JPH05174359A - Magnetic powder for magnetic recording and magnetic recording medium - Google Patents

Magnetic powder for magnetic recording and magnetic recording medium

Info

Publication number
JPH05174359A
JPH05174359A JP3342597A JP34259791A JPH05174359A JP H05174359 A JPH05174359 A JP H05174359A JP 3342597 A JP3342597 A JP 3342597A JP 34259791 A JP34259791 A JP 34259791A JP H05174359 A JPH05174359 A JP H05174359A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
magnetic powder
powder
sbet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342597A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurisu
俊治 栗栖
Osamu Kubo
修 久保
Tatsumi Maeda
辰巳 前田
Etsuji Ogawa
悦治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3342597A priority Critical patent/JPH05174359A/en
Publication of JPH05174359A publication Critical patent/JPH05174359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide magnetic powder by which a coasting material is easily available comparing with the conventional material, sine the dispersibility is very excellent, and whose output, and S/N characteristics are superior, and which is very efficient to a high density. CONSTITUTION:The magnetic power for magnetic recording incorporates the water contents of from >=1.35X10<-4>x SBET (g) to <=4.3X10<-4>XSBET (g) per unit mass, when a specific surface area measured by a BET method using gaseous nitrogen is SBET(m<2>/g), and also is larger than 800(Oe) in the coercive force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度記録に適した磁
気記録用磁性粉、および磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder for magnetic recording suitable for high density recording, and a magnetic recording medium.

【0002】[0002]

【従来の技術】塗布により製造される磁気記録媒体は、
ポリエチレンテレフタレ−ト等から成る支持基体と、こ
の支持基体上に形成された磁性粉とバインダレジンを主
成分とする磁性層とによって構成されている。
2. Description of the Related Art A magnetic recording medium manufactured by coating is
It is composed of a supporting base made of polyethylene terephthalate or the like, and a magnetic layer containing magnetic powder and binder resin as main components formed on the supporting base.

【0003】磁気記録媒体に用いられる磁性粉として
は、従来、γ−Fe2 3 、Co被着γ−Fe2 3
Coド−プγ−Fe2 3 、Co被着Fe3 4 、金属
Feなどの針状磁性粉が用いられ、面内長手方向の磁化
を用いる面内記録方式がとられていた。しかしながら、
この面内記録方式は、記録密度が向上するにつれて減磁
界の影響が強くなるため、高密度の記録再生には適して
いなかった。
Magnetic powders used in magnetic recording media are conventionally γ-Fe 2 O 3 , Co-deposited γ-Fe 2 O 3 ,
Needle-shaped magnetic powders such as Co-doped γ-Fe 2 O 3 , Co-deposited Fe 3 O 4 , and metallic Fe have been used, and an in-plane recording method using magnetization in the in-plane longitudinal direction has been adopted. However,
This in-plane recording method is not suitable for high-density recording / reproducing because the influence of the demagnetizing field increases as the recording density increases.

【0004】そこで、近年では磁性層膜面に対して垂直
方向の磁化を用いる垂直磁気記録方式が提案されてい
る。この垂直磁気記録方式は、記録密度の向上に伴い、
その磁化は一層安定さを増すため、高密度記録に最適な
記録方式であるといえる。
Therefore, in recent years, a perpendicular magnetic recording system has been proposed which uses magnetization in the direction perpendicular to the surface of the magnetic layer. This perpendicular magnetic recording system, with the increase in recording density,
It can be said that this magnetization is the most suitable recording method for high-density recording because its magnetization becomes more stable.

【0005】このような垂直磁気記録方式に適した磁気
記録媒体としては、Co−Cr合金などを真空蒸着法や
スパッタ法等の真空技術を用いて支持基体上に被着させ
るもの、板面に垂直な方向に磁化容易軸を有する六方晶
系フェライト粉を塗布するものが知られている。
As a magnetic recording medium suitable for such a perpendicular magnetic recording system, a Co--Cr alloy or the like is deposited on a supporting substrate using a vacuum technique such as a vacuum deposition method or a sputtering method, or a plate surface It is known to apply hexagonal ferrite powder having an easy axis of magnetization in the vertical direction.

【0006】真空技術を用いた磁気記録媒体は量産性、
製造コスト等の種々の問題点を有しているが、塗布型の
磁気記録媒体は従来の製造設備等が利用でき、しかも量
産性に優れているため、非常に有望なものである。
The magnetic recording medium using the vacuum technique is mass-producible,
Although it has various problems such as manufacturing cost, the coating type magnetic recording medium is very promising because conventional manufacturing facilities can be used and mass productivity is excellent.

