JPH05174646A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH05174646A
JPH05174646A JP3342989A JP34298991A JPH05174646A JP H05174646 A JPH05174646 A JP H05174646A JP 3342989 A JP3342989 A JP 3342989A JP 34298991 A JP34298991 A JP 34298991A JP H05174646 A JPH05174646 A JP H05174646A
Authority
JP
Japan
Prior art keywords
superconductor
carbon
wire
oxide
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342989A
Other languages
Japanese (ja)
Inventor
Manabu Kato
加藤  学
Shiyunji Nomura
俊自 野村
Hisashi Yoshino
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3342989A priority Critical patent/JPH05174646A/en
Publication of JPH05174646A publication Critical patent/JPH05174646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To realize an excellent superconductive characteristic in preferable reproducibility by reducing a residual carbon amount, and enhancing density of a superconductor. CONSTITUTION:Compounds not incorporating carbon, e.g. salt not including carbon such as nitrate and sulfate, halide, oxide and the like are used as starting materials including metal elements composing an oxide superconductor. The starting materials are mixed in a predetermined composition ratio, thus preparing material mixture powder. Calcination is applied to the material mixture powder as required, to mold it into a desired shape, followed by a heat treatment. Consequently, it is possible to obtain an oxide superconductor having a residual carbon amount of 0.03% or lower by weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高臨界電流密度を有す
る酸化物超電導体、特に酸化物超電導シース線材の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor having a high critical current density, particularly an oxide superconducting sheath wire.

【0002】[0002]

【従来の技術】1986年のLa系酸化物超電導体の発見を契
機として、様々な酸化物超電導体が相次いで発見されて
いる。そして、現在、 Y系酸化物超電導体では、薄膜を
機軸とした電子デバイスや、 211相を微細分散させてピ
ニング力を向上させたバルクにより超電導磁気浮上搬送
システムの実現が可能になってきている。また、Bi系酸
化物超電導体では、配向させた結晶の作製が容易である
ことから、線材化の研究が進んおり、その応用例として
高磁場発生用コイルが試作され、比較的良好な結果が得
られている。このように、酸化物超電導体は、実用化に
向けて確実にその性能の向上が図られている。
2. Description of the Related Art Since the discovery of La-based oxide superconductors in 1986, various oxide superconductors have been discovered one after another. Now, in Y-based oxide superconductors, it has become possible to realize superconducting magnetic levitation transport systems by using electronic devices centered on thin films and bulks with 211 phases finely dispersed to improve pinning force. .. In addition, in Bi-based oxide superconductors, it is easy to produce oriented crystals, so research into wire rods is progressing, and as an example of its application, a coil for high magnetic field generation was prototyped and relatively good results were obtained. Has been obtained. As described above, the performance of the oxide superconductor is surely improved for practical use.

【0003】ところで、酸化物超電導線材を製造する際
の出発原料としては、酸化物、炭酸化物等の化合物粉末
や蓚酸塩の共沈粉末等が一般的に用いられている。そし
て、上記したような出発原料を所定の組成比で混合し、
この混合粉末を銀パイプ等のシース材中に充填した後、
酸化物超電導体を焼成することにより、酸化物超電導シ
ース線材が作製されている。しかし、こうして作製され
たシース線材の超電導体中には多量のカーボンが残留
し、粒界に偏析したカーボンによって電流の経路が妨げ
られ、高い臨界電流密度を得ることが困難であった。
By the way, as a starting material for producing an oxide superconducting wire, a compound powder such as an oxide or a carbonate, an oxalate coprecipitated powder or the like is generally used. Then, the starting materials as described above are mixed in a predetermined composition ratio,
After filling this mixed powder in a sheath material such as a silver pipe,
An oxide superconducting sheath wire is produced by firing the oxide superconductor. However, a large amount of carbon remains in the superconductor of the sheath wire produced in this way, and the current segregated at the grain boundaries hinders the current path, making it difficult to obtain a high critical current density.

【0004】一般に、バルク材を作製する場合には、炭
酸塩等のカーボンを含む出発原料を用いても、開放系で
仮焼や焼結を行うために、残留カーボン量を低減するこ
とができ、少なくとも0.10重量%以下とすることができ
る。また、銀シース線材を作製する場合においても、予
め原料粉を開放系で仮焼することにより、ある程度まで
残留カーボン量を減少させることが可能である。しか
し、酸化物超電導線材では、密閉された系内で超電導体
の最終的な焼成を行わなければならないと共に、カーボ
ンは超電導体の結晶化温度以上の高温でなければ完全に
分解しないため、焼成を行う以前に十分にカーボン量を
減少させなければ、粒界にカーボンが残留しやすく、さ
らには焼結時に発生するガスによりシース材の膨れや破
裂といった問題が生じる。特に、Bi系の酸化物超電導体
においては、高温での焼成時にカーボンに起因する脱ガ
ス等の影響によって超電導体が膨脹し、高密度の焼成体
を得ることが難しく、よって高臨界電流密度を有する線
材の作製は非常に困難であった。
Generally, when a bulk material is produced, even if a starting material containing carbon such as carbonate is used, the amount of residual carbon can be reduced because calcination and sintering are performed in an open system. Can be at least 0.10% by weight or less. Further, also in the case of producing a silver sheath wire, it is possible to reduce the amount of residual carbon to some extent by calcining the raw material powder in advance in an open system. However, in oxide superconducting wire, the final firing of the superconductor must be performed in a closed system, and since carbon does not decompose completely unless the temperature is higher than the crystallization temperature of the superconductor, firing is not performed. If the amount of carbon is not sufficiently reduced before performing, carbon tends to remain at the grain boundaries, and gas generated during sintering causes problems such as swelling and rupture of the sheath material. In particular, in a Bi-based oxide superconductor, the superconductor expands due to the effect of degassing due to carbon during firing at high temperature, and it is difficult to obtain a high-density fired body, and thus a high critical current density It was very difficult to produce the wire rods that they had.

