JP2005340672A - Magnetic powder for magnetic recording medium, and manufacturing method thereof - Google Patents

Magnetic powder for magnetic recording medium, and manufacturing method thereof Download PDF

Info

Publication number
JP2005340672A
JP2005340672A JP2004160276A JP2004160276A JP2005340672A JP 2005340672 A JP2005340672 A JP 2005340672A JP 2004160276 A JP2004160276 A JP 2004160276A JP 2004160276 A JP2004160276 A JP 2004160276A JP 2005340672 A JP2005340672 A JP 2005340672A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
recording medium
magnetic recording
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004160276A
Other languages
Japanese (ja)
Other versions
JP4672287B2 (en
Inventor
Takashi Morita
高史 森田
Akira Manabe
章 真鍋
Hiroyuki Suzuki
宏幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Asahi Techno Glass Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Glass Corp filed Critical Asahi Techno Glass Corp
Priority to JP2004160276A priority Critical patent/JP4672287B2/en
Publication of JP2005340672A publication Critical patent/JP2005340672A/en
Application granted granted Critical
Publication of JP4672287B2 publication Critical patent/JP4672287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic powder suitable for an application type super-high density magnetic recording medium and to provide a manufacturing method thereof. <P>SOLUTION: The magnetic powder having a specific surface area of 40-100 m<SP>2</SP>/g, the percentage of water of 0.9-4 mass%, and a variation coefficient for the percentage of water of the magnetic powder ≤ 5 % is used for the magnetic recording medium. Such a magnetic powder for the magnetic recording medium can be obtained by receiving a magnetic powder for the magnetic recording medium in a humidity controller, vaporizing a predetermined amount of water in this humidity controller at 30-80 °C, and then holding it in this humidity controller for 2-24 hours so that the powder absorbs the water and this magnetic powder for the magnetic recording medium contains the water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、塗布型の磁気記録媒体に適した磁気記録媒体用磁性粉末およびその製造方法に関する。   The present invention relates to a magnetic powder for a magnetic recording medium suitable for a coating-type magnetic recording medium and a method for producing the same.

塗布型の磁気記録媒体は、量産性に優れるとともに、高い信頼性が得られることから、これまで磁気記録システムに広く用いられてきた。最近のブロードバンド時代を迎えての情報量の飛躍的な増大に対応するために、磁気記録システムのより一層の大容量化と高転送レート化、そして磁気記録媒体のより一層の高密度化が求められている。これまでに0.1Gb/inレベルの面記録密度を持つ塗布型の磁気記録媒体がすでに開発されており、1〜数Gb/in以上の超高密度磁気記録の可能な媒体の開発が次の目標となっている。 The coating-type magnetic recording medium has been widely used in magnetic recording systems so far because it has excellent mass productivity and high reliability. In order to cope with the dramatic increase in information volume in the recent broadband era, it is necessary to increase the capacity and transfer rate of magnetic recording systems and to increase the density of magnetic recording media. It has been. This has been coated magnetic recording medium is already developing with areal density of 0.1 GB / in 2 levels by, the development of one to several Gb / in 2 or more ultra-high density magnetic recording medium capable The next goal.

磁気記録媒体の記録密度を高めるためには、磁化反転の遷移領域がシャープであって孤立反転波形の半値幅(PW50)か狭く、また低域から高域まで出力変化が少なく平坦であることが求められてきた。このため高密度記録の可能な磁気記録媒体には、磁性層が薄いことが必要とされ、最近では磁性層厚を従来の数100nmから数十nmにまで薄くした磁気記録媒体がすでに開発されている。 In order to increase the recording density of the magnetic recording medium, the transition region of the magnetization reversal is sharp, the half width (PW 50 ) of the isolated reversal waveform is narrow, and the output change from low to high is small and flat. Has been demanded. For this reason, a magnetic recording medium capable of high-density recording requires a thin magnetic layer, and recently, a magnetic recording medium having a magnetic layer thickness reduced from several hundreds of nanometers to several tens of nanometers has already been developed. Yes.

高密度に記録された信号を高感度で読み出すためには、MR(磁気抵抗効果)を利用した高感度の再生ヘッドが用いられるようになり、磁気記録における記録密度は著しく向上した。高感度のMRヘッドに対しては、ヘッドか飽和するのを防ぎ、波形歪みやパルス波形の非対称性が発生するのを防ぐために、磁気記録媒体の磁性層は均一性の良好な薄層であって、低域から高域まで出力変化が少なく平坦であることが要求される。   In order to read signals recorded at high density with high sensitivity, a high-sensitivity reproducing head using MR (magnetoresistance effect) has come to be used, and the recording density in magnetic recording has been remarkably improved. For high-sensitivity MR heads, the magnetic layer of the magnetic recording medium is a thin layer with good uniformity in order to prevent head saturation and to prevent waveform distortion and pulse waveform asymmetry. Therefore, it is required that the output is small and flat from the low range to the high range.

高感度のMRヘッドを使用した磁気記録機器では、媒体ノイズを低減することによって機器の信号対ノイズ比を高めることができる。媒体ノイズの低減には、磁気記録媒体の磁性粒子の微細化が求められる。   In a magnetic recording device using a high-sensitivity MR head, the signal-to-noise ratio of the device can be increased by reducing the medium noise. In order to reduce the medium noise, it is required to make the magnetic particles of the magnetic recording medium finer.

粒子サイズの微細化に適し、高密度記録に適した磁性粉末として六方晶フェライト磁性粉末がある。六方晶フェライト磁性粉末を用いた磁気記録媒体は、その磁化が比較的小さいために、記録された磁化が比較的小さいことが指摘されていたが、信号の再生に高感度のMRヘッドを用いることにより、十分な信号出力が得られるようになったため、超高密度磁気記録媒体として期待されている。   Hexagonal ferrite magnetic powder is suitable as a magnetic powder suitable for finer particle size and high density recording. Magnetic recording media using hexagonal ferrite magnetic powder have been pointed out that the recorded magnetization is relatively small because the magnetization is relatively small, but a highly sensitive MR head should be used for signal reproduction. As a result, a sufficient signal output can be obtained, which is expected as an ultra-high density magnetic recording medium.

六方晶フェライト磁性粉末のフェライト粒子は粒子形状がほぼ六角板状であるため、その粒子サイズや形状は、平均板径と平均板厚、あるいは平均板径と平均の板状比(平均板径を平均板厚で除したもの)で表現される。上述した既存の磁気記録媒体の記録密度を上回る超高密度磁気記録媒体であり、磁性層の厚さが例えば100nm以下と薄く、媒体ノイズが低く信号対ノイズ比の高い媒体を得るには、これに用いる六方晶フェライト磁性粉末は平均板径が30nm以下であり、その平均板厚はその約1/3程度あるいはそれ以下に微細化されたものが求められている。   Since the ferrite particles of the hexagonal ferrite magnetic powder have a hexagonal plate shape, the particle size and shape are determined by the average plate diameter and average plate thickness, or the average plate diameter and average plate ratio (average plate diameter (Divided by the average thickness). In order to obtain an ultra-high-density magnetic recording medium that exceeds the recording density of the above-described existing magnetic recording medium, and has a thin magnetic layer of, for example, 100 nm or less, a low medium noise, and a high signal-to-noise ratio. The hexagonal ferrite magnetic powder used in the invention has an average plate diameter of 30 nm or less, and the average plate thickness is required to be refined to about 1/3 or less.

塗布型の磁気記録媒体では、磁性粉末粒子をバインダ中に分散し、これを非磁性体上に塗布することによって製造される。バインダ中に分散する磁性粉末の粒子サイズが小さくなると、バインダ中に均一に分散させることが困難になり、磁性粉末粒子の配向性が低下し、またこの磁性粉末をバインダとともに塗布して形成した磁性層の平滑性が低下し、この磁性層に記録した信号を再生した場合に、十分な信号対雑音比が得られなくなる。   The coating type magnetic recording medium is manufactured by dispersing magnetic powder particles in a binder and coating it on a nonmagnetic material. When the particle size of the magnetic powder dispersed in the binder is reduced, it becomes difficult to uniformly disperse in the binder, the orientation of the magnetic powder particles decreases, and the magnetic powder formed by applying this magnetic powder together with the binder. The smoothness of the layer is lowered, and when a signal recorded in the magnetic layer is reproduced, a sufficient signal-to-noise ratio cannot be obtained.

これに対し、磁性粉末粒子の水分含有量を所定量に調整することで、磁性粉末のバインダへの分散性が改善されることが知られている。特許文献1(特開昭60−1187931号公報)には、比表面積35m/g以上の磁性粉末に含まれる水分を、0.8〜1.6重量%とし、前分散と混合分散を行なうことが記載されている。しかしながら、この発明は磁性粉末に対し具体的に水分を調整する方法についての発明ではなく、磁性粉末の水分調整をどのようするかについての記載がみられない。 On the other hand, it is known that the dispersibility of the magnetic powder in the binder is improved by adjusting the water content of the magnetic powder particles to a predetermined amount. In Patent Document 1 (Japanese Patent Laid-Open No. 60-1187931), pre-dispersion and mixing dispersion are performed with the water content in the magnetic powder having a specific surface area of 35 m 2 / g or more being 0.8 to 1.6% by weight. It is described. However, the present invention is not an invention about a method for specifically adjusting the water content of the magnetic powder, and there is no description of how to adjust the water content of the magnetic powder.