【0007】このような塗布型の磁気記録媒体に用いら
れる六方晶系フェライト粉としては、例えばM型のBa
Fe1219、W型のBaMe2 Fe1617(Meは置換
金属元素)、あるいはそれらの原子の一部が他の元素で
置換された六方晶系フェライト粉もしくはM型とW型の
複合粉、M型とスピネルの複合粉等が知られており、ま
た研究開発されている。
Hexagonal ferrite powder used for such a coating type magnetic recording medium is, for example, M type Ba powder.
Fe 12 O 19 , W-type BaMe 2 Fe 16 O 17 (Me is a substitution metal element), or hexagonal ferrite powder in which some of those atoms are substituted with other elements, or a composite of M-type and W-type Powders, composite powders of M type and spinel, etc. are known and are being researched and developed.

【0008】[0008]

【発明が解決しようとする課題】ところで、磁気記録媒
体の成分として針状磁性粉や六方晶系フェライト粉を用
いた場合、粒子同志の磁気凝集が強く、その磁気凝集を
断ち切って分散させる必要がある。
By the way, when acicular magnetic powder or hexagonal ferrite powder is used as a component of the magnetic recording medium, the magnetic agglomeration of the particles is strong and it is necessary to discontinue the magnetic agglomeration. is there.

【0009】このためには、サンドグラインダにビ−ズ
を多量に投入したり、不揮発分割合を高めたり、ニ−ダ
の導入するなどにより高いシエアをかけて粒子を分散さ
せる必要が生じてくる。
For this purpose, it becomes necessary to disperse the particles by applying a large amount of beads to the sand grinder, increasing the non-volatile content, introducing a kneader, and the like to apply high shear. ..

【0010】特に、板面に垂直な方向に磁化容易軸のあ
る六方晶系フェライト粉では、従来の針状の磁性粉に比
べて粒子同志が面で接するため針状磁性粉と比較しより
磁気凝集が強く塗料化の際分散がしずらいという問題を
有していた。
In particular, hexagonal ferrite powder having an axis of easy magnetization in the direction perpendicular to the plate surface is more magnetic than needle-like magnetic powder because the particles are in contact with each other in the plane as compared with the conventional needle-like magnetic powder. It has a problem that it is hard to disperse when it is made into a paint because it is strongly aggregated.

【0011】本発明は上記問題点を解決すべく成された
ものであって、磁気記録用磁性粉に一定範囲の水分を含
ませることにより分散が容易な磁気記録用磁性粉および
磁気記録媒体を提供することを目的とするものである。
The present invention has been made to solve the above problems, and provides a magnetic recording magnetic powder and a magnetic recording medium which can be easily dispersed by including a certain range of water in the magnetic recording magnetic powder. It is intended to be provided.

【0012】[0012]

【課題を解決するための手段】本発明の磁気記録用磁性
粉は、窒素ガスによるBET法により測定された比表面
積をSBET (m2 /g)としたとき、単位質量当たり
1.35×10-4×SBET (g)以上、4.3×10-4
×SBET (g)以下の水分を含むと共に、保磁力が80
0(Oe)よりも大きいことを特徴とするものである。
The magnetic powder for magnetic recording of the present invention has a specific surface area of SBET (m 2 ) measured by the BET method using nitrogen gas. / G), 1.35 × 10 −4 × SBET (g) or more per unit mass, 4.3 × 10 −4
× SBET (g) Containing water or less and coercive force of 80
It is characterized by being larger than 0 (Oe).

【0013】また、本発明の磁気記録媒体は、窒素ガス
によるBET法により測定された比表面積をSBET (m
2 /g)としたとき、単位質量当たり1.35×10-4
×SB ET(g)以上、4.3×10-4×SBET (g)以
下の水分を含むと共に、保磁力が800(Oe)よりも
大きい磁性粉が樹脂中に分散されて成る磁性層を備えた
ことを特徴とするものである。
In the magnetic recording medium of the present invention, the specific surface area measured by the BET method using nitrogen gas is SBET (m
2 / G), 1.35 × 10 −4 per unit mass
A magnetic layer containing magnetic powder having a coercive force of more than 800 (Oe) and containing water of not less than × SB ET (g) and not more than 4.3 × 10 -4 × SBET (g) in a resin. It is characterized by having.

【0014】[0014]