【0005】[0005]

【発明が解決しようとする課題】上述したように、酸化
物超電導線材を作製する場合には、密閉された系内で超
電導体の焼成を行っているため、超電導体中にカーボン
が残留しやすく、この残留カーボンにより電流経路が妨
げられることによって、高い臨界電流密度を得ることが
困難であった。しかも、特にBi系においては、高温での
焼成時に炭酸ガス等の脱ガスの影響により超電導体が膨
脹するため、高密度の焼成体を製造することは非常に困
難であった。このように、従来の酸化物超電導線材の製
造方法は、超電導体中にカーボンが残留しやすいと共
に、超電導体の密度が低下しやすいことから、高い臨界
電流密度を得ることが困難であるという問題を有してい
た。
As described above, when an oxide superconducting wire is produced, since the superconductor is fired in a closed system, carbon is likely to remain in the superconductor. It was difficult to obtain a high critical current density because the residual carbon hinders the current path. Moreover, particularly in the Bi system, it is very difficult to manufacture a high-density fired body because the superconductor expands due to the effect of degassing such as carbon dioxide during firing at high temperature. As described above, the conventional method for producing an oxide superconducting wire has a problem that it is difficult to obtain a high critical current density because carbon easily remains in the superconductor and the density of the superconductor tends to decrease. Had.

【0006】また、残留カーボンに関する問題は、酸化
物超電導シース線材に限るものではなく、例えばバルク
材においてもより一層の残留カーボン量の低減が求めら
れている。
Further, the problem regarding the residual carbon is not limited to the oxide superconducting sheath wire, and it is required to further reduce the residual carbon in the bulk material, for example.

【0007】本発明は、このような課題に対処するため
になされたもので、残留カーボン量の低減および超電導
体の密度向上を図ることにより、優れた超電導特性を再
現性よく得ることを可能にした酸化物超電導体の製造方
法、特に酸化物超電導線材の製造方法を提供することを
目的としている。
The present invention has been made to address such a problem, and by reducing the amount of residual carbon and improving the density of the superconductor, it is possible to obtain excellent superconducting characteristics with good reproducibility. It is an object of the present invention to provide a method for producing the above oxide superconductor, particularly a method for producing an oxide superconducting wire.

【0008】[0008]

【課題を解決するための手段】本発明の酸化物超電導線
体の製造方法は、酸化物超電導体の各構成金属元素を含
む出発原料として、カーボンを含まない化合物を用い、
これらの出発原料を所定の組成比で混合して原料混合粉
末を調製し、次いでこの原料混合粉末に熱処理を施し
て、残留カーボン量が0.03重量%以下の酸化物超電導体
を作製することを特徴としている。
The method for producing an oxide superconducting wire of the present invention uses a compound containing no carbon as a starting material containing each constituent metal element of an oxide superconductor,
Characteristic is that these starting materials are mixed at a predetermined composition ratio to prepare a raw material mixed powder, and then this raw material mixed powder is heat-treated to produce an oxide superconductor having a residual carbon amount of 0.03% by weight or less. I am trying.

【0009】本発明の製造方法に用いる出発原料として
は、カーボンを含まない化合物であればよく、特に限定
されるものではないが、例えば硝酸塩や硫酸塩等のカー
ボンを含有しない塩、ハロゲン化物、酸化物等が用いら
れる。なお、反応性の点からは、出発原料の少なくとも
一部として硝酸塩や硫酸塩等を用いることが好ましい。
また、出発原料の全てを酸化物とすることも可能である
が、この際には本焼成前に、予め反応の促進等を図るこ
とが好ましい。
The starting material used in the production method of the present invention is not particularly limited as long as it is a compound containing no carbon, and for example, salts containing no carbon such as nitrates and sulfates, halides, An oxide or the like is used. From the viewpoint of reactivity, it is preferable to use nitrates or sulfates as at least a part of the starting materials.
It is also possible to use all of the starting materials as oxides, but in this case, it is preferable to promote the reaction in advance before the main firing.

【0010】上述したようなカーボンを含まない化合物
を出発原料として用いることによって、焼成後の残留カ
ーボン量を0.03重量%以下とすることができる。そし
て、残留カーボン量を0.03重量%以下とすることによ
り、十分に電流経路を確保することが可能となるだけで
なく、超電導体の結晶成長時に発生するガス量が抑制さ
れるため、よって超電導体の密度を高めることが可能と
なる。
By using the above-mentioned compound containing no carbon as a starting material, the amount of residual carbon after firing can be 0.03% by weight or less. Further, by setting the residual carbon amount to 0.03% by weight or less, not only is it possible to secure a sufficient current path, but also the gas amount generated during crystal growth of the superconductor is suppressed, so that the superconductor It is possible to increase the density of.