また特許文献2(特開平4−362018号公報)には、ガラス結晶化法によって得られる六方晶フェライト粒子を含むスラリーを乾燥させて、乾燥後の六方晶フェライト粉末に含まれる水分量を0.4〜5.0重量%とする磁性粉末の製造方法が開示されており、水分調整の方法として、磁性粉末を温風乾燥機内に収容する方法が示されている。また特許文献3(特開2003−203809号公報)には、磁気記録媒体用磁性粉末ではないが、永久磁石の製造過程における磁性粉末とバインダとの混合物の水分量を0.20〜0.80重量%にすること、および水分調整の方法として、室温に放置する方法、恒温恒湿槽内に取り込む方法、およびネブライザーなどの細かい水蒸気によって水分添加を行なう方法が開示されている。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 4-362018), the slurry containing hexagonal ferrite particles obtained by the glass crystallization method is dried, and the amount of water contained in the dried hexagonal ferrite powder is set to 0. The manufacturing method of the magnetic powder made into 4 to 5.0 weight% is disclosed, and the method of accommodating a magnetic powder in a warm air dryer is shown as a method of moisture adjustment. In Patent Document 3 (Japanese Patent Laid-Open No. 2003-203809), although not magnetic powder for magnetic recording media, the water content of the mixture of magnetic powder and binder in the production process of the permanent magnet is 0.20 to 0.80. As methods for adjusting the weight% and moisture adjustment, a method of leaving at room temperature, a method of taking in a constant temperature and humidity chamber, and a method of adding moisture with fine water vapor such as a nebulizer are disclosed.

しかしながら、上述した超高密度の磁気記録媒体に用いる磁性粉末では、粒子の凝集を徹底して抑制することが要求されるようになったため、特許文献2や3に記載された方法では、この要求に十分に応えることができなかった。上述した超高密度の磁気記録媒体では、塗布される磁性層の厚さが数十nmと薄く、これに用いられる磁性粉末には、磁性粒子の平均粒径が30nm以下であることが求められている。また、この磁気記録媒体に用いる磁性粉末の保磁力としてより大きな値を有するものが求められており、凝集体を形成しやすいものとなっている。   However, since the magnetic powder used in the above-described ultrahigh-density magnetic recording medium is required to thoroughly suppress the aggregation of particles, the methods described in Patent Documents 2 and 3 require this requirement. I couldn't respond to it enough. In the above-described ultrahigh-density magnetic recording medium, the thickness of the magnetic layer to be applied is as thin as several tens of nm, and the magnetic powder used for this is required to have an average particle diameter of 30 nm or less. ing. In addition, there is a demand for a coercive force of the magnetic powder used in this magnetic recording medium, which makes it easy to form an aggregate.

磁性粒子の凝集体がバインダ中に残存し、これが塗布された磁気記録媒体の磁性層に存在すると、この凝集体は磁性粒子の配向の乱れや充填密度の低下をもたらすほか、磁性層の表面性を乱す要因となる。この表面性の乱れは記録信号を高感度で再生するMRヘッドのサーマルアスペリティを生じる原因となる。また薄層化された磁気記録媒体の磁性層では、凝集体の存在は磁性層の厚さ変動をもたらし、これが媒体ノイズの原因となる。このように磁性層が薄層であるとともに高い表面性の要求される超高密度の磁気記録媒体においては、従来は問題にする必要のなかった大きさの凝集体についても、発生を避けなければならない。このため、バインダ中に分散したとき、凝集が残らない磁性粉末が強く求められるようになった。   If aggregates of magnetic particles remain in the binder and are present in the magnetic layer of the coated magnetic recording medium, the aggregates cause disorder in the orientation of magnetic particles and a decrease in packing density, as well as surface properties of the magnetic layer. It becomes a factor disturbing. This disturbance in surface property causes the thermal asperity of the MR head that reproduces the recording signal with high sensitivity. Further, in the magnetic layer of the thinned magnetic recording medium, the presence of aggregates causes a variation in the thickness of the magnetic layer, which causes medium noise. As described above, in an ultra-high density magnetic recording medium in which the magnetic layer is a thin layer and a high surface property is required, it is necessary to avoid generation of aggregates that have not been necessary to be a problem in the past. Don't be. For this reason, there has been a strong demand for a magnetic powder that does not remain agglomerated when dispersed in a binder.

磁性粉末の含有水分調整は、このような新しい要求に応える上でも重要な役割を果たす。しかしながら、上記特許文献1〜3に記載された従来の方法によって水分調整のされた磁性粉末では、超高密度の磁気記録媒体において凝集の残らない磁性粉末を得ることができなかった。
特開昭60−1187931号公報 特開平4−362018号公報 特開2003−203809号公報
Adjustment of the moisture content of the magnetic powder plays an important role in meeting such new requirements. However, the magnetic powder whose moisture has been adjusted by the conventional methods described in Patent Documents 1 to 3 above cannot obtain a magnetic powder that does not remain agglomerated in an ultra-high density magnetic recording medium.
JP 60-1187931 A JP-A-4-362018 JP 2003-203809 A

上述したように、超高密度磁気記録媒体に用いる磁気記録媒体用磁性粉末として、従来の磁性粉末がこれに適さないことから、超高密度磁気記録媒体に適した磁性粉末を開発することが、超高密度磁気記録媒体を実現するための主要な課題であった。本発明はこの課題を解決し、超高密度磁気記録媒体に適した磁気記録媒体用磁性粉末とその製造方法を提供するものである。   As described above, as magnetic powder for magnetic recording media used for ultra-high density magnetic recording media, conventional magnetic powders are not suitable for this, so that it is possible to develop magnetic powders suitable for ultra-high density magnetic recording media. This was a major issue for realizing an ultra-high density magnetic recording medium. The present invention solves this problem and provides a magnetic powder for a magnetic recording medium suitable for an ultra-high density magnetic recording medium and a method for producing the same.

本発明者らは、上記の課題を解決するために、特に磁気記録媒体用磁性粉末中の水分とその挙動について、詳細に研究を行なった結果、次のような知見を得た。   In order to solve the above-mentioned problems, the present inventors have studied in detail the moisture and the behavior in the magnetic powder for magnetic recording media, and as a result, obtained the following knowledge.

薄い磁性層内に磁性粒子を均一に分散され充填された磁気記録媒体を形成するために、個々の磁性粒子を高分子バインダで包み込んで粒子間に働く引力を減らす技術が用いられる。この高分子バインダは、塗布液中で分子鎖を広げて磁性粒子間の距離を保ち磁性粒子の凝集を防ぐとともに、塗布液の乾燥後には収縮して磁性粒子を高密度に充填する性質を有している。この場合に磁性粉末中の水分含有率にばらつきがあると、水分量の少ない部分では強い凝集を生じ、他方で水分量の過多な部分では磁性粒子を包み込むための高分子バインダの磁性粒子表面への吸着がこの水分によって妨げられ、共に分散性の低下を招いていることを見出した。このため、磁性粒子の均一な分散を得るには、磁性粉末の含有する水分の総量を調整することに加えて、磁性粉末中の水分を高度に均一化することが必要であることがわかった。   In order to form a magnetic recording medium in which magnetic particles are uniformly dispersed and filled in a thin magnetic layer, a technique of enclosing individual magnetic particles with a polymer binder to reduce the attractive force acting between the particles is used. This polymer binder has the property of spreading the molecular chain in the coating solution to maintain the distance between the magnetic particles and preventing the aggregation of the magnetic particles, and shrinks after the coating solution is dried to fill the magnetic particles with high density. doing. In this case, if the moisture content in the magnetic powder varies, strong agglomeration occurs in the portion with a small amount of water, and on the other hand, the portion of the water with a large amount of moisture leads to the surface of the magnetic particle in the polymer binder for enclosing the magnetic particles. It was found that the adsorption of water was hindered by this moisture, and both caused a decrease in dispersibility. For this reason, in order to obtain uniform dispersion of magnetic particles, it was found that in addition to adjusting the total amount of water contained in the magnetic powder, it was necessary to highly uniform the water in the magnetic powder. .

この知見に基づき、所定量の水分を磁性粉末に高度に均一含有させる方法について研究を進めた結果、これを実現する方法を見出すことができた。またこの方法を用い、磁性粉末中に所定量の水分が高度に均一化されて含有した磁性粉末を作製し、これを用いることにより凝集のない塗布磁性層を形成できることを見出し、本発明をまとめることができた。   Based on this finding, as a result of research on a method for highly uniformly containing a predetermined amount of water in a magnetic powder, a method for realizing this was found. Also, by using this method, a magnetic powder containing a predetermined amount of moisture in the magnetic powder highly uniform is prepared, and it is found that a coated magnetic layer without aggregation can be formed by using this powder, and the present invention is summarized. I was able to.