【作用】本発明の磁気記録用磁性粉は、窒素ガスによる
BET法により測定された比表面積をSBET (m2
g)としたとき、単位質量当たり、1.35×10-4×
SBET (g)以上、4.3×10-4×SBET (g)以下
の水分を含むものである。ここで単位質量当たりの水分
の量がこの範囲に規定されるのは、1.35×10-4×
SBET (g)未満では磁性粉の分散容易化が図れないた
めで、好ましくは2.7×10-4×SBET (g)以上が
より効果的である。これは水分量が少ないと水が粒子同
志の磁気凝集を弱める効果が少なくかつ塗料化時の分散
工程で水による増粘が期待できないものと考えられる。
また、4.3×10-4×SBET (g)より多い場合には
硬化剤の消費速度を速め塗料の安定性を損なうためであ
る。そして、本発明の磁気記録用磁性粉は、保磁力が8
00(Oe)よりも大きいことが必須の要件となってい
る。磁気記録用磁性粉の保磁力が800(Oe)以下で
は、本発明の志向する高出力な高密度の磁気記録媒体に
適用することが困難であると共に、本発明の効果が明瞭
に発揮されない。
The magnetic powder for magnetic recording of the present invention has a specific surface area of SBET (m 2 /
g), 1.35 × 10 −4 × per unit mass
It contains water of SBET (g) or more and 4.3 × 10 −4 × SBET (g) or less. Here, the amount of water per unit mass is regulated within this range is 1.35 × 10 −4 ×
If it is less than SBET (g), the magnetic powder cannot be easily dispersed. Therefore, 2.7 × 10 −4 × SBET (g) or more is more effective. It is considered that when the water content is small, the water has little effect of weakening the magnetic cohesion of the particles, and the viscosity increase due to water cannot be expected in the dispersion step at the time of forming the coating material.
On the other hand, if it is more than 4.3 × 10 −4 × SBET (g), the curing agent consumption rate is increased and the stability of the coating composition is impaired. The magnetic powder for magnetic recording of the present invention has a coercive force of 8
It is an essential requirement that it is larger than 00 (Oe). When the coercive force of the magnetic powder for magnetic recording is 800 (Oe) or less, it is difficult to apply it to the high-output, high-density magnetic recording medium aimed at by the present invention, and the effect of the present invention is not clearly exhibited.

【0015】本発明の磁気記録用磁性粉の比表面積SBE
T はいかなるものであっても上記範囲の水分を含むこと
により本発明の効果は得られるものであるが、特にはそ
の比表面積SBET は35m2 /g以上65m2 /g以下
の範囲を満足することが望ましい。これは、比表面積S
BET が35m2 /g未満では表面平滑性の高い媒体が得
難いため高い出力が得られず、また粒子が大きいことに
より媒体ノイズが高いものとなる。一方比表面積SBET
が65m2 /gより大きい場合にはあまりに粒子同志の
凝集が強すぎて分散しずらく媒体ノイズが高いものとな
り、また磁性粉の磁化が小さく高い出力を有する媒体が
得難いためである。
Specific surface area SBE of magnetic powder for magnetic recording of the present invention
Whatever T is, the effect of the present invention can be obtained by including the water in the above range. In particular, its specific surface area SBET is 35 m 2 / G or more 65m 2 It is desirable to satisfy the range below / g. This is the specific surface area S
BET is 35m 2 If it is less than / g, it is difficult to obtain a medium having high surface smoothness, so that high output cannot be obtained, and since the particles are large, medium noise is high. On the other hand, specific surface area SBET
Is 65m 2 If it is larger than / g, the cohesion of the particles is so strong that they are difficult to disperse and the medium noise is high, and the magnetization of the magnetic powder is small, and it is difficult to obtain a medium having a high output.

【0016】本発明の磁気記録用磁性粉としては、六角
板状の六方晶系フェライト粉を用いることができる。六
方晶系フェライト粉としては、垂直磁化記録が面内記録
より有為性の明らかとなる記録波長1ミクロン以下の領
域で、十分な記録・再生が行われかつ高いS/Nを得る
ために、粒径が0.01〜0.3ミクロンのものでしか
も粒径の揃ったものが良い。
As the magnetic powder for magnetic recording of the present invention, hexagonal plate-shaped hexagonal ferrite powder can be used. As the hexagonal ferrite powder, in order to obtain sufficient recording / reproducing and obtain a high S / N in a region where the recording wavelength is 1 micron or less, where perpendicular magnetization recording is more significant than in-plane recording, It is preferable that the particle size is 0.01 to 0.3 micron and the particle size is uniform.

【0017】六方晶系フェライト粉としては、M型、W
型等の結晶構造を有するバリウム、ストロンチウムフェ
ライト、あるいはスピネル被着、スピネル含有のバリウ
ムフェライトもしくはストロンチウムフェライトなどが
適用可能である。
As hexagonal ferrite powder, M type, W type
Barium or strontium ferrite having a crystal structure such as a mold, or spinel-coated or spinel-containing barium ferrite or strontium ferrite can be used.