【0011】ただし、カーボンを含まない化合物を用い
たとしても、不純物としてカーボンが含まれている可能
性があるため、本発明の製造方法においては、以下に示
すカーボン量を減少させるような工程を経て、所望形状
の酸化物超電導体例えば酸化物超電導シース線材を作製
することが好ましい。
However, even if a compound containing no carbon is used, carbon may be contained as an impurity. Therefore, in the production method of the present invention, the following steps for reducing the amount of carbon are performed. After that, it is preferable to produce an oxide superconductor having a desired shape, for example, an oxide superconducting sheath wire.

【0012】すなわち、まず各出発原料を目的組成とな
るように秤量し、十分に混合した後、よく粉砕し粒径を
揃えて、原料混合粉末を調製する。例えば、各出発原料
を純水に溶解し、ホットスターラーやエバポレーター等
により混合、乾燥させる。十分に乾燥させた原料混合粉
末は、粉砕した後に篩分して粒径を揃える。原料混合粉
末の粒径は数μm 以下とすることが好ましい。
That is, first, each starting material is weighed so as to have a desired composition, thoroughly mixed, and then pulverized well to make the particle diameter uniform to prepare a raw material mixed powder. For example, each starting material is dissolved in pure water, mixed with a hot stirrer or an evaporator, and dried. The sufficiently dried raw material mixed powder is pulverized and then sieved to have a uniform particle size. The particle size of the raw material mixed powder is preferably several μm or less.

【0013】このように作製された原料混合粉末をシー
ス材に充填する場合には、予め 750℃〜 850℃にて仮焼
することが望ましい。この際、原料粉末が雰囲気とよく
馴染むように、できる限り接触面積を多くとることが好
ましい。また、仮焼雰囲気は各超電導体に応じて設定す
る必要があるが、大気あるいは酸素が一般的である。特
に酸素中での仮焼により、事前にカーボン量を大幅に減
少させることができる。このような予備工程を経ること
で、原料中のカーボン量を0.03重量%以下とすることが
できる。なお、バルク材を作製する場合には仮焼工程を
省くこともできる。むしろ密度を向上させるためには仮
焼しないほうが望ましい場合もある。
When the raw material mixed powder thus produced is filled in the sheath material, it is desirable to pre-calcin at 750 ° C to 850 ° C. At this time, it is preferable to make the contact area as large as possible so that the raw material powder is well compatible with the atmosphere. Also, the calcination atmosphere needs to be set according to each superconductor, but air or oxygen is generally used. In particular, the amount of carbon can be significantly reduced in advance by calcination in oxygen. By passing through such a preliminary step, the amount of carbon in the raw material can be reduced to 0.03% by weight or less. Note that the calcination step can be omitted when manufacturing the bulk material. Rather, it may be desirable not to calcine in order to improve the density.

【0014】次に、上述した事前にカーボン量を減少さ
せた原料混合粉末を目的の形状に成形する。例えば、銀
パイプに封入して線引き、圧延等を行って、銀シース線
材等に成形する。この後、酸素濃度をコントロールした
雰囲気中にて焼成し、目的とする酸化物超電導体を得
る。例えば、Bi系の酸化物超電導体では、 O2 濃度が6%
〜 10%程度の雰囲気中にて、10時間〜 100時間程度焼成
する。ここで、硝酸塩に起因するNOx 等の脱ガスは、炭
酸ガスと比べると非常に低温で分解するため、超電導体
の結晶成長に悪影響を与えることがない。よって、超電
導体の密度を高めることができる。また、シース線材を
作製する際には、線引きを行う工程において、 500℃〜
800℃の温度でアニールを施すことにより、さらにシー
ス内からの脱ガスを促進させることができ、本焼成時の
膨れや破裂を防ぐことができる。
Next, the raw material mixed powder in which the amount of carbon is reduced in advance is molded into a target shape. For example, it is enclosed in a silver pipe, drawn, rolled, and the like to form a silver sheath wire or the like. After that, firing is performed in an atmosphere in which the oxygen concentration is controlled to obtain the target oxide superconductor. For example, in Bi-based oxide superconductors, the O 2 concentration is 6%.
Bake for 10 to 100 hours in an atmosphere of ~ 10%. Here, degassing of NOx and the like due to nitrate decomposes at a much lower temperature than carbon dioxide, and therefore does not adversely affect the crystal growth of the superconductor. Therefore, the density of the superconductor can be increased. In addition, when manufacturing a sheath wire, in the process of drawing, 500 ℃ ~
By annealing at a temperature of 800 ° C, degassing from inside the sheath can be further promoted, and swelling and rupture during main firing can be prevented.

【0015】[0015]

【作用】本発明の酸化物超電導体の製造方法において
は、出発原料としてカーボを含まない化合物、例えば硝
酸塩や酸化物等を用いているため、原料に起因するカー
ボンの混入を避けることができる。出発原料に炭酸塩を
用いた場合にもカーボン量をある程度まで減少させるこ
とは可能であるが、シース線材等では密閉系で焼成する
ため、原料に起因するカーボン量を0.03重量%以下にす
ることは非常に困難となる。また、カーボンは超電導体
の結晶化温度以上の高温でなければ完全には分解しない
ため、超電導体の結晶成長段階でガスが発生することに
なり、超電導体の密度を下げる原因となる。
In the method for producing an oxide superconductor according to the present invention, since a compound containing no carbo, such as nitrate or oxide, is used as a starting material, it is possible to avoid carbon contamination due to the material. It is possible to reduce the amount of carbon to some extent even if carbonate is used as the starting material, but in the case of sheath wire etc., firing is performed in a closed system, so the amount of carbon due to the raw material should be 0.03% by weight or less. Will be very difficult. Further, carbon is not completely decomposed unless the temperature is higher than the crystallization temperature of the superconductor, so that gas is generated at the crystal growth stage of the superconductor, which causes a decrease in the density of the superconductor.