本発明の磁気記録媒体用磁性粉末は、比表面積が40〜100m/gの磁気記録媒体用磁性粉末であって、水分含有率が0.9〜4質量%、水分含有率の変動係数が5%以下であることを特徴とする。 The magnetic powder for magnetic recording media of the present invention is a magnetic powder for magnetic recording media having a specific surface area of 40 to 100 m 2 / g, having a moisture content of 0.9 to 4% by mass and a coefficient of variation of the moisture content. It is characterized by being 5% or less.

上記における磁性粉末の水分含有率の変動係数は、同一ロット内の水分含有率のばらつきを表す量であって、同一ロット内の10ヶ所でサンプリングりングした磁性粉末の水分含有率測定値の標準偏差を、水分含有率測定値の平均値で除した値を百分率で示したものである。磁性粉末の水分含有率の測定には、正しく測定ができる方法であれば、どのような方法を用いてもよく、例えば微量の水分の測定に有用な方法であるカールフィッシャー法などを用いることができる。   The coefficient of variation in the moisture content of the magnetic powder in the above is an amount representing the variation of the moisture content in the same lot, and is a standard for the measured moisture content of the magnetic powder sampled at 10 locations in the same lot. The value obtained by dividing the deviation by the average value of the measured water content is shown as a percentage. Any method can be used to measure the moisture content of the magnetic powder as long as it can be measured correctly. For example, the Karl Fischer method, which is a useful method for measuring a minute amount of moisture, can be used. it can.

この変動係数が小さいほど、磁性粉末に水分が高度に均一含有されていることを示している。比表面積が40〜100m/gの磁気記録媒体用磁性粉末において、この変動係数が5%を超えると、0.1μm以上の凝集体が確認されるようになり、これが上述した媒体欠陥の原因となって、上記超高密度磁気記録媒体には用いることができなくなることがわかった。 The smaller the coefficient of variation, the higher the moisture content in the magnetic powder. In the magnetic powder for a magnetic recording medium having a specific surface area of 40 to 100 m 2 / g, when this coefficient of variation exceeds 5%, an aggregate of 0.1 μm or more is confirmed, which is the cause of the above-mentioned medium defect. Thus, it was found that it could not be used for the ultra-high density magnetic recording medium.

本発明において、比表面積が40〜100m/gの磁気記録媒体用磁性粉末の水分含有率は、0.9〜4質量%の範囲にあることが好ましい。この磁性粉末の水分含有率が0.9質量%未満では、磁性粉末間の凝集力が強く現われ、堅固な凝集体を形成しやすくなる。他方、この磁性粉末の水分含有率が4.0質量%を超えると、この磁性粒子への高分子バインダの吸着が、過剰な水分の存在によって妨げられることにより、この磁性粉末のバインダ中での分散性が低下し、媒体に未分散の磁性粉末の凝集塊を生じるようになる。このような理由から、より好ましいこの磁性粉末における水分含有率は1.0質量%以上であり、また2質量%以下の範囲である。磁性粉末が六方晶フェライト磁性粉末の場合には、板面同士が接した場合の粒子間の凝集力が強いことから、この磁性粉末の水分含有率は1.1質量%以上であることがさらに好ましく、また1.6質量%未満であることがさらに好ましい。 In the present invention, the moisture content of the magnetic powder for a magnetic recording medium having a specific surface area of 40 to 100 m 2 / g is preferably in the range of 0.9 to 4% by mass. When the moisture content of the magnetic powder is less than 0.9% by mass, the cohesive force between the magnetic powders appears strongly, and it becomes easy to form a firm aggregate. On the other hand, when the moisture content of the magnetic powder exceeds 4.0% by mass, the adsorption of the polymer binder to the magnetic particles is hindered by the presence of excess moisture, so that the magnetic powder in the binder Dispersibility is lowered, and agglomerates of undispersed magnetic powder are generated in the medium. For this reason, the moisture content in the magnetic powder is more preferably 1.0% by mass or more and 2% by mass or less. When the magnetic powder is a hexagonal ferrite magnetic powder, the cohesive force between the particles when the plate surfaces are in contact with each other is strong, so that the moisture content of the magnetic powder is 1.1% by mass or more. Preferably, it is more preferably less than 1.6% by mass.

上記磁性粉末の比表面積はBET法によって測定される値であって、40〜100m/gの範囲の値を有するものである。磁性粉末の比表面積が40m/g未満では、バインダから受ける抵抗が少なく磁性粒子の配向性が向上するものの、磁性塗料中における磁性粒子の分散安定性の確保が困難となり、磁性粉末の水分含有率を均一にしても、十分な分散安定性の効果を得ることができない。また磁性粉末の比表面積が100m/gを超えると、磁性粉末粒子の配向性が低下するとともに充填性が低下し、高密度記録に適さなくなる。 The specific surface area of the magnetic powder is a value measured by the BET method and has a value in the range of 40 to 100 m 2 / g. If the specific surface area of the magnetic powder is less than 40 m 2 / g, the resistance received from the binder is small and the orientation of the magnetic particles is improved, but it becomes difficult to ensure the dispersion stability of the magnetic particles in the magnetic coating, and the moisture content of the magnetic powder Even if the rate is uniform, a sufficient dispersion stability effect cannot be obtained. On the other hand, when the specific surface area of the magnetic powder exceeds 100 m 2 / g, the orientation of the magnetic powder particles is lowered and the filling property is lowered, which is not suitable for high density recording.

本発明の上記磁気記録媒体用磁性粉末は、平均粒径が15〜30nmであり、保磁力Hcが2,000〜5,000Oeの六方晶フェライト磁性粉末であることが好ましい。   The magnetic powder for magnetic recording medium of the present invention is preferably a hexagonal ferrite magnetic powder having an average particle diameter of 15 to 30 nm and a coercive force Hc of 2,000 to 5,000 Oe.

本発明における六方晶フェライト磁性粉末は板状の粒子形状を有しており、この粒子の平均粒径は、この磁性粒子の板径によって表現している。この粒子の平均粒径は、この磁性粉末の透過型電子顕微鏡像から、500個の粉末粒子の板径を無作為に選択して測定し、これらの測定値を算術平均して得たものである。   The hexagonal ferrite magnetic powder in the present invention has a plate-like particle shape, and the average particle diameter of the particle is expressed by the plate diameter of the magnetic particle. The average particle size of these particles is obtained by randomly selecting the plate diameter of 500 powder particles from the transmission electron microscope image of the magnetic powder, and then arithmetically averaging these measured values. is there.

六方晶フェライト磁性粉末の平均粒径が15nm未満では、粒子の磁化値が小さくなるとともに分散が難しくなり、超高密度磁気記録媒体に用いた場合の信号対雑音比が著しく低下する。また六方晶フェライト磁性粉末の平均粒径が30nmを超えると、超高密度磁気記録媒体に用いた場合に媒体ノイズが著しく増大する。その平均粒径は、28nm以下であることがより好ましく、26nm以下であることがさらに好ましい。   If the average particle size of the hexagonal ferrite magnetic powder is less than 15 nm, the magnetization value of the particles becomes small and dispersion becomes difficult, and the signal-to-noise ratio when used in an ultra-high density magnetic recording medium is significantly reduced. On the other hand, when the average particle size of the hexagonal ferrite magnetic powder exceeds 30 nm, the medium noise is remarkably increased when used in an ultrahigh density magnetic recording medium. The average particle diameter is more preferably 28 nm or less, and further preferably 26 nm or less.

本発明において、超高密度記録媒体用として30nm以下に粒径を微小化した六方晶フェライト磁性粉末の保磁力は、記録減磁を防いで高密度記録を可能にすることや、記録磁化の安定性を確保するなどのために、従来よりも大きい値を有することが望ましい。保磁力が2,000Oe未満では、記録減磁が増し記録磁化の揺動に対する安定性も低下する。他方で磁性粉末の保磁力が5,000Oeを超えると、現有の記録ヘッドではこの磁性粒子を磁化し記録をすることが困難となる。   In the present invention, the coercive force of the hexagonal ferrite magnetic powder having a particle size reduced to 30 nm or less for ultra-high density recording media can prevent recording demagnetization and enable high density recording, and can stabilize recording magnetization. In order to ensure the properties, it is desirable to have a larger value than before. When the coercive force is less than 2,000 Oe, the recording demagnetization is increased and the stability against fluctuation of the recording magnetization is also lowered. On the other hand, when the coercive force of the magnetic powder exceeds 5,000 Oe, it becomes difficult to magnetize and record the magnetic particles with the existing recording head.