【0018】[0018]

【実施例】以下、具体例および比較例を用いて本発明を
詳細に説明する。尚、本実施例のために用意した磁性粉
の磁気特性、比表面積、水分量および塗料の硬化速度
は、いずれもベッセル雰囲気中と同一温度、湿度に保っ
た環境にて測定した。 (具体例1)
The present invention will be described in detail below with reference to specific examples and comparative examples. The magnetic properties, the specific surface area, the water content, and the curing rate of the coating material of the magnetic powder prepared for this example were measured in an environment kept at the same temperature and humidity as in the vessel atmosphere. (Specific example 1)

【0019】まず、ガラス結晶化法により、Co、Ti
およびSn置換Baフェライト磁性粉を用意した。そし
て、この磁性粉を水中に投入して超音波をかけながら十
分に攪拌し水スラリを得た。そのスラリをスプレ−ドラ
イヤにて乾燥し、乾燥した窒素を満たした容器に回収し
た。
First, Co and Ti are formed by a glass crystallization method.
And Sn-substituted Ba ferrite magnetic powder were prepared. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen.

【0020】次に、上記乾燥粉を25℃、60%RHに
保った大型のベッセル中に入れてベッセル内環境中の水
分を吸着させて磁気記録用磁性粉を得た。この磁気記録
用磁性粉の磁気特性を東英工業製の振動試料型磁力計
(VSMP−1)を用いて測定したところ表1に示すよ
うに保磁力850(Oe)、飽和磁化57(emu/
g)であり、また比表面積は35(m2 /g)であっ
た。このときの水分量を三菱化成製の水分測定装置(C
A−06/VA−06)にて測定したところ、表1に示
すように磁性粉1g当たり0.0110(g)であっ
た。このようにして得られた磁気記録用磁性粉を用い、
次のようにして磁性塗料を調整した。 (塗料組成) 磁気記録用磁性粉 100 重量部 スルホン化塩酢ビ樹脂 10 重量部 分散剤(レシチン) 3 重量部 研磨剤 (Al2 3 ) 2 重量部 潤滑剤 (StA/StBu) 2 重量部 硬化剤 (コロネ−ト) 4 重量部 メチルエチルケトン 40 重量部 トルエン 40 重量部 シクロヘキサノン 40 重量部 上述した各種材料をサンドグラインダ−にて5時間混練
した。
Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. The magnetic characteristics of the magnetic powder for magnetic recording were measured by using a vibrating sample magnetometer (VSMP-1) manufactured by Toei Industry Co., Ltd., and as shown in Table 1, a coercive force of 850 (Oe) and a saturation magnetization of 57 (emu / emu /
g) and the specific surface area is 35 (m 2 / G). The moisture content at this time is measured by a moisture measuring device (C
A-06 / VA-06), the result was 0.0110 (g) per 1 g of the magnetic powder as shown in Table 1. Using the magnetic powder for magnetic recording thus obtained,
The magnetic paint was prepared as follows. (Coating composition) Magnetic powder for magnetic recording 100 parts by weight Sulfonated vinyl chloride resin 10 parts by weight Dispersant (lecithin) 3 parts by weight Abrasive (Al 2 O 3 ) 2 parts by weight Lubricant (StA / StBu) 2 parts by weight Curing agent (coronate) 4 parts by weight Methyl ethyl ketone 40 parts by weight Toluene 40 parts by weight Cyclohexanone 40 parts by weight The above-mentioned various materials were kneaded for 5 hours with a sand grinder.

【0021】混練中塗料を1時間ごとにサンプリングし
ギャップ巾30ミクロンのアプリケ−タを用いて9ミク
ロンのポリエチレンテレフタレ−トフィルム上に塗布し
塗膜を作製した。この塗膜の光沢を日本電色製の光沢度
計(入反射角度60度)を用いて測定し、磁性粉の分散
度合いを調べた。また、混練5時間後の塗料をKBr板
に塗り日本分光工業製のFT−IR装置(FT/IR−
7000)により−CH基と−NCO基の吸収強度比の
時間変化を調べることで塗料の硬化速度を調べた。
During kneading, the coating material was sampled every hour and coated on a 9-micron polyethylene terephthalate film using an applicator having a gap width of 30 microns to prepare a coating film. The gloss of this coating film was measured using a Nippon Denshoku gloss meter (entrance reflection angle: 60 degrees) to examine the degree of dispersion of the magnetic powder. Further, the paint after 5 hours of kneading was applied to a KBr plate, and an FT-IR device (FT / IR-) manufactured by JASCO Corporation was used.
7000) to examine the curing rate of the coating material by examining the time change of the absorption intensity ratio of the -CH group and the -NCO group.

【0022】更に、混練5時間後の塗料を用い、9ミク
ロンのポリエチレンテレフタレ−トフィルム上に3ミク
ロンの磁性膜を塗布し、乾燥させ、カレンダ処理して磁
性層を形成し、8mm幅に裁断して磁気テープを形成し
た。そして、磁気テープの保磁力を磁性粉同様に東英工
業製の振動試料型磁力計(VSMP−1)を用いて測定
した。また、この磁気テープの5MHz帯域の出力およ
びS/Nを測定した。
Further, using a paint after 5 hours of kneading, a magnetic film of 3 microns was coated on a polyethylene terephthalate film of 9 microns, dried and calendered to form a magnetic layer, which was cut into 8 mm width. To form a magnetic tape. Then, the coercive force of the magnetic tape was measured using a vibrating sample magnetometer (VSMP-1) manufactured by Toei Industry Co., Ltd. in the same manner as the magnetic powder. Also, the output and S / N in the 5 MHz band of this magnetic tape were measured.