【0016】本発明により作製された酸化物超電導体
は、残留するカーボン量を0.03重量%以下と極めて少な
くすることができるのみならず、焼結時にカーボンに起
因するガスがほとんど発生しないために、超電導体の膨
脹を防ぐことが可能となり、よって結晶がより緻密な状
態で成長、結合する。このようにして、従来、超電導体
の密度の向上を図ることが難しいとされていたBi系の酸
化物超電導線材においても、高密度化を図ることが可能
となると共に、残留カーボン量を極めて少なくすること
ができる。よって、極めて高い臨界電流密度を有する酸
化物超電導線材を得ることが可能となる。
In the oxide superconductor produced by the present invention, the amount of residual carbon can be extremely reduced to 0.03% by weight or less, and at the same time, the gas due to carbon is hardly generated during sintering. It is possible to prevent expansion of the superconductor, so that crystals grow and bond in a more dense state. In this way, it is possible to increase the density of Bi-based oxide superconducting wire, which was conventionally difficult to improve the density of the superconductor, and to reduce the amount of residual carbon to an extremely low level. can do. Therefore, it becomes possible to obtain an oxide superconducting wire having an extremely high critical current density.

【0017】[0017]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0018】実施例1 本発明の製造方法により、Bi系酸化物超電導体の2223相
を体積分率で 95%以上含有する銀シース線材を作製した
例について述べる。まず、出発原料として、Bi2 O 3
PbO、 Sr(NO3 ) 2 ・4H2 O 、 Ca(NO3 2 ・4H2 O 、
Cu(NO3 2 ・3H2 O をそれぞれ用いて、出発組成がBi
1.8 Pb0.4 Sr2.0 Ca2.0 Cu3.0 Ox となるように秤量
し、これらをホットスターラで 200ccの純水に完全に溶
解、混合した。十分に混合されたことを確認した後、ヒ
ータの温度を上昇させ、95℃にて水分を除去して乾燥さ
せた。乾燥後の混合粉末を乳鉢により粉砕し、篩分して
粒径を 2μm 以下に揃えて、原料混合粉末とした。
Example 1 An example of producing a silver sheath wire containing 2223 phase of Bi-based oxide superconductor in a volume fraction of 95% or more by the production method of the present invention will be described. First, as a starting material, Bi 2 O 3 ,
PbO, Sr (NO 3) 2 · 4H 2 O, Ca (NO 3) 2 · 4H 2 O,
Using Cu (NO 3 ) 2 · 3H 2 O respectively, the starting composition is Bi
Weighed so as to be 1.8 Pb 0.4 Sr 2.0 Ca 2.0 Cu 3.0 O x, and these were completely dissolved and mixed in 200 cc of pure water with a hot stirrer. After confirming that the mixture was sufficiently mixed, the temperature of the heater was raised to remove moisture at 95 ° C. and dried. The dried mixed powder was pulverized in a mortar and sieved to have a particle size of 2 μm or less, thereby obtaining a raw material mixed powder.

【0019】次に、外径 7mmφ、内径 5mmφ、長さ 200
mmの銀パイプに、上記原料混合粉末を8g充填した。その
後、伸線、線引き加工を繰り返し、外径が 1mmφになっ
たところでロール加工を行って、最終断面形状が 3mm×
0.1mmのテープ状銀シース線材とした。このテープ状線
材を、 O2 濃度が7.7%の雰囲気中にて 835℃×50時間の
条件で熱処理し、酸化物超電導シース線材を作製した。
Next, outer diameter 7 mmφ, inner diameter 5 mmφ, length 200
A silver pipe of mm was filled with 8 g of the above raw material mixed powder. After that, wire drawing and wire drawing are repeated, and when the outer diameter reaches 1 mmφ, roll processing is performed and the final cross-sectional shape is 3 mm ×
It was a 0.1 mm tape-shaped silver sheath wire. This tape-shaped wire was heat-treated in an atmosphere with an O 2 concentration of 7.7% under conditions of 835 ° C. for 50 hours to produce an oxide superconducting sheath wire.

【0020】このようにして得られたシース線材の超電
導体中の残留カーボン量を、ガスフュージョン分析法に
よって測定したところ、 0.008重量%と極めて低く押さ
えられていることを確認した。また、上記Bi系酸化物超
電導シース線材の超電導特性を測定した結果、臨界温度
c =107.6K 、臨界電流密度Jc =4.6×104 A/cm2 (77
K,0T)と、非常に高い値を示した。
The amount of residual carbon in the superconductor of the thus obtained sheath wire was measured by gas fusion analysis, and it was confirmed that the amount was 0.008% by weight, which was extremely low. Further, as a result of measuring the superconducting characteristics of the above Bi-based oxide superconducting sheath wire, the critical temperature T c = 107.6K and the critical current density J c = 4.6 × 10 4 A / cm 2 (77
K, 0T), which was a very high value.