六方晶フェライト磁性粉末を用いた磁気記録媒体は、その磁化が比較的小さいことから、記録された磁化が比較的小さいことが指摘されていたが、信号の再生に高感度のMRヘッドを用いることにより、十分な信号出力を得ることができるようになり、この結果、記録磁化が比較的小さいことは、磁気記録媒体として不利なことではなくなった。このため、微細粒子の製造に適することや高保磁力が得られるなど、六方晶フェライト磁性粉末の利点を生かし、超高密度磁気記録媒体への適用が期待できる。本発明は、六方晶フェライト磁性粉末を超高密度磁気記録媒体に適用する際に、六方晶フェライト磁性粉末粒子が示す強い凝集の問題に対し解決を与えることができる点で有用である。   Magnetic recording media using hexagonal ferrite magnetic powder have been pointed out that their recorded magnetization is relatively small because of their relatively small magnetization, but use a highly sensitive MR head for signal reproduction. Thus, a sufficient signal output can be obtained. As a result, the relatively small recording magnetization is not disadvantageous as a magnetic recording medium. Therefore, taking advantage of the hexagonal ferrite magnetic powder, such as being suitable for producing fine particles and obtaining a high coercive force, application to an ultrahigh density magnetic recording medium can be expected. The present invention is useful in that it can provide a solution to the problem of strong aggregation exhibited by hexagonal ferrite magnetic powder particles when the hexagonal ferrite magnetic powder is applied to an ultra-high density magnetic recording medium.

上記六方晶フェライト磁性粒子は、強酸の水溶液、例えば濃度0.2〜2mol/Lの硝酸など強酸の水溶液で処理することにより、磁性粉末中の微細な粒子、例えば板径が10nm以下の粒子を溶解して除くことができ、その存在量を例えば3%以下にすることができることがわかった。こうすることによって、六方晶フェライト磁性粉末中の超常磁性粒子を示す微細粒子が除かれて粒度分布が改善されるとともに、磁性粉末のSFDが向上し、塗布型の超高密度磁気記録媒体に適した六方晶フェライト粒子を得ることができることがわかった。このため、上記六方晶フェライト磁性粒子として、この強酸処理を行なったものを用いることが好ましい。   The hexagonal ferrite magnetic particles are treated with an aqueous solution of a strong acid, for example, an aqueous solution of strong acid such as nitric acid having a concentration of 0.2 to 2 mol / L, thereby fine particles in the magnetic powder, for example, particles having a plate diameter of 10 nm or less. It was found that it can be dissolved and removed, and its abundance can be, for example, 3% or less. By doing so, fine particles representing superparamagnetic particles in the hexagonal ferrite magnetic powder are removed, the particle size distribution is improved, the SFD of the magnetic powder is improved, and it is suitable for a coating type ultra-high density magnetic recording medium. It was found that hexagonal ferrite particles can be obtained. For this reason, it is preferable to use the hexagonal ferrite magnetic particles that have been subjected to the strong acid treatment.

本発明の磁気記録媒体用磁性粉末パッケージは、上記の磁気記録媒体用磁性粉末が、水蒸気透過率0.2g/m/日以下の防湿容器に充填密閉されたものであることを特徴とする。 The magnetic powder package for a magnetic recording medium according to the present invention is characterized in that the magnetic powder for a magnetic recording medium is filled and sealed in a moisture-proof container having a water vapor transmission rate of 0.2 g / m 2 / day or less. .

本発明の磁気記録媒体用磁性粉末は、水分を磁性粉末に高度に均一含有させる工程の後、直ちに磁気記録媒体の製造に用いられるとは限らない。むしろこの工程の後、この磁性粉末を輸送したり保管したりした後に、磁気記録媒体の製造に用いられる場合が多い。この間、磁性粉末の水分の均一吸収された状態を保持するために、適切な手段を講じる必要がある。   The magnetic powder for magnetic recording media of the present invention is not always used for the production of magnetic recording media immediately after the step of highly uniformly containing moisture in the magnetic powder. Rather, after this step, the magnetic powder is often transported or stored and then used in the manufacture of magnetic recording media. In the meantime, it is necessary to take an appropriate measure in order to keep the moisture of the magnetic powder uniformly absorbed.

このような適切な手段を見出すために、磁性粉末の保管による含有水分の変化について詳細なデータの積み重ねを行なった結果、磁気記録媒体用磁性粉末を水蒸気透過率が0.2g/m/日以下の防湿パッケージに収納し密閉して保管することにより、含有水分の高度に均一な含有状態を維持することができることを見出した。水蒸気透過率が0.2g/m/日を超える容器に磁気記録媒体用磁性粉末を充填した場合には、経時的に粉末の水分含有量が変化するので好ましくないことがわかった。 In order to find such an appropriate means, as a result of accumulating detailed data on changes in moisture content due to storage of magnetic powder, the magnetic powder for magnetic recording media has a water vapor transmission rate of 0.2 g / m 2 / day. It has been found that a highly uniform content state of moisture content can be maintained by storing it in the following moisture-proof package and hermetically storing it. It has been found that it is not preferable to fill a magnetic powder for magnetic recording media in a container having a water vapor transmission rate exceeding 0.2 g / m 2 / day, because the moisture content of the powder changes with time.

このような水蒸気透過率0.2g/m/日以下を可能にする防湿パッケージ材としては、例えばアルミ製の防湿袋、厚手のナイロン袋、アクリル袋、密閉構造の金属製の缶、密栓ガラス容器などが使用可能である。 Examples of the moisture-proof packaging material that enables a water vapor transmission rate of 0.2 g / m 2 / day or less include a moisture-proof bag made of aluminum, a thick nylon bag, an acrylic bag, a metal can having a sealed structure, and a sealed glass. Containers can be used.

本発明の磁気記録媒体用磁性粉末の製造方法は、磁気記録媒体用磁性粉末を調湿装置に収容し、この調湿装置内で所定量の水を30〜80℃にて気化させた後、この調湿装置内に2〜24時間保持し、水分を粉末に吸収させることにより、この磁気記録媒体用磁性粉末に水分を含有させることを特徴とする。   In the method for producing a magnetic powder for a magnetic recording medium of the present invention, the magnetic powder for a magnetic recording medium is accommodated in a humidity control device, and after a predetermined amount of water is vaporized at 30 to 80 ° C. in the humidity control device, The magnetic powder for magnetic recording medium is made to contain moisture by holding in the humidity control apparatus for 2 to 24 hours and absorbing the moisture in the powder.

このような方法を用いることにより、例えばネブライザを用いた水分供給など、従来の技術でみられたような粉末の表面だけが水分が過剰になるなどの問題はなくなった。この方法により調製した磁気記録媒体用磁性粉末は、所定量の水分が磁性粉末に高度に均一に含有した状態を有することが確かめられた。   By using such a method, for example, water supply using a nebulizer, there is no longer a problem such as excessive water on the surface of the powder as seen in the prior art. It was confirmed that the magnetic powder for a magnetic recording medium prepared by this method has a state in which a predetermined amount of moisture is highly uniformly contained in the magnetic powder.

本発明においては、調湿装置内で所定量の水を30〜80℃にて気化させる。30℃未満の加熱では、水の気化に長時間を要するので生産性が低くなる。また80℃を超えると、水の蒸発が早くなり、磁性粉末に水分が凝結し、これが磁性粉末を凝集させる原因となることがわかった。そして30〜80℃の温度範囲で水を気化させれば、水は磁性粉末に均一性よく吸収され、その生産性も良好であることがわかった。このような理由から、水の気化温度としては、大気温+5℃以上、具体的には35〜70℃がより好ましく、40〜60℃がさらに好ましい。   In the present invention, a predetermined amount of water is vaporized at 30 to 80 ° C. in the humidity control apparatus. When heating at less than 30 ° C., it takes a long time to evaporate water, resulting in low productivity. Moreover, when it exceeded 80 degreeC, it turned out that water evaporates quickly, a water | moisture content condenses on a magnetic powder, and this causes a magnetic powder to aggregate. And if water was vaporized in the temperature range of 30-80 degreeC, it turned out that water is absorbed with a magnetic powder with sufficient uniformity, and the productivity is also favorable. For this reason, the vaporization temperature of water is greater than atmospheric temperature + 5 ° C., specifically 35 to 70 ° C., more preferably 40 to 60 ° C.

また本発明では、添加すべき水が調湿装置内で気化した後、磁気記録媒体用磁性粉末をそのまま調湿装置内に2時間以上靜置して保持し、磁性粉末が含有した水分を拡散均一化させる。靜置保持時間が2時間未満では、水分の拡散均一化が十分でなく、また24時間を超えて保持しても実質的な変化がみられないことがわかった。生産性の観点から、靜置保持時間は24時間以内であることが好ましい。   In the present invention, after the water to be added is vaporized in the humidity control apparatus, the magnetic powder for the magnetic recording medium is kept in the humidity control apparatus as it is for 2 hours or more to diffuse the moisture contained in the magnetic powder. Make uniform. It has been found that when the holding time is less than 2 hours, the moisture is not sufficiently diffused and homogenized, and even if the holding time exceeds 24 hours, no substantial change is observed. From the viewpoint of productivity, the holding time is preferably within 24 hours.