【0023】このようにして得られた光沢度の分散時間
に対する変化、塗料の硬化速度、保磁力比(磁性層保磁
力/磁性粉保磁力)、出力およびS/Nを表2に示す。
塗料の硬化速度は(−NCO強度/−CH強度)の値が
1/2になる時間で示す。 (具体例2)
Table 2 shows the change of the glossiness thus obtained with respect to the dispersion time, the curing rate of the coating material, the coercive force ratio (magnetic layer coercive force / magnetic powder coercive force), output and S / N.
The curing speed of the paint is shown by the time when the value of (-NCO strength / -CH strength) becomes 1/2. (Specific example 2)

【0024】まず、ガラス結晶化法により、Co、Ti
およびSn置換Baフェライト磁性粉を用意した。そし
て、この磁性粉を水中に投入して超音波をかけながら十
分に攪拌し水スラリを得た。そのスラリをスプレ−ドラ
イヤにて乾燥し、乾燥した窒素を満たした容器に回収し
た。次に、上記乾燥粉を25℃、60%RHに保った大
型のベッセル中に入れてベッセル内環境中の水分を吸着
させて磁気記録用磁性粉を得た。この磁気記録用磁性粉
は表1に示すように保磁力1180(Oe)、飽和磁化
57(emu/g)、比表面積40(m2 /g)で、水
分量は0.0126(g)であった。このような磁気記
録用磁性粉を用いて、具体例1と同様にして磁気テープ
を得た。 (具体例3)
First, Co and Ti are formed by a glass crystallization method.
And Sn-substituted Ba ferrite magnetic powder were prepared. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. This magnetic powder for magnetic recording has a coercive force of 1180 (Oe), a saturation magnetization of 57 (emu / g) and a specific surface area of 40 (m 2 ) as shown in Table 1. / G), and the water content was 0.0126 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Specific example 3)

【0025】ガラス結晶化法により、Co、Znおよび
Nb置換Baフェライト磁性粉を用意した。そして、こ
の磁性粉を水中に投入して超音波をかけながら十分に攪
拌し水スラリを得た。そのスラリをスプレ−ドライヤに
て乾燥し、乾燥した窒素を満たした容器に回収した。次
に、上記乾燥粉を25℃、60%RHに保った大型のベ
ッセル中に入れてベッセル内環境中の水分を吸着させて
磁気記録用磁性粉を得た。この磁気記録用磁性粉は表1
に示すように保磁力1150(Oe)、飽和磁化61
(emu/g)、比表面積38(m2 /g)で、水分量
は0.0120(g)であった。このような磁気記録用
磁性粉を用いて、具体例1と同様にして磁気テープを得
た。 (具体例4)ガラス結晶化法により、具体例3と同様の
Co、ZnおよびNb置換Baフェライト磁性粉を用意
した。
Co, Zn and Nb substituted Ba ferrite magnetic powders were prepared by the glass crystallization method. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. This magnetic powder for magnetic recording is shown in Table 1.
As shown in, coercive force 1150 (Oe), saturation magnetization 61
(Emu / g), specific surface area 38 (m 2 / G), and the water content was 0.0120 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Specific Example 4) The same Co, Zn and Nb-substituted Ba ferrite magnetic powder as in Specific Example 3 was prepared by the glass crystallization method.

【0026】そして、この磁性粉を水中に投入して超音
波をかけながら十分に攪拌し水スラリを得た。そのスラ
リをスプレ−ドライヤにて乾燥し、乾燥した窒素を満た
した容器に回収した。次に、上記乾燥粉を25℃、50
%RHに保った大型のベッセル中に入れてベッセル内環
境中の水分を吸着させて磁気記録用磁性粉を得た。この
磁気記録用磁性粉は表1に示すように保磁力1160
(Oe)、飽和磁化61(emu/g)、比表面積38
(m2 /g)で、水分量は0.0078(g)であっ
た。このような磁気記録用磁性粉を用いて、具体例1と
同様にして磁気テープを得た。 (具体例5)
Then, the magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder is heated to 25 ° C. and 50
It was placed in a large vessel kept at% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. This magnetic powder for magnetic recording has a coercive force of 1160 as shown in Table 1.
(Oe), saturation magnetization 61 (emu / g), specific surface area 38
(M 2 / G), and the water content was 0.0078 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Specific Example 5)