【0021】比較例1 出発原料として、 99.9%以上のBi2 O 3 、 PbO、SrC
O3 、CaCO3 、 CuOの各粉末を用いて、これらを出発組
成が実施例1と同一となるように秤量し、ボールミルに
て24時間混合した後、大気中にて 840℃の温度で24時間
仮焼した。
Comparative Example 1 99.9% or more of Bi 2 O 3 , PbO and SrC were used as starting materials.
O 3 , CaCO 3 , and CuO powders were used, and these were weighed so that the starting composition was the same as in Example 1, mixed with a ball mill for 24 hours, and then mixed in the atmosphere at a temperature of 840 ° C. for 24 hours. I calcined for an hour.

【0022】このように作製した原料混合粉末を、実施
例1と同一条件で銀パイプに充填した後、実施例1と同
一条件で加工および熱処理を行って、酸化物超電導シー
ス線材を作製した。このようにして得られたシース線材
の超電導体中の残留カーボン量を、ガスフュージョン分
析法によって測定したところ、 0.044重量%と実施例1
よりも高い値となった。また、超電導特性を測定した結
果、Tc =106.4K 、Jc =2.2×104 A/cm2 となり、実施
例1と比較して低い値であった。
The raw material mixed powder thus produced was filled in a silver pipe under the same conditions as in Example 1, and then processed and heat-treated under the same conditions as in Example 1 to produce an oxide superconducting sheath wire. The amount of residual carbon in the superconductor of the sheath wire thus obtained was measured by gas fusion analysis and found to be 0.044% by weight.
It became a higher value. As a result of measuring the superconducting characteristics, T c = 106.4 K and J c = 2.2 × 10 4 A / cm 2 , which were low values as compared with Example 1.

【0023】また、上記実施例1と比較例1による各超
電導体の密度をSEM観察により比較したところ、比較
例1で作製した線材に比べて、実施例1による酸化物超
電導シース線材は密度が高く、緻密な結晶が得られてい
た。
Further, when the densities of the respective superconductors of Example 1 and Comparative Example 1 were compared by SEM observation, the density of the oxide superconducting sheath wire of Example 1 was higher than that of the wire prepared in Comparative Example 1. High and dense crystals were obtained.

【0024】実施例2 全金属元素の出発原料として硝酸塩を使用して、Bi系22
12相の体積分率が 99%の銀シース線材を作製した例につ
いて述べる。各出発原料としては、 Bi(NO3 3 ・5H2
O 、 Pb(NO3 ) 2 ・4H2 O 、 Ca(NO3 2 ・4H2 O 、 C
u(NO3 2 ・3H2 O をそれぞれ用いた。これらを出発組
成がBi2.0 Sr2.0 Ca1.0 Cu2.0 Ox となるようにそれぞ
れ秤量し、これらを硝酸を20cc混合した 200ccの水に完
全に溶解させた後、ホットスターラで十分に混合、乾燥
した。得られた混合粉末を乳鉢にて粉砕し、粒径が 2μ
m 以下となるように篩分した。
Example 2 Using a nitrate as a starting material for all metallic elements, Bi system 22
An example of producing a silver sheath wire rod having a volume fraction of 12 phases of 99% will be described. As each of the starting materials, Bi (NO 3) 3 · 5H 2
O, Pb (NO 3) 2 · 4H 2 O, Ca (NO 3) 2 · 4H 2 O, C
u (NO 3 ) 2 3H 2 O was used. These were weighed so that the starting composition was Bi 2.0 Sr 2.0 Ca 1.0 Cu 2.0 O x , completely dissolved in 200 cc of water containing 20 cc of nitric acid, thoroughly mixed with a hot stirrer, and dried. .. The obtained mixed powder is crushed in a mortar and the particle size is 2μ.
It was sieved so as to be not more than m.

【0025】上記により得た原料混合粉末を、外径 7mm
φ、内径 5mmφ、長さ 200mmの銀パイプに8g充填した
後、伸線、線引き加工を繰り返し、外径が 1mmφになっ
たところでロール加工を行った。このロール加工によ
り、厚さが 0.8mmとなった時点で、 700℃×24時間の条
件で中間アニールを施した。その後、さらにロール加工
を行って、最終断面形状が 3mm× 0.1mmのテープ状線材
とした。このテープ状線材を、 O2 濃度が7.7%の雰囲気
中にて、 845℃の温度で50時間熱処理して、酸化物超電
導シース線材を作製した。
The raw material mixed powder obtained as described above was treated with an outer diameter of 7 mm.
After filling 8g of silver pipe with φ, inner diameter 5mmφ and length 200mm, wire drawing and wire drawing processes were repeated, and when the outer diameter became 1mmφ, roll processing was performed. By this roll processing, when the thickness became 0.8 mm, the intermediate annealing was performed at 700 ° C. for 24 hours. After that, further roll processing was performed to obtain a tape-shaped wire rod having a final cross-sectional shape of 3 mm × 0.1 mm. This tape-shaped wire was heat-treated at a temperature of 845 ° C. for 50 hours in an atmosphere having an O 2 concentration of 7.7% to produce an oxide superconducting sheath wire.