なお、上記気化温度が低いほど水の気化に時間がかかり、その間にも磁性粉中への拡散が並行して進むため、気化終了後の靜置時間は相対的に短くてよく、逆に気化温度が高いと、水の気化は短時間で終了するが、拡散均質化のための時間をより長くとる必要がある。したがって、後述する実施例程度の処理量では、水分気化時間と靜置保持時間との合計が概ね24時間以内で終了するようにすることができる。水分の拡散均一化を確実にし、上記変動係数5%以下を安定的に得るためには、靜置保持時間は10時間以上にすることが好ましく、12時間以上にすることがより好ましい。他方で生産性の観点から、この水の気化時間と上記したその後の靜置保持時間との合計が24時間以内であることが好ましい。   Note that the lower the vaporization temperature, the longer it takes to vaporize the water, and during that time the diffusion into the magnetic powder proceeds in parallel, so the placement time after completion of vaporization may be relatively short, conversely When the temperature is high, the vaporization of water is completed in a short time, but it is necessary to take a longer time for diffusion homogenization. Therefore, at a processing amount of the same level as in the examples described later, the sum of the water vaporization time and the device holding time can be completed within approximately 24 hours. In order to ensure uniform diffusion of moisture and stably obtain the coefficient of variation of 5% or less, the holding time is preferably 10 hours or more, and more preferably 12 hours or more. On the other hand, from the viewpoint of productivity, it is preferable that the total of the water vaporization time and the above-mentioned subsequent holding time is within 24 hours.

磁性粉末に水分を均一に含有させるこの工程条件は、磁性粉末の量を考慮に入れることが望ましい。そこで上記水分気化時間と保持時間との合計時間を水分含有時間と名づけ、磁性粉末1kgあたりの添加水分量をこの水分含有時間で除した値を水分含有速度と定義すると、水分含有速度は、0.2〜0.6g/時間・kgであることが好ましい。水分含有速度が0.2g/時間・kg未満ではプロセスに長時間を要し、また水分含有速度が0.6g/時間・kgを超えると、水分含有率のばらつき変動係数が5%を超えるため、好ましくない。このため、水分含有速度は0.3〜0.5g/時間・kgであることがさらに好ましい。   It is desirable that the process conditions for uniformly containing water in the magnetic powder take into account the amount of the magnetic powder. Therefore, when the total time of the moisture vaporization time and the retention time is named moisture content time and the value obtained by dividing the added moisture content per kg of magnetic powder by the moisture content time is defined as the moisture content rate, the moisture content rate is 0. It is preferably 2 to 0.6 g / hour · kg. If the moisture content rate is less than 0.2 g / hour · kg, the process takes a long time. If the moisture content rate exceeds 0.6 g / hour · kg, the variation coefficient of variation in moisture content exceeds 5%. It is not preferable. For this reason, it is more preferable that the moisture content rate is 0.3 to 0.5 g / hour · kg.

本発明の上記磁気記録媒体用磁性粉末の製造方法によれば、平均粒径が15〜30nmの六方晶フェライト磁性粉末であり、この磁性粉末の水分含有率を0.9〜4質量%にし、磁性粉末の水分含有率の変動係数を5%以下にした磁気記録媒体用磁性粉末を得ることができる。   According to the method for producing a magnetic powder for a magnetic recording medium of the present invention, it is a hexagonal ferrite magnetic powder having an average particle diameter of 15 to 30 nm, and the moisture content of the magnetic powder is set to 0.9 to 4% by mass. A magnetic powder for magnetic recording media can be obtained in which the coefficient of variation of the moisture content of the magnetic powder is 5% or less.

本発明の製造方法を用いることにより、磁性粒子の凝集を十分に抑制した超高密度磁気記録用の磁性粉末の製造が可能となった。また本発明により、塗布型の超高密度記録媒体用磁性粉末の提供が可能になった。   By using the production method of the present invention, it has become possible to produce a magnetic powder for ultra high density magnetic recording in which aggregation of magnetic particles is sufficiently suppressed. Further, according to the present invention, it is possible to provide a coating type magnetic powder for an ultra-high density recording medium.

次にM型六方晶フェライト磁性粉末に対して実施した実施例に基づいて、本発明をさらに詳細かつ具体的に説明する。   Next, based on the Example implemented with respect to the M type hexagonal ferrite magnetic powder, this invention is demonstrated further in detail and concretely.

BaO・Bからなるガラス母相成分と、組成式BaO・Fe12−3(x+y)/2CoZnNb(x+y)/218で表されるM型六方晶フェライト成分を秤量し十分に混合した。ノズル付きの白金るつぼにこの混合した原料を投入し、高周波加熱措置を用いて1350℃にて加熱溶融した。すべての原料を溶解した後、ガラスを均一化するため、1時間攪拌し、均質化した溶融ガラスを高速回転させた水冷双ローラー上に注いで圧延急冷することにより、非晶質体を作製した。この非晶質体を熱処理炉にて700℃で5時間保持する熱処理条件にて熱処理し、結晶化を行なった。続いてこの結晶化物を粉砕し、10%の酢酸溶液中で溶液温度を80℃以上に制御しながら、4時間攪拌して酸処理を行なった。酢酸によって溶解したガラス母相成分を十分に洗浄して除去し、残った磁性粉末のスラリーを乾燥させ、六方晶フェライト磁性粉末を得た。 A glass matrix component composed of BaO.B 2 O 3 and an M-type hexagonal ferrite component represented by the composition formula BaO.Fe 12-3 (x + y) / 2 Co x Zn y Nb (x + y) / 2 O 18 Weighed and mixed well. This mixed raw material was put into a platinum crucible equipped with a nozzle and heated and melted at 1350 ° C. using a high-frequency heating measure. After melting all the raw materials, in order to homogenize the glass, the mixture was stirred for 1 hour, and the homogenized molten glass was poured onto a water-cooled twin roller rotated at a high speed, and rapidly cooled by rolling to produce an amorphous body. . This amorphous body was heat-treated in a heat-treating furnace at 700 ° C. for 5 hours for crystallization by crystallization. Subsequently, the crystallized product was pulverized, and acid treatment was performed by stirring for 4 hours in a 10% acetic acid solution while controlling the solution temperature at 80 ° C or higher. The glass matrix component dissolved by acetic acid was sufficiently washed and removed, and the remaining magnetic powder slurry was dried to obtain a hexagonal ferrite magnetic powder.

なお、この洗浄工程においては、分離された洗浄液の電気伝導率をmS/mの単位で表したとき、その数値が沈降スラリー濃度(磁性粉末量)の質量%の1/4以下の値になるまで水洗浄をすることが好ましいことがわかった。こうすることにより、洗浄後の磁性粉末からの不純物の塩の析出が抑制でき、超高密度記録媒体用磁性粉末として好ましいことがわかった。またこのとき、洗浄処理された磁性粉末六方晶フェライト磁性粉末を浸漬した液の電気伝導率が6.0mS/m以下、0.02mS/m以上に調整されていることにより、洗浄後の磁性粉末からは不純物の塩の析出がみられず、しかも分散性が良好であることから、超高密度記録媒体用磁性粉末として好ましいことがわかった。   In this cleaning step, when the electrical conductivity of the separated cleaning liquid is expressed in units of mS / m, the numerical value becomes a value equal to or less than ¼ of the mass% of the sedimented slurry concentration (magnetic powder amount). It has been found that it is preferable to perform water washing. By doing so, it was found that precipitation of impurity salts from the magnetic powder after washing can be suppressed, which is preferable as a magnetic powder for ultra-high density recording media. Further, at this time, the electric conductivity of the liquid in which the magnetic powder hexagonal ferrite magnetic powder subjected to the cleaning treatment is immersed is adjusted to 6.0 mS / m or less and 0.02 mS / m or more. From this, no salt precipitation of impurities was observed, and the dispersibility was good, and thus it was found that the powder was preferable as a magnetic powder for ultra-high density recording media.

また、こうして得られる六方晶フェライト磁性粉末としては、この磁性粉末を浸漬し煮沸した浸漬液の電気伝導率が、0.02〜6.0mS/mとなるように六方晶フェライト磁性粉末が調整されていることが、良好な分散性を得る上で好ましいことがわかった。ここに磁性粉末を浸漬し煮沸した浸漬液の電気伝導率浸漬し煮沸した液の電気伝導率とは、磁性粉末5gを200mLのビーカーに入れ、100mLの純水にし浸漬し、210℃に加熱されたホットプレートにて40分間煮沸し、この液をPET容器に密閉して空気との接触を断った状態で15分間水冷した後に測定したこの液の電気伝導率である。   Further, as the hexagonal ferrite magnetic powder obtained in this way, the hexagonal ferrite magnetic powder is adjusted so that the electric conductivity of the immersion liquid in which the magnetic powder is immersed and boiled is 0.02 to 6.0 mS / m. It was found that it is preferable to obtain good dispersibility. The electrical conductivity of the immersion liquid boiled and boiled here with magnetic powder The electrical conductivity of the immersion boiled liquid is 5 g of magnetic powder placed in a 200 mL beaker, immersed in 100 mL of pure water and heated to 210 ° C. It is the electrical conductivity of this liquid measured after boiling for 40 minutes on a hot plate, sealed in a PET container and cooled with water for 15 minutes in a state where contact with air was cut off.