【0027】ガラス結晶化法により、Co、Znおよび
Nb置換Baフェライト磁性粉を用意した。そして、こ
の磁性粉を水中に投入して超音波をかけながら十分に攪
拌し水スラリを得た。そのスラリをスプレ−ドライヤに
て乾燥し、乾燥した窒素を満たした容器に回収した。次
に、上記乾燥粉を25℃、60%RHに保った大型のベ
ッセル中に入れてベッセル内環境中の水分を吸着させて
磁気記録用磁性粉を得た。この磁気記録用磁性粉は表1
に示すように保磁力1200(Oe)、飽和磁化55.
5(emu/g)、比表面積60(m2 /g)で、水分
量は0.0189(g)であった。このような磁気記録
用磁性粉を用いて、具体例1と同様にして磁気テープを
得た。 (具体例6)
Co, Zn, and Nb-substituted Ba ferrite magnetic powders were prepared by the glass crystallization method. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. This magnetic powder for magnetic recording is shown in Table 1.
, The coercive force is 1200 (Oe) and the saturation magnetization is 55.
5 (emu / g), specific surface area 60 (m 2 / G) and the water content was 0.0189 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Specific Example 6)

【0028】ガラス結晶化法により、Co、Zn、Nb
およびSn置換Baフェライト磁性粉を用意した。そし
て、この磁性粉を水中に投入して超音波をかけながら十
分に攪拌し水スラリを得た。そのスラリをスプレ−ドラ
イヤにて乾燥し、乾燥した窒素を満たした容器に回収し
た。次に、上記乾燥粉を25℃、60%RHに保った大
型のベッセル中に入れてベッセル内環境中の水分を吸着
させて磁気記録用磁性粉を得た。この磁気記録用磁性粉
は表1に示すように保磁力1100(Oe)、飽和磁化
59(emu/g)、比表面積40(m2 /g)で、水
分量は0.0131(g)であった。このような磁気記
録用磁性粉を用いて、具体例1と同様にして磁気テープ
を得た。 (具体例7)
By the glass crystallization method, Co, Zn, Nb
And Sn-substituted Ba ferrite magnetic powder were prepared. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. As shown in Table 1, the magnetic powder for magnetic recording has a coercive force of 1100 (Oe), a saturation magnetization of 59 (emu / g), and a specific surface area of 40 (m 2). / G), and the water content was 0.0131 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Specific Example 7)

【0029】ガラス結晶化法により、Co、Zn、Ni
およびTi置換Baフェライト磁性粉を用意した。そし
て、この磁性粉を水中に投入して超音波をかけながら十
分に攪拌し水スラリを得た。そのスラリをスプレ−ドラ
イヤにて乾燥し、乾燥した窒素を満たした容器に回収し
た。次に、上記乾燥粉を25℃、60%RHに保った大
型のベッセル中に入れてベッセル内環境中の水分を吸着
させて磁気記録用磁性粉を得た。この磁気記録用磁性粉
は表1に示すように保磁力1145(Oe)、飽和磁化
59.5(emu/g)、比表面積41(m2 /g)
で、水分量は0.0122(g)であった。このような
磁気記録用磁性粉を用いて、具体例1と同様にして磁気
テープを得た。 (比較例1)
By the glass crystallization method, Co, Zn, Ni
And Ti-substituted Ba ferrite magnetic powder were prepared. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. As shown in Table 1, this magnetic powder for magnetic recording has a coercive force of 1145 (Oe), a saturation magnetization of 59.5 (emu / g), and a specific surface area of 41 (m 2). / G)
The water content was 0.0122 (g). A magnetic tape was obtained in the same manner as in Example 1 using the magnetic powder for magnetic recording. (Comparative Example 1)

【0030】ガラス結晶化法により、Co、Tiおよび
Sn置換Baフェライト磁性粉を用意した。そして、こ
の磁性粉を水中に投入して超音波をかけながら十分に攪
拌し水スラリを得た。そのスラリをスプレ−ドライヤに
て乾燥し、乾燥した窒素を満たした容器に回収した。次
に、上記乾燥粉を25℃、60%RHに保った大型のベ
ッセル中に入れてベッセル内環境中の水分を吸着させて
磁気記録用磁性粉を得た。この磁気記録用磁性粉は表1
に示すように保磁力500(Oe)、飽和磁化56(e
mu/g)、比表面積35(m2 /g)で、水分量は
0.0107(g)であった。このような磁気記録用磁
性粉を用いて、具体例1と同様にして磁気テープを得
た。 (比較例2)
Co, Ti and Sn substituted Ba ferrite magnetic powders were prepared by the glass crystallization method. Then, this magnetic powder was put into water and sufficiently stirred while applying ultrasonic waves to obtain a water slurry. The slurry was dried with a spray dryer and collected in a container filled with dry nitrogen. Next, the dry powder was placed in a large vessel kept at 25 ° C. and 60% RH to adsorb moisture in the environment inside the vessel to obtain magnetic powder for magnetic recording. This magnetic powder for magnetic recording is shown in Table 1.
As shown in, the coercive force is 500 (Oe) and the saturation magnetization is 56 (e).
mu / g), specific surface area 35 (m 2 / G), and the water content was 0.0107 (g). Using such magnetic powder for magnetic recording, a magnetic tape was obtained in the same manner as in Example 1. (Comparative example 2)