【0026】このようにして得られたシース線材の超電
導体中の残留カーボン量を測定したところ、 0.006重量
%と極めて低く抑さえられていた。また、超電導特性を
測定した結果、Tc =813K 、Jc =3.2×104 A/cm2 と高
い特性が得られた。
When the amount of residual carbon in the superconductor of the sheath wire thus obtained was measured, it was suppressed to a very low value of 0.006% by weight. Further, as a result of measuring the superconducting characteristics, high characteristics such as T c = 813K and J c = 3.2 × 10 4 A / cm 2 were obtained.

【0027】比較例2 出発原料として、 99.9%以上のBi2 O 3 、 PbO、SrC
O3 、CaCO3 、 CuOの各粉末を用いて、これらを出発組
成が実施例2と同一となるように秤量し、ボールミルに
て24時間混合した後、大気中にて 840℃の温度で24時間
仮焼し、原料混合粉末とした。この原料混合粉末を用い
ると共に、ロール加工途中での中間アニールを省く以外
は、実施例2と同一条件で、酸化物超電導シース線材を
作製した。この超電導体中の残留カーボン量は 0.061重
量%であり、また超電導特性はTc =79.2K 、Jc =1.6
×104 となり、実施例2と比較してそれぞれ低い値しか
得られなかった。
Comparative Example 2 As starting materials, 99.9% or more of Bi 2 O 3 , PbO and SrC were used.
Powders of O 3 , CaCO 3 and CuO were used, weighed so that the starting compositions were the same as in Example 2, and mixed in a ball mill for 24 hours, then, in the atmosphere at a temperature of 840 ° C. for 24 hours. It was calcined for a time to obtain a raw material mixed powder. An oxide superconducting sheath wire was produced under the same conditions as in Example 2 except that this raw material mixed powder was used and intermediate annealing during the roll processing was omitted. The amount of residual carbon in this superconductor was 0.061% by weight, and the superconducting properties were T c = 79.2K and J c = 1.6.
The result was × 10 4 , and only low values were obtained as compared with Example 2.

【0028】実施例3 全金属元素の出発原料として酸化物を使用して、Bi系22
23相の銀シース線材を作製した例について述べる。
Example 3 Using an oxide as a starting material for all metallic elements, a Bi system 22
An example of producing a 23-phase silver sheath wire will be described.

【0029】Bi2 O 3 、 PbO、 SrO、 CaO、 CuOの各粉
末を用いて、これらを出発組成がBi1.84Pb0.34Sr1.91Ca
2.03Cu3.06 Ox となるようそれぞれ秤量し、 200ccの純
水に溶解して十分に混合した後、エバポレータにて乾燥
した。得られた混合粉末を乳鉢にて粉砕し、粒径が 1μ
m 以下となるように篩分した。この後、この混合粉末を
大気中にて 840℃×24時間の条件で仮焼して超電導体粉
末とした。
Bi 2 O 3 , PbO, SrO, CaO, and CuO powders were used, and the starting compositions of these powders were Bi 1.84 Pb 0.34 Sr 1.91 Ca.
Each of them was weighed so as to have 2.03 Cu 3.06 O x , dissolved in 200 cc of pure water, sufficiently mixed, and then dried by an evaporator. The obtained mixed powder is crushed in a mortar and the particle size is 1μ.
It was sieved so as to be not more than m. Then, this mixed powder was calcined in the atmosphere at 840 ° C. for 24 hours to obtain a superconductor powder.

【0030】上記により得た超電導体粉末を、外径 7mm
φ、内径 5mmφ、長さ 200mmの銀パイプに8g充填した
後、伸線、線引き加工を繰り返し、外径が 1mmφになっ
たところでロール加工を行って、最終断面形状が 3mm×
0.1mmのテープ線材とした。この後、このテープ状線材
を O2 濃度が7.7%の雰囲気中にて、 835℃の温度で50時
間熱処理して、酸化物超電導シース線材を作製した。こ
の超電導線材の残留カーボンは 0.015重量%まで減少
し、Tc =107.8K 、Jc =4.2×104 A/cm2 と極めて高い
特性を示した。
The superconducting powder obtained as described above was applied to an outer diameter of 7 mm.
After filling 8g of silver pipe of φ, inner diameter 5mmφ, length 200mm, wire drawing and wire drawing processes were repeated, and when the outer diameter became 1mmφ, roll processing was performed and the final cross-sectional shape was 3mm ×
0.1mm tape wire was used. Then, this tape-shaped wire was heat-treated at a temperature of 835 ° C. for 50 hours in an atmosphere having an O 2 concentration of 7.7% to produce an oxide superconducting sheath wire. The residual carbon of the superconducting wire is reduced to 0.015 wt%, it exhibited a T c = 107.8K, very high characteristics and J c = 4.2 × 10 4 A / cm 2.

【0031】比較例3 実施例3と同一組成に調整した蓚酸塩の共沈粉末を、ボ
ールミルにて24時間混合し後、大気中、 840℃にて24時
間仮焼した。この仮焼粉を用いる以外は、実施例3と同
一条件で、酸化物超電導シース線材を作製した。この超
電導体中の残留カーボン量は 0.063重量%で、また超電
導特性はTc =102.1K 、Jc =1.3×104 となり、実施例
3と比較して低い値となった。
Comparative Example 3 The oxalate coprecipitated powder adjusted to have the same composition as in Example 3 was mixed in a ball mill for 24 hours and then calcined in the air at 840 ° C. for 24 hours. An oxide superconducting sheath wire was produced under the same conditions as in Example 3 except that this calcined powder was used. The amount of residual carbon in this superconductor was 0.063% by weight, and the superconducting properties were T c = 102.1K and J c = 1.3 × 10 4 , which were lower than those of Example 3.