この六方晶フェライト磁性粉末を図1に示した調湿装置を用いて含有水分の調整を行なった。図1において、調湿装置1は、調湿容器(大型デシケータ)2、水分気化装置(ホットプレート)3、調湿容器2内の空気を攪拌する攪拌機構(電動ファン)4を有している。磁性粉末8は、ステンレストレイなどの平板状粉末容器5に厚さ2〜20mm程度に敷き詰め、調湿容器5の棚に載置・収容する。なお、平板状粉末容器5に敷き詰める磁性粉末の厚さが20mmを超えると、磁性粉末が含有した水分の均質化に24時間を超える多くの時間を要するようになる。   The moisture content of the hexagonal ferrite magnetic powder was adjusted using the humidity controller shown in FIG. In FIG. 1, the humidity control apparatus 1 includes a humidity control container (large-scale desiccator) 2, a moisture vaporizer (hot plate) 3, and a stirring mechanism (electric fan) 4 that stirs the air in the humidity control container 2. . The magnetic powder 8 is spread on a flat powder container 5 such as a stainless steel tray to a thickness of about 2 to 20 mm, and is placed and stored on the shelf of the humidity control container 5. In addition, when the thickness of the magnetic powder spread on the flat powder container 5 exceeds 20 mm, much time exceeding 24 hours is required to homogenize the moisture contained in the magnetic powder.

この水分気化装置3の容器6には、調湿容器2に収容した磁性粉末8の量とその水分含有率に応じて、目標とする水分含有率が得られるように所要量の水7を入れ、調湿容器2を密閉した後、上記温度に加熱して保持し、水7を磁性粉末8に吸収させる。このとき、攪拌機構4により調湿容器2内の空気をゆっくりと循環させることで、調湿容器2内の平板状粉末容器5の位置による水分含有のばらつきが生じるのを抑えることができる。ここに磁性粉末8が調湿前に保有する水分含有率の測定にはカールフィッシャー法を用い、磁性粉8に吸収させる水7の所要量は、(水の所要量)=(磁性粉末8の量)×{(目標とする水分含有率)−(磁性粉末が調湿前に保有する水分含有率)}により計算する。   The container 6 of the moisture vaporizer 3 is filled with a required amount of water 7 so as to obtain a target moisture content according to the amount of the magnetic powder 8 contained in the humidity control container 2 and the moisture content. After the humidity control container 2 is sealed, it is heated to the above temperature and held, and the water 7 is absorbed by the magnetic powder 8. At this time, by slowly circulating the air in the humidity control container 2 by the stirring mechanism 4, it is possible to suppress variation in moisture content due to the position of the flat powder container 5 in the humidity control container 2. Here, the Karl Fischer method is used to measure the moisture content of the magnetic powder 8 before humidity control. The required amount of water 7 absorbed by the magnetic powder 8 is (required amount of water) = (required amount of magnetic powder 8). Amount) × {(target water content) − (water content held by the magnetic powder before conditioning)}.

この図1に示した調湿装置1に、磁性粉末8として上記の六方晶フェライト磁性粉末を処理量54kgにて収容し、水7を水分気化温度40℃で気化し、この磁性粉末8に吸収させた。水分気化終了後、この磁性粉末8はそのまま調湿装置内に12時間静置した状態で保持し、含有水分の調整を行なった。   In the humidity control apparatus 1 shown in FIG. 1, the above-described hexagonal ferrite magnetic powder is accommodated as a magnetic powder 8 in a treatment amount of 54 kg, and water 7 is vaporized at a water vaporization temperature of 40 ° C. and absorbed by the magnetic powder 8. I let you. After the moisture vaporization was completed, the magnetic powder 8 was held as it was for 12 hours in a humidity control device, and the moisture content was adjusted.

本実施例においては、調湿後の磁性粉末の水分含有率(質量%)として、1.4質量%を目標値に設定した。このため上記の計算方法により、磁性粉末がすでに含有している水分含有率を測定して0.64質量%を得て、この値と目標とする1.4質量%との差0.76質量%に相当する水分量として、54kg×0.76/100=0.41kgを算出し、これを磁性粉末に吸収させる水7の量とした。   In this example, 1.4% by mass was set as the target value as the moisture content (% by mass) of the magnetic powder after humidity control. Therefore, by the above calculation method, the moisture content already contained in the magnetic powder is measured to obtain 0.64% by mass, and the difference between this value and the target of 1.4% by mass is 0.76% by mass. As the amount of water corresponding to%, 54 kg × 0.76 / 100 = 0.41 kg was calculated, and this was used as the amount of water 7 to be absorbed by the magnetic powder.

こうして調湿を行なった磁性粉末は、その一部を測定評価に用いる一方で、残りを水蒸気透過率0.1g/m/日のアルミ製防湿袋に充填し、50℃‐100%RHの環境下で1週間の保管試験を行ない、保管後の磁性粉末の測定評価を行なった。 Part of the magnetic powder thus conditioned is used for measurement evaluation, while the remainder is filled in an aluminum moisture-proof bag with a water vapor transmission rate of 0.1 g / m 2 / day, and the temperature is 50 ° C.-100% RH. A storage test was conducted for one week in the environment, and the magnetic powder after storage was measured and evaluated.

磁性粉末の測定評価は、すでに述べた条件に従って行なった。磁性粉末の平均粒径は、それぞれの透過型電子顕微鏡像を用いて測定したものを平均して求めた。また磁性粉末の比表面積はBET法による測定装置を用いて測定した。また保磁力はVSMを用いた磁性粉末の磁気測定により求めた。   The measurement evaluation of the magnetic powder was performed according to the conditions already described. The average particle diameter of the magnetic powder was obtained by averaging those measured using the respective transmission electron microscope images. Further, the specific surface area of the magnetic powder was measured using a measuring apparatus by the BET method. The coercive force was determined by magnetic measurement of the magnetic powder using VSM.

磁性粉末が含有する水分量の測定には、カールフィッシャー法を用いた。調湿前の水分含有率を測定した後、調湿後の目標値が1.4質量%となるように調湿処理を行ない、調湿後の水分含有率を同じ方法によって10ヶ所の測定を行ない、平均の水分含有率および水分含有率分布の標準偏差を算出し、これから水分含有率ばらつき変動係数を算出した。さらに防湿パッケージにて保管した磁性粉末の1週間保管後の水分含有率を測定した。   The Karl Fischer method was used to measure the amount of water contained in the magnetic powder. After measuring the moisture content before conditioning, perform humidity conditioning so that the target value after conditioning is 1.4% by mass, and measure the moisture content after conditioning at 10 locations using the same method. The average moisture content and the standard deviation of the moisture content distribution were calculated, and the moisture content variation coefficient of variation was calculated from this. Furthermore, the moisture content after 1 week storage of the magnetic powder stored in the moisture-proof package was measured.

またこれら磁性粒子について、未分散の凝集塊の数を測定した。未分散の凝集塊の数の測定は、磁性粉末2gをシクロヘキサノン100mLに溶解し、直径1mmのジルコニアビーズを充填したビーズミルにて、150rpmの回転数で24時間分散して得たスラリーからサンプリングをし、これを透過電子顕微鏡の40,000倍の100視野について、0.1μm以上の凝集塊の数を数え上げたものである。
これらの測定結果を調湿処理条件とともに表1に示した。
For these magnetic particles, the number of undispersed aggregates was measured. The number of undispersed agglomerates was measured by sampling from a slurry obtained by dissolving 2 g of magnetic powder in 100 mL of cyclohexanone and dispersing for 24 hours at 150 rpm with a bead mill filled with zirconia beads having a diameter of 1 mm. The number of agglomerates of 0.1 μm or more was counted for 100 fields of 40,000 times that of a transmission electron microscope.
These measurement results are shown in Table 1 together with the humidity control treatment conditions.

調湿工程の水分気化温度を70℃にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   A Ba ferrite magnetic powder conditioned under the same conditions as in Example 1 except that the water vaporization temperature in the humidity conditioning process was set to 70 ° C. was prepared, and a storage experiment for one week was conducted to measure and evaluate the magnetic powder. Was done. The results are shown in Table 1 together with the humidity control treatment conditions.

工程の水分気化終了後の静置保持時間を3時間にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   A Ba ferrite magnetic powder was prepared that was conditioned under the same conditions as in Example 1 except that the stationary holding time after the completion of moisture vaporization in the process was changed to 3 hours. The powder was evaluated for measurement. The results are shown in Table 1 together with the humidity control treatment conditions.

調湿工程の水分気化終了後の静置保持時間を20時間にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   A Ba ferrite magnetic powder which was conditioned under the same conditions as in Example 1 was prepared except that the stationary holding time after the moisture vaporization in the humidity conditioning step was 20 hours, and a storage experiment was conducted for one week. The magnetic powder was measured and evaluated. The results are shown in Table 1 together with the humidity control treatment conditions.