【0031】具体例2に示すCo、TiおよびSn置換
Baフェライト磁性粉に水分吸着を施さずに使用した以
外は具体例1と同様にして磁気テープを得た。尚、この
磁気記録用磁性粉は表1に示すように保磁力1190
(Oe)、飽和磁化57.5(emu/g)、比表面積
40(m2 /g)で、水分量は0.0048(g)であ
った。 (比較例3)
A magnetic tape was obtained in the same manner as in Example 1 except that the Co, Ti and Sn-substituted Ba ferrite magnetic powder shown in Example 2 was used without moisture adsorption. The magnetic powder for magnetic recording has a coercive force of 1190 as shown in Table 1.
(Oe), saturation magnetization 57.5 (emu / g), specific surface area 40 (m 2). / G) and the water content was 0.0048 (g). (Comparative example 3)

【0032】具体例3に示すCo、ZnおよびNb置換
Baフェライト磁性粉に水分吸着を施さずに使用した以
外は具体例1と同様にして磁気テープを得た。尚、この
磁気記録用磁性粉は表1に示すように保磁力1165
(Oe)、飽和磁化61.5(emu/g)、比表面積
38(m2 /g)で、水分量は0.0045(g)であ
った。 (比較例4)
A magnetic tape was obtained in the same manner as in Example 1 except that the Co, Zn and Nb-substituted Ba ferrite magnetic powder shown in Example 3 was used without moisture adsorption. The magnetic powder for magnetic recording has a coercive force of 1165 as shown in Table 1.
(Oe), saturation magnetization 61.5 (emu / g), specific surface area 38 (m 2). / G), and the water content was 0.0045 (g). (Comparative example 4)

【0033】具体例3に示すCo、ZnおよびNb置換
Baフェライト磁性粉を40℃90%RHに保った大型
のベッセル中に入れて水分吸着を施した磁気記録用磁性
粉を使用した以外は具体例1と同様にして磁気テープ試
作を試みたものの塗料の安定性が悪く十分な長さのテ−
プが得られなかった。尚、この磁気記録用磁性粉は表1
に示すように保磁力1140(Oe)、飽和磁化60.
5(emu/g)、比表面積38(m2 /g)で、水分
量は0.0178(g)であった。
Except that the Co, Zn and Nb-substituted Ba ferrite magnetic powder shown in Example 3 was placed in a large vessel kept at 40 ° C. and 90% RH and the magnetic powder for magnetic recording adsorbed water was used. A magnetic tape trial production was attempted in the same manner as in Example 1, but the stability of the paint was poor and a tape of sufficient length was used.
I couldn't get it. The magnetic powder for magnetic recording is shown in Table 1.
, The coercive force is 1140 (Oe) and the saturation magnetization is 60.
5 (emu / g), specific surface area 38 (m 2 / G), and the water content was 0.0178 (g).

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】上述した具体例および比較例から、水分量
の少ない比較例2,3では、分散の立ち上がりが遅く,
5hr後の光沢も上がっておらず、保磁力の変化率も小
さく分散度合いが低いことが分かる。逆に水分量が多い
比較例4では、分散はある程度進むものの、硬化速度が
速く塗料の安定性が悪いことが分かる。
From the specific examples and comparative examples described above, in Comparative Examples 2 and 3 in which the water content is small, the rise of dispersion is slow,
It can be seen that the gloss after 5 hours did not increase, the coercive force change rate was small, and the degree of dispersion was low. On the contrary, in Comparative Example 4 in which the water content is large, although the dispersion proceeds to some extent, the curing rate is high and the stability of the coating is poor.

【0037】これに対して、本具体例によれば、いずれ
も水分量および保磁力が所定の範囲となっているため、
保磁力比、光沢、出力あるいはS/N等の測定結果か
ら、分散性に非常に優れていることが理解できる。
On the other hand, according to this example, since the water content and the coercive force are within the predetermined ranges,
From the measurement results of the coercive force ratio, gloss, output, S / N, etc., it can be understood that the dispersibility is extremely excellent.

【0038】なお実施例で用いた試料は、スプレ−ドラ
イヤにて乾燥し窒素の充填された容器に回収した後水分
調整を行って作製したが、水分調整方法などはとくに限
定されず、塗料化時に磁性粉が本発明の範囲を満たす物
となっていれば良い。
The samples used in the examples were prepared by drying in a spray dryer and collecting in a container filled with nitrogen, and then adjusting the water content. At this time, the magnetic powder only needs to satisfy the range of the present invention.