【0032】以上の実施例1〜3および比較例1〜3の
結果を表1にまとめて示す。
The results of Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1.

【0033】[0033]

【表1】 実施例4 Tl系超電導線材を全構成元素について硝酸塩を用いて作
製した例について述べる。出発原料には、 Tl(NO3 )
2 、 Ba(NO3 2 、 Ca(NO3 2 ・4H2 O 、 Cu(N
O3 2 ・3H2 O をそれぞれ用いた。これらを出発組成
がTl1.9 Ba2.1.Ca2.0 Cu3.0 Ox となるようにそれぞれ
秤量し、 200ccの純水に完全に溶解した後、ホットスタ
ーラーで十分に混合、乾燥した。得られた混合粉末を乳
鉢にて粉砕し、粒径が 2μm 以下となるように篩分し
た。
[Table 1] Example 4 An example in which a Tl-based superconducting wire is manufactured by using nitrate for all the constituent elements will be described. Starting material is Tl (NO 3 )
2, Ba (NO 3) 2 , Ca (NO 3) 2 · 4H 2 O, Cu (N
O 3 ) 2 · 3H 2 O was used. These were weighed so that the starting composition was Tl 1.9 Ba 2.1. Ca 2.0 Cu 3.0 O x , completely dissolved in 200 cc of pure water, thoroughly mixed with a hot stirrer, and dried. The obtained mixed powder was crushed in a mortar and sieved so that the particle size was 2 μm or less.

【0034】上記原料混合粉末を、外径 7mmφ、内径 5
mmφ、長さ 200mmの銀パイプに8g充填した後、伸線、線
引き加工を繰り返し、外径が 1mmφになったところでロ
ール加工を行って、最終断面形状 3mm× 0.1mmのテープ
状線材を作製した。このテープ状線材を酸素フロー中で
870℃、10時間の条件で熱処理し、Tl系酸化物超電導シ
ース線材を作製した。
An outer diameter of 7 mmφ and an inner diameter of 5
After filling 8g of silver pipe with mmφ and length of 200mm, wire drawing and wire drawing processes were repeated, and when the outer diameter became 1mmφ, roll processing was performed to produce tape-shaped wire with final cross-sectional shape of 3mm × 0.1mm. .. This tape-shaped wire is in an oxygen flow
Heat treatment was performed at 870 ° C for 10 hours to prepare a Tl-based oxide superconducting sheath wire.

【0035】このようにして得たシース線材の超電導体
中の残留カーボン量は 0.009重量%まで減少し、また超
電導特性はTc =106.3K 、Jc =3.7×104 A/cm2 と極め
て高い値を示した。
The residual carbon content in the superconductor of the sheath wire thus obtained was reduced to 0.009% by weight, and the superconducting characteristics were T c = 106.3K and J c = 3.7 × 10 4 A / cm 2. It showed a high value.

【0036】比較例4 出発原料としてTl2 O 3 、BaCO3 、CaCO3 、 CuOの各粉
末を用い、これらを実施例4と同一組成となるように秤
量し、十分に混合した。得られた粉末を外径 7mmφ、内
径 5mmφ、長さ 200mmの銀パイプに8g充填した後、伸
線、線引き加工を繰り返し、外径が 1mmφになったとこ
ろでロール加工を行って、最終断面形状が3mm× 0.1mm
のテープ状線材とした。このテープ状線材を O2 濃度が
7.7%の雰囲気中にて、 870℃の温度で10時間熱処理し、
酸化物超電導シース線材を作製した。この超電導体中の
残留カーボン量は 0.056重量%で、超電導特性はTc =1
24.5K、Jc =1.2×104 A/cm2 となり、実施例4より低
い値しか得られなかった。
Comparative Example 4 Tl 2 O 3 , BaCO 3 , CaCO 3 , and CuO powders were used as starting materials, and they were weighed so as to have the same composition as in Example 4 and mixed sufficiently. After filling 8 g of the obtained powder into a silver pipe with an outer diameter of 7 mmφ, an inner diameter of 5 mmφ and a length of 200 mm, wire drawing and wire drawing processes were repeated, and when the outer diameter became 1 mmφ, roll processing was performed to obtain the final cross-sectional shape. 3mm x 0.1mm
Was used as a tape-shaped wire. This tape-shaped wire has an O 2 concentration of
Heat treatment at 870 ℃ for 10 hours in 7.7% atmosphere,
An oxide superconducting sheath wire was produced. The residual carbon content in this superconductor was 0.056% by weight, and the superconducting property was T c = 1.
The value was 24.5K, J c = 1.2 × 10 4 A / cm 2 , and the value was lower than that in Example 4.