非晶質体を熱処理炉で加熱保持してBaフェライトの結晶を析出させる工程の熱処理を、620℃にて5時間保持とし、水分含有率の調湿後の目標値を2.3質量%としたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   The heat treatment in the process of precipitating Ba ferrite crystals by heating and holding the amorphous body in a heat treatment furnace is held at 620 ° C. for 5 hours, and the target value after humidity control of the moisture content is 2.3 mass%. In addition to the above, Ba ferrite magnetic powder which was conditioned under the same conditions as in Example 1 was prepared, and a storage experiment for one week was conducted to measure and evaluate the magnetic powder. The results are shown in Table 1 together with the humidity control treatment conditions.

非晶質体を熱処理炉で加熱保持してBaフェライトの結晶を析出させる工程の熱処理を、740℃にて5時間保持とし、水分含有率の調湿後の目標値を1.1質量%としたたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   The heat treatment in the process of precipitating Ba ferrite crystals by heating and holding the amorphous body in a heat treatment furnace is held at 740 ° C. for 5 hours, and the target value after moisture conditioning of the moisture content is 1.1 mass%. In addition to the above, Ba ferrite magnetic powder that had been conditioned under the same conditions as in Example 1 was prepared, and a storage experiment for one week was conducted to evaluate and measure the magnetic powder. The results are shown in Table 1 together with the humidity control treatment conditions.

調湿工程の水分気化終了後の静置保持時間を28時間にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。   A Ba ferrite magnetic powder which was conditioned under the same conditions as in Example 1 was prepared except that the stationary holding time after the moisture vaporization in the humidity conditioning process was 28 hours, and a one-week storage experiment was conducted. The magnetic powder was measured and evaluated. The results are shown in Table 1 together with the humidity control treatment conditions.

(比較例1)
調湿工程の水分気化温度を90℃にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。
(Comparative Example 1)
A Ba ferrite magnetic powder that was conditioned under the same conditions as in Example 1 except that the water vaporization temperature in the humidity conditioning step was set to 90 ° C. was prepared, and a storage experiment for one week was conducted to measure and evaluate the magnetic powder. Was done. The results are shown in Table 1 together with the humidity control treatment conditions.

(比較例2)
調湿工程の水分気化終了後の静置保持時間を1時間にしたほかは、実施例1と同じ条件にて調湿処理されたBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。
(Comparative Example 2)
A Ba ferrite magnetic powder that was conditioned under the same conditions as in Example 1 was prepared except that the stationary holding time after the completion of moisture vaporization in the humidity conditioning step was 1 hour, and a storage experiment was conducted for one week. The magnetic powder was measured and evaluated. The results are shown in Table 1 together with the humidity control treatment conditions.

(比較例3)
乾燥工程で水分含有率を減量し、調湿処理を行なわなかったほかは、実施例1と同じ条件にてBaフェライト磁性粉末を作製し、また1週間の保管実験を行ない、磁性粉末の測定評価を行なった。その結果を調湿処理条件とともに表1に示した。
(Comparative Example 3)
A Ba ferrite magnetic powder was prepared under the same conditions as in Example 1 except that the moisture content was reduced in the drying step and no humidity conditioning was performed. A one week storage experiment was conducted to measure and evaluate the magnetic powder. Was done. The results are shown in Table 1 together with the humidity control treatment conditions.

(比較例4)
実施例1と同じ条件にてBaフェライト磁性粉末を作製し、その調湿処理を行ない、水蒸気透過率3.8g/m/日のビニル袋に磁性粉末を充填し、実施例8のパッケージと一緒に保管室に1週間保管した。この保管後の磁性粉末の測定評価を行ない、その結果を表1に示した。

Figure 2005340672
(Comparative Example 4)
A Ba ferrite magnetic powder was prepared under the same conditions as in Example 1, the humidity was adjusted, and a vinyl bag was filled with the magnetic powder in a water vapor transmission rate of 3.8 g / m 2 / day. They were stored together in a storage room for 1 week. Measurement and evaluation of the magnetic powder after storage were performed, and the results are shown in Table 1.
Figure 2005340672

表1の結果について、気化後の靜置保持時間と含有水分ばらつき変動係数との関係をプロットしたものを図2に示した。上記実施例1,3,4および7は、気化後の靜置保持時間を変え、その他の条件は揃えている。また比較例2も、気化後の靜置保持時間を短く設定している以外は、これらとほぼ同じ条件である。これらの結果の比較から、水分を気化させた後の靜置保持時間3時間の時点で、水分含有率ばらつき変動係数は5%以内となり、靜置時間が長くなるほど、変動係数が小さくなっていることがわかる。また実施例1,4および7の比較から、12時間の靜置保持ですでに十分な変動係数の減少が得られていることがわかる。   FIG. 2 shows a plot of the relationship between the incubation holding time after vaporization and the variation coefficient of variation in water content for the results shown in Table 1. In the above Examples 1, 3, 4 and 7, the holding time after vaporization is changed, and other conditions are set. Also, Comparative Example 2 has almost the same conditions as these except that the device holding time after vaporization is set short. From the comparison of these results, the moisture content variation coefficient of variation is within 5% at the time of the retention time of 3 hours after the moisture is vaporized, and the variation coefficient becomes smaller as the incubation time becomes longer. I understand that. Further, from comparison between Examples 1, 4 and 7, it can be seen that a sufficient reduction in the coefficient of variation has already been obtained by holding the device for 12 hours.

比較例1では、気化温度を高くしたため、水の蒸発が早く、これが磁性粉の表面で水滴となり、磁性粉の凝集を引き起こし、12時間靜置保持しても凝集が解消されなかった。   In Comparative Example 1, since the vaporization temperature was increased, the water was rapidly evaporated, which became water droplets on the surface of the magnetic powder, causing the magnetic powder to aggregate, and the aggregation was not eliminated even after holding for 12 hours.

比較例2では、靜置保持時間が1時間と短く、こうした短時間の靜置保持では、水分含有率ばらつき変動係数が大きいことを示している。   In Comparative Example 2, the device holding time is as short as 1 hour, and this short time device holding shows that the coefficient of variation in moisture content variation is large.

比較例3は従来の温風乾燥機による乾燥にて、水分含有率を調整したもので、水分含有率ばらつき変動係数が14.0と大きい。これは乾燥時の磁性粉末ロットの表面と内部との水分量の差が解消されないことを示しているものと思われる。   In Comparative Example 3, the moisture content was adjusted by drying with a conventional hot air dryer, and the variation coefficient of variation in moisture content was as large as 14.0. This seems to indicate that the difference in moisture content between the surface and the inside of the magnetic powder lot during drying cannot be resolved.

未分散の塊は、実施例1〜7の各実施例では見出されず、また比較例の結果から、未分散の塊は、水分含有率ばらつき変動係数との相関が大きいことがわかった。   An undispersed lump was not found in each of Examples 1 to 7, and the results of the comparative example showed that the undispersed lump had a large correlation with the variation coefficient of moisture content variation.

保管後の吸着水分量は、密閉金属容器に充填した場合には変化がなく、比較例4の水蒸気透過率の大きいビニル袋を用いた場合には増加しており、バインダの吸着に適した水分量を超えていることがわかった。   The amount of moisture adsorbed after storage does not change when the sealed metal container is filled, and increases when the vinyl bag having a high water vapor transmission rate of Comparative Example 4 is used, and is suitable for binder adsorption. I found that the amount was exceeded.

本発明により、従来は製造することか困難であった塗布型の超高密度磁気記録媒体に適した磁性粉末を製作することができるようになった。本発明に係る磁性粉末を用いることにより、塗布型の超高密度磁気記録媒体が実現可能となった。このため本発明の産業上の利用可能性は大である。   According to the present invention, it has become possible to produce a magnetic powder suitable for a coating type ultra-high density magnetic recording medium, which has been difficult to manufacture. By using the magnetic powder according to the present invention, a coating type ultra-high density magnetic recording medium can be realized. For this reason, the industrial applicability of the present invention is great.

本発明の一実施形態にて用いた磁性粉末の調湿装置の内部を模式的に示した図である。It is the figure which showed typically the inside of the humidity control apparatus of the magnetic powder used in one Embodiment of this invention. 実施例および比較例における気化後の靜置保持時間と含有水分ばらつき変動係数との関係をプロットした図である。It is the figure which plotted the relationship between the apparatus holding time after vaporization in an Example and a comparative example, and a content moisture dispersion | variation variation coefficient.

符号の説明Explanation of symbols

1…調湿装置、2…調湿容器(大型デシケータ)、3…水分気化装置(ホットプレート)、4…攪拌機構(電動ファン)、5…平板状粉末容器、6…容器、7…水、8…磁性粉末。   DESCRIPTION OF SYMBOLS 1 ... Humidity control apparatus, 2 ... Humidity control container (large desiccator), 3 ... Water vaporization apparatus (hot plate), 4 ... Stirring mechanism (electric fan), 5 ... Flat powder container, 6 ... Container, 7 ... Water, 8: Magnetic powder.