【0039】[0039]

【発明の効果】以上説明したように、本発明の磁気記録
用磁性粉によれば、分散性に非常に優れているため、従
来に比べて塗料化が非常に用意に行うことができる。ま
た、このような磁気記録用磁性粉による磁気記録媒体で
は、出力、S/N特性にも優れており、高密度化に非常
に有効である。
As described above, the magnetic powder for magnetic recording of the present invention has very excellent dispersibility, so that it can be made into a paint much more easily than in the past. Further, a magnetic recording medium made of such magnetic powder for magnetic recording is also excellent in output and S / N characteristics, and is very effective in increasing the density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 悦治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuji Ogawa 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素ガスによるBET法により測定され
た比表面積をSBET (m2 /g)としたとき、単位質量
当たり1.35×10-4×SBET (g)以上、4.3×
10-4×SBET (g)以下の水分を含むと共に、保磁力
が800(Oe)よりも大きいことを特徴とする磁気記
録用磁性粉。
1. The specific surface area measured by the BET method using nitrogen gas is SBET (m 2 / G), 1.35 × 10 −4 × SBET (g) or more per unit mass, 4.3 ×
Magnetic powder for magnetic recording, which contains water of 10 −4 × SBET (g) or less and has a coercive force of more than 800 (Oe).
【請求項2】 窒素ガスによるBET法により測定され
た比表面積をSBET (m2 /g)としたとき、単位質量
当たり1.35×10-4×SBET (g)以上、4.3×
10-4×SBET (g)以下の水分を含むと共に、保磁力
が800(Oe)よりも大きい磁性粉が樹脂中に分散さ
れて成る磁性層を備えたことを特徴とする磁気記録媒
体。
2. The specific surface area measured by the BET method using nitrogen gas is SBET (m 2 / G), 1.35 × 10 −4 × SBET (g) or more per unit mass, 4.3 ×
A magnetic recording medium comprising a magnetic layer comprising magnetic powder having a water content of 10 −4 × SBET (g) or less and a coercive force of more than 800 (Oe) dispersed in a resin.
JP3342597A 1991-12-25 1991-12-25 Magnetic powder for magnetic recording and magnetic recording medium Pending JPH05174359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342597A JPH05174359A (en) 1991-12-25 1991-12-25 Magnetic powder for magnetic recording and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342597A JPH05174359A (en) 1991-12-25 1991-12-25 Magnetic powder for magnetic recording and magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05174359A true JPH05174359A (en) 1993-07-13

Family

ID=18355001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342597A Pending JPH05174359A (en) 1991-12-25 1991-12-25 Magnetic powder for magnetic recording and magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05174359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340672A (en) * 2004-05-28 2005-12-08 Asahi Techno Glass Corp Magnetic powder for magnetic recording medium, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340672A (en) * 2004-05-28 2005-12-08 Asahi Techno Glass Corp Magnetic powder for magnetic recording medium, and manufacturing method thereof
JP4672287B2 (en) * 2004-05-28 2011-04-20 Agcテクノグラス株式会社 Method for producing magnetic powder for magnetic recording medium

Similar Documents

Publication Publication Date Title
EP0203002B1 (en) Longitudinal magnetic coated recording medium
US4565726A (en) Magnetic recording media having ferromagnetic and ferrite particles in the magnetic layer thereof
EP0660309B1 (en) Non-magnetic undercoat layer for magnetic recording medium, magnetic recording medium and non-magnetic particles
JPS6374118A (en) Magnetic recording medium
US4812358A (en) Magnetic recording medium
JPH05174359A (en) Magnetic powder for magnetic recording and magnetic recording medium
US4748080A (en) Magnetic recording medium containing iron carbide
JPH06151139A (en) Powder of magnetic particles for magnetic recording and manufacture thereof
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JPH028372B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JPH10340445A (en) Magnetic recording medium and its production
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JPH06290929A (en) Hexagonal ferrite powder and magnetic recording medium made of same
JP2000285450A (en) Manufacture of magnetic recording medium
JPH0582324A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPS6218007A (en) Treatment for magnetic powder
JPS6378334A (en) Magnetic recording medium
JPH0562161A (en) Magnetic recording medium and its manufacture
JP2002255560A (en) Hematite powder for non-magnetic base layer of magnetic recording medium, non-magnetic base layer of magnetic recording medium, and magnetic recording medium using the same
JPH05283215A (en) Magnetic powder for magnetic recording and manufacture thereof and magnetic recording medium using that powder
JPS6080129A (en) Magnetic recording medium
JPH0677036A (en) Magnetism recording magnetic particle and magnetism recording medium using the same
JPH02257423A (en) Magnetic recording medium having excellent electromagnetic conversion characteristics and traveling durability