【0037】実施例5 実施例4によるTl系銀シース線材と同様にして、Tl系22
12相を体積分率で 99%以上含有するTl系酸化物超電導体
シース線材を作製した。なお、出発組成はTl1.9 Ba2.1.
Ca1.0 Cu2.0 Ox とした。この超電導体中の残留カーボ
ン量は、0.008重量%まで減少し、また超電導特性はT
c =106.2K 、Jc =4.3×104 A/cm2 と極めて高い値を示
した。
Example 5 Similar to the Tl-based silver sheath wire according to Example 4, Tl-based 22
A Tl-based oxide superconductor sheath wire containing 12 phases in a volume fraction of 99% or more was prepared. The starting composition is Tl 1.9 Ba 2.1.
It was Ca 1.0 Cu 2.0 O x . The amount of residual carbon in this superconductor is reduced to 0.008% by weight, and the superconducting property is T
c = 106.2K, showed an extremely high value of J c = 4.3 × 10 4 A / cm 2.

【0038】比較例5 比較例4と同様の各出発原料を、実施例5と同一組成と
なるよう秤量、混合した粉末を用いる以外は、比較例4
と同一条件で、Tl系2212相の酸化物超電導シース線材を
作製した。この超電導体中の残留カーボン量は 0.062重
量%で、また超電導特性はTc =104.0K 、Jc =1.8×10
4 A/cm2 となり、実施例5より低い値を示した。
Comparative Example 5 Comparative Example 4 was repeated except that the same starting materials as in Comparative Example 4 were weighed and mixed so as to have the same composition as in Example 5.
Under the same conditions as above, a Tl-based 2212 phase oxide superconducting sheath wire was prepared. The amount of residual carbon in this superconductor was 0.062% by weight, and the superconducting characteristics were T c = 104.0K and J c = 1.8 × 10.
The value was 4 A / cm 2 , which was lower than that in Example 5.

【0039】以上の実施例4〜5および比較例4〜5の
結果を表2にまとめて示す。
The results of Examples 4 to 5 and Comparative Examples 4 to 5 are summarized in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上説明したように、本発明の酸化物超
電導体の製造方法によれば、出発原料としてカーボンを
含まない化合物を用いて、残量カーボン量を0.03重量%
以下としているため、粒界に残留すると思われるカーボ
ン量を極めて少なくすることができると共に、カーボン
に起因して発生するガスの影響を抑えることができ
る。、よって、超電導体の膨脹が抑制され、焼結により
極めて高密度の酸化物超電導体を作製することができ
る。これらによって、高い臨界電流密度を有する超電導
体の作製が容易となる。このように、本発明によれば、
極めて高いJc 、Ic を有する実用的な酸化物超電導体
を安定して提供することが可能となる。
As described above, according to the method for producing an oxide superconductor of the present invention, a carbon-free compound is used as a starting material and the residual carbon amount is 0.03% by weight.
Because of the following, it is possible to extremely reduce the amount of carbon that is believed to remain at the grain boundaries and to suppress the influence of gas generated due to carbon. Therefore, expansion of the superconductor is suppressed, and an extremely high density oxide superconductor can be produced by sintering. These facilitate the production of a superconductor having a high critical current density. Thus, according to the present invention,
It is possible to stably provide a practical oxide superconductor having extremely high J c and I c .

【0042】[0042]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体の各構成金属元素を含む
出発原料として、カーボンを含まない化合物を用い、こ
れらの出発原料を所定の組成比で混合して原料混合粉末
を調製し、次いでこの原料混合粉末に熱処理を施して、
残留カーボン量が0.03重量%以下の酸化物超電導体を作
製することを特徴とする酸化物超電導体の製造方法。
1. A carbon-free compound is used as a starting material containing each constituent metal element of an oxide superconductor, and these starting materials are mixed in a predetermined composition ratio to prepare a raw material mixed powder. Heat treatment of the raw material mixed powder,
A method for producing an oxide superconductor, which comprises producing an oxide superconductor having a residual carbon content of 0.03% by weight or less.
JP3342989A 1991-12-25 1991-12-25 Manufacture of oxide superconductor Pending JPH05174646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342989A JPH05174646A (en) 1991-12-25 1991-12-25 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342989A JPH05174646A (en) 1991-12-25 1991-12-25 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05174646A true JPH05174646A (en) 1993-07-13

Family

ID=18358077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342989A Pending JPH05174646A (en) 1991-12-25 1991-12-25 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05174646A (en)

Similar Documents

Publication Publication Date Title
JPH05174646A (en) Manufacture of oxide superconductor
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JPS63233066A (en) Production of superconductive body
JP2567891B2 (en) Method for producing oxide superconducting molded body
JPH061616A (en) Production of bi based oxide superconductor
JP2555734B2 (en) Production method of superconducting material
JP3158255B2 (en) Method for producing crystal-oriented oxide superconductor
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JPH01275493A (en) Method for growing oxide superconductor single crystal
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH01111715A (en) Production of superconductor member
JPH04317415A (en) Production of bi-based oxide superconductor
JPH02149426A (en) Oxide superconducting material and its production
JPH01313326A (en) Superconductor and production thereof
JPH05339008A (en) Tl-pb oxide superconducting material and its production
JPH02141425A (en) Bismuth-based oxide superconducting material and production thereof
JPH0982153A (en) Manufacture of oxide superconducting wire
JPH02120234A (en) Production of oxide superconductor
JPH02149425A (en) Oxide superconducting material and its production
JPS63277575A (en) Production of formed article of oxide superconductor
JPH03131521A (en) Oxide superconductor and production thereof
JPH08325016A (en) Bi-based superconducting material and its production
JPH04338173A (en) Production of oxide superconducting wire

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010410