass paste as above, the groove 14
Both ends of a and the passage 14b correspond to the wall of the manifold 32 and the four gas passages 33 to 36 formed by the battery main body 31, respectively. Further, a platinum lead wire was welded to the external terminal of the electricity take-out portion and electrically connected.

【0029】このようにして作製した3段積層の固体電
解質型燃料電池を加熱した。室温から150℃までは1
℃/minで加熱昇温させ、ガラスペーストの溶媒を蒸
発させた。150℃から350℃までは5℃/minで
昇温させた。350℃以上では水素通路側にアノードの
酸化を防止するため、窒素ガスを流し、5℃/minで
1000℃まで昇温した。その後、1000℃に保持し
てアノード側に水素、カソード側に酸素を流し、発電を
開始した。電解質部分の面積が25cm2のセルの放電
特性を表1に示す。
The three-stage stacked solid oxide fuel cell thus produced was heated. 1 from room temperature to 150 ° C
The solvent of the glass paste was evaporated by heating at a temperature of ° C / min. The temperature was raised from 150 ° C to 350 ° C at 5 ° C / min. At 350 ° C. or higher, in order to prevent oxidation of the anode on the hydrogen passage side, nitrogen gas was flown and the temperature was raised to 1000 ° C. at 5 ° C./min. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. Table 1 shows the discharge characteristics of a cell in which the area of the electrolyte portion is 25 cm 2 .

【0030】[0030]

【表1】 開放電圧は3.4Vでガスクロスリークは水素の5.0
%以下と良好な封止性を示した。
[Table 1] The open circuit voltage is 3.4V and the gas cross leak is 5.0 of hydrogen.
% Or less, indicating a good sealing property.

【0031】[0031]

【発明の効果】本発明によれば、簡単な製作工程で組立
容易かつ安価に固体電解質型燃料電池を作製することが
できる。また、ガスシールは自立膜型の平板状電池と同
様のシール材で良好に行える。
According to the present invention, a solid oxide fuel cell can be manufactured easily and inexpensively by a simple manufacturing process. Further, the gas seal can be satisfactorily performed with a sealant similar to that of the self-supporting membrane type flat battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 直列セルの集合様式の1例の説明図。FIG. 1 is an explanatory diagram of an example of an assembly mode of series cells.

【図2】 集積セルのガス封止方法を示す説明図。FIG. 2 is an explanatory view showing a gas sealing method for an integrated cell.

【図3】 3段直列セルからなる電池本体をマニホール
ドに収納して完成品とした燃料電池の説明図。
FIG. 3 is an explanatory view of a fuel cell, which is a completed product, in which a cell body composed of three-stage series cells is housed in a manifold.

【符号の説明】 11 電解質 12 カソード 13 アノード 14 セパレータ 14a 溝 14b 通路 14c 穴 15、16 外部端子板 17 封止材 31 電池本体 32 マニホールド 33〜36 ガス通路[Explanation of Codes] 11 Electrolyte 12 Cathode 13 Anode 14 Separator 14a Groove 14b Passage 14c Hole 15, 16 External Terminal Plate 17 Sealant 31 Battery Main Body 32 Manifold 33-36 Gas Passage

フロントページの続き (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内Continued Front Page (72) Inventor Toshihiko Yoshida 1-3-1 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平板状多孔質電極を支持体とし、その上
に緻密な固体電解質膜を形成させ、さらにその上に緻密
膜からなる他方の電極を形成した3層構造板からなる単
位セルをセパレータを介して積層した電池において、セ
パレータの片面に複数の溝を設け所定のガス流路を形成
させるとともに、その他面にガス供給用の穴を設けると
ともに、該穴と連通する通路を、セパレータ内部から対
応する一対の側端部へ開口するように設け、セパレータ
の他面を上記他方の電極側になるように配設したことを
特徴とする固体電解質型燃料電池。
1. A unit cell composed of a three-layer structure plate in which a flat plate-like porous electrode is used as a support, a dense solid electrolyte membrane is formed thereon, and the other electrode made of the dense membrane is further formed thereon. In a battery laminated via a separator, a plurality of grooves are provided on one surface of the separator to form a predetermined gas flow path, and a gas supply hole is provided on the other surface, and a passage communicating with the hole is formed inside the separator. To the corresponding pair of side ends, and the other surface of the separator is arranged so as to be on the side of the other electrode.
【請求項2】 電池本体がマニホールドに収容されてい
る請求項1記載の固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the cell body is housed in a manifold.
JP3182865A 1991-06-29 1991-06-29 Solid electrolyte type fuel cell Pending JPH05174846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182865A JPH05174846A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182865A JPH05174846A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH05174846A true JPH05174846A (en) 1993-07-13

Family

ID=16125795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182865A Pending JPH05174846A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH05174846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429685B1 (en) * 2001-12-17 2004-05-03 한국과학기술연구원 Gas- distributing plate for compact polymer electrolyte membrane fuel cell and separator plate using the said gas-distributing plate
KR100691158B1 (en) * 2005-04-18 2007-03-09 삼성전기주식회사 A micro fuel cell and its production method
JP2009054599A (en) * 2008-11-04 2009-03-12 Mitsubishi Materials Corp Fuel cell
JP2015153547A (en) * 2014-02-13 2015-08-24 国立大学法人京都大学 Solid electrolyte complex, electrolyte-electrode complex, fuel cell and method of manufacturing solid electrolyte complex

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429685B1 (en) * 2001-12-17 2004-05-03 한국과학기술연구원 Gas- distributing plate for compact polymer electrolyte membrane fuel cell and separator plate using the said gas-distributing plate
KR100691158B1 (en) * 2005-04-18 2007-03-09 삼성전기주식회사 A micro fuel cell and its production method
JP2009054599A (en) * 2008-11-04 2009-03-12 Mitsubishi Materials Corp Fuel cell
JP2015153547A (en) * 2014-02-13 2015-08-24 国立大学法人京都大学 Solid electrolyte complex, electrolyte-electrode complex, fuel cell and method of manufacturing solid electrolyte complex

Similar Documents

Publication Publication Date Title
US7740966B2 (en) Electrochemical cell stack assembly
US8354202B2 (en) Multilayer glass-ceramic seals for fuel cells
JP4027836B2 (en) Method for producing solid oxide fuel cell
JP2004512651A (en) Fuel cell
JP3495654B2 (en) Cell tube seal structure
JPH0660891A (en) Sealing material for fuel cell
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JPH05174846A (en) Solid electrolyte type fuel cell
JP3547062B2 (en) Sealing material for fuel cells
JPH05174844A (en) Solid electrolyte type fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
JPH0294365A (en) Solid electrolyte fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JP3105052B2 (en) Method of forming fuel electrode for solid oxide fuel cell
JPH10189023A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JPH06111845A (en) Manufacture of solid electrolytic type fuel cell and fuel cell assembly
JPH0412468A (en) High-temperature fuel cell
JPH05174833A (en) Fuel electrode material for solid electrolyte fuel cell
JPH05174836A (en) Forming method for fuel electrode of solid electrolytic fuel cell
JPH0294367A (en) Solid electrolyte fuel cell
JPH06168734A (en) External manifold type high temperature fuel cell