Claims (5)

比表面積が40〜100m/gの磁気記録媒体用磁性粉末であって、水分含有率が0.9〜4質量%、水分含有率の変動係数が5%以下であることを特徴とする磁気記録媒体用磁性粉末。 A magnetic powder for magnetic recording media having a specific surface area of 40 to 100 m 2 / g, having a water content of 0.9 to 4% by mass and a coefficient of variation of the water content of 5% or less. Magnetic powder for recording media. 前記磁気記録媒体用磁性粉末が、平均粒径15〜30nmを有するとともに保磁力2,000〜5,000Oeを有する六方晶フェライト磁性粉末であることを特徴とする請求項1記載の磁気記録媒体用磁性粉末。   2. The magnetic recording medium according to claim 1, wherein the magnetic powder for magnetic recording medium is a hexagonal ferrite magnetic powder having an average particle diameter of 15 to 30 nm and a coercive force of 2,000 to 5,000 Oe. Magnetic powder. 請求項1または2記載の磁気記録媒体用磁性粉末が、水蒸気透過率が0.2g/m/日以下の防湿パッケージに充填密閉されたものであることを特徴とする磁気記録媒体用磁性粉末パッケージ。 3. The magnetic powder for a magnetic recording medium according to claim 1, wherein the magnetic powder for a magnetic recording medium is filled and sealed in a moisture-proof package having a water vapor transmission rate of 0.2 g / m 2 / day or less. package. 磁気記録媒体用磁性粉末を調湿装置に収容し、この調湿装置内で所定量の水を30〜80℃にて気化させた後、この調湿装置内に2時間以上保持し、この水分をこの磁性粉末に含有させることにより、この磁性粉末の水分含有率とこの水分含有率の変動係数を調整することを特徴とする磁気記録媒体用磁性粉末の製造方法。   The magnetic powder for the magnetic recording medium is accommodated in a humidity controller, and after a predetermined amount of water is vaporized at 30 to 80 ° C. in the humidity controller, the moisture is maintained in the humidity controller for 2 hours or more. A method for producing a magnetic powder for a magnetic recording medium, comprising adjusting the water content of the magnetic powder and the coefficient of variation of the water content by containing the magnetic powder in the magnetic powder. 前記磁気記録媒体用磁性粉末が平均粒径15〜30nmの六方晶フェライト磁性粉末であり、この磁性粉末の水分含有率を、0.9〜4質量%に調整するとともにこの水分含有率の変動係数を5%以下に調整することを特徴とする請求項4記載の高磁気記録媒体用磁性粉末の製造方法。   The magnetic powder for magnetic recording medium is a hexagonal ferrite magnetic powder having an average particle diameter of 15 to 30 nm. The moisture content of the magnetic powder is adjusted to 0.9 to 4% by mass and the coefficient of variation of the moisture content is adjusted. The method for producing a magnetic powder for a high magnetic recording medium according to claim 4, wherein the content is adjusted to 5% or less.
JP2004160276A 2004-05-28 2004-05-28 Method for producing magnetic powder for magnetic recording medium Active JP4672287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160276A JP4672287B2 (en) 2004-05-28 2004-05-28 Method for producing magnetic powder for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160276A JP4672287B2 (en) 2004-05-28 2004-05-28 Method for producing magnetic powder for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005340672A true JP2005340672A (en) 2005-12-08
JP4672287B2 JP4672287B2 (en) 2011-04-20

Family

ID=35493860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160276A Active JP4672287B2 (en) 2004-05-28 2004-05-28 Method for producing magnetic powder for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4672287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080608A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same
JP2010241639A (en) * 2009-04-06 2010-10-28 Toshiba Corp Hexagonal ferrite powder, magnetic recording medium using the same, and method for producing the hexagonal ferrite powder

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187931A (en) * 1984-03-08 1985-09-25 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS6452002A (en) * 1987-08-24 1989-02-28 Chisso Corp Acicular magnetized metal fine powder having excellent dispersion and its production
JPS6489023A (en) * 1987-09-30 1989-04-03 Fuji Photo Film Co Ltd Magnetic recording medium
JPH04288374A (en) * 1991-03-18 1992-10-13 Toda Kogyo Corp Production of magnetic coating material
JPH04362018A (en) * 1991-06-10 1992-12-15 Toshiba Glass Co Ltd Production of magnetic powder
JPH05109051A (en) * 1991-06-14 1993-04-30 Konica Corp Magnetic recording medium and its manufacture
JPH05174359A (en) * 1991-12-25 1993-07-13 Toshiba Corp Magnetic powder for magnetic recording and magnetic recording medium
JPH08208234A (en) * 1995-02-01 1996-08-13 Kureha Chem Ind Co Ltd Oxide magnet powder and its treatment
JP2002173270A (en) * 2000-12-08 2002-06-21 Toray Ind Inc Wrapping body of polyester film roll for magnetic recording medium, wrapping method thereof, producing method of magnetic recording medium with use thereof
JP2003037004A (en) * 2001-04-27 2003-02-07 Toda Kogyo Corp Secondary agglomerate body of metal magnetic particle for magnetic recording, and manufacturing method therefor
JP2003059030A (en) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd Hexagonal ferrite powder and magnetic recording medium containing the same
JP2003132531A (en) * 2001-10-29 2003-05-09 Fuji Photo Film Co Ltd Method for manufacturing magnetic recording medium and magnetic recording medium
JP2003296916A (en) * 2002-04-03 2003-10-17 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187931A (en) * 1984-03-08 1985-09-25 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS6452002A (en) * 1987-08-24 1989-02-28 Chisso Corp Acicular magnetized metal fine powder having excellent dispersion and its production
JPS6489023A (en) * 1987-09-30 1989-04-03 Fuji Photo Film Co Ltd Magnetic recording medium
JPH04288374A (en) * 1991-03-18 1992-10-13 Toda Kogyo Corp Production of magnetic coating material
JPH04362018A (en) * 1991-06-10 1992-12-15 Toshiba Glass Co Ltd Production of magnetic powder
JPH05109051A (en) * 1991-06-14 1993-04-30 Konica Corp Magnetic recording medium and its manufacture
JPH05174359A (en) * 1991-12-25 1993-07-13 Toshiba Corp Magnetic powder for magnetic recording and magnetic recording medium
JPH08208234A (en) * 1995-02-01 1996-08-13 Kureha Chem Ind Co Ltd Oxide magnet powder and its treatment
JP2002173270A (en) * 2000-12-08 2002-06-21 Toray Ind Inc Wrapping body of polyester film roll for magnetic recording medium, wrapping method thereof, producing method of magnetic recording medium with use thereof
JP2003037004A (en) * 2001-04-27 2003-02-07 Toda Kogyo Corp Secondary agglomerate body of metal magnetic particle for magnetic recording, and manufacturing method therefor
JP2003059030A (en) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd Hexagonal ferrite powder and magnetic recording medium containing the same
JP2003132531A (en) * 2001-10-29 2003-05-09 Fuji Photo Film Co Ltd Method for manufacturing magnetic recording medium and magnetic recording medium
JP2003296916A (en) * 2002-04-03 2003-10-17 Fuji Photo Film Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080608A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same
JP2010241639A (en) * 2009-04-06 2010-10-28 Toshiba Corp Hexagonal ferrite powder, magnetic recording medium using the same, and method for producing the hexagonal ferrite powder

Also Published As

Publication number Publication date
JP4672287B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5770772B2 (en) Hexagonal ferrite magnetic particles, production method thereof, magnetic powder for magnetic recording, and magnetic recording medium
JP4728916B2 (en) Magnetic material
CN101410331B (en) Magnetic material
JP5231590B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
JP6754744B2 (en) Manufacturing method of magnetic recording medium for microwave assist recording, magnetic recording device and magnetic recording medium
JP2004152471A (en) HIGH-DENSITY MAGNETIC RECORDING MEDIUM USING FePtC THIN FILM, AND MANUFACTURING METHOD THEREFOR
JP2014154178A (en) Coating type magnetic recording medium, magnetic recording apparatus, and magnetic recording method
JP5425300B2 (en) Hexagonal ferrite magnetic powder and magnetic recording medium using the same
JP5502357B2 (en) Method for producing hexagonal ferrite magnetic powder and method for producing magnetic recording medium
JP4675581B2 (en) Method for producing hexagonal ferrite magnetic powder
JP4672287B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2020113352A (en) Hexagonal crystal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing device
JP5770771B2 (en) Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium
JP7112979B2 (en) Magnetic recording medium and magnetic recording/reproducing device
JP7132192B2 (en) Magnetic recording medium and magnetic recording/reproducing device
KR20030095218A (en) A perpendicular magnetic memory medium, a manufacturing method thereof, and a magnetic memory storage
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP2005340673A (en) Hexagonal ferrite magnetic powder and manufacturing method thereof
JP2006202445A (en) Magnetic tape
JP5776119B2 (en) Magnetic recording medium and method for manufacturing the same
JP2010239067A (en) Magnetic fine particle powder for magnetic recording medium, and manufacturing method of the same
JP7299205B2 (en) Magnetic recording medium and magnetic recording/reproducing device
Cattaruzza et al. Radiofrequency magnetron co-sputtering deposition synthesis of Co-based nanocomposite glasses for optical and magnetic applications
CN1822114A (en) Method for preparing FePt/Ag high density magnetic recording medium material
JPS6353134B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Ref document number: 4672287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250