JPH04362018A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JPH04362018A
JPH04362018A JP3137550A JP13755091A JPH04362018A JP H04362018 A JPH04362018 A JP H04362018A JP 3137550 A JP3137550 A JP 3137550A JP 13755091 A JP13755091 A JP 13755091A JP H04362018 A JPH04362018 A JP H04362018A
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
ferrite
powder
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3137550A
Other languages
Japanese (ja)
Other versions
JPH0825745B2 (en
Inventor
Kazuhiro Sano
佐野 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP3137550A priority Critical patent/JPH0825745B2/en
Publication of JPH04362018A publication Critical patent/JPH04362018A/en
Publication of JPH0825745B2 publication Critical patent/JPH0825745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a production method for magnetic hexagonal ferrite powder having high dispersibility. CONSTITUTION:When hexagonal ferrite powder is produced by a glass crystallizing method, an extracted slurry contg. fine hexagonal ferrite particles is dried so that the water content of dried hexagonal ferrite powder is regulated to 0.5-5.0wt.%. Since strong cohesion force among the fine ferrite particles is relieved, ferrite powder having high dispersibility is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気記録媒体に適する磁
性粉の製造方法に関し、さらに詳しくは、ガラス結晶化
法により分散性のよい磁性粉を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing magnetic powder suitable for magnetic recording media, and more particularly to a method for producing magnetic powder with good dispersibility by a glass crystallization method.

【0002】0002

【従来の技術】塗布型の磁気記録媒体は、ポリエステル
フィルムなどの基体上にγ−フェライトや鉄粉などの磁
性粉を、樹脂バインダとともに塗布することにより得ら
れており、従来、塗布面内長手方向の磁化を用いて磁気
記録が行われていた。しかしながら、この面内長手方向
の磁化を用いた磁気記録方式において記録密度の向上を
図ろうとする場合に、高周波域において媒体内の減磁界
が増加するため記録再生出力が低下するという問題があ
った。したがってこの方式において記録密度の向上には
限界があった。
[Prior Art] Coating type magnetic recording media are obtained by coating magnetic powder such as γ-ferrite or iron powder together with a resin binder on a substrate such as a polyester film. Magnetic recording was performed using directional magnetization. However, when trying to improve the recording density with this magnetic recording method that uses in-plane longitudinal magnetization, there is a problem that the recording and reproducing output decreases due to the increase in the demagnetizing field within the medium in the high frequency range. . Therefore, there is a limit to the improvement in recording density in this method.

【0003】そこで、磁気記録媒体に対する近年の高記
録密度化の要求に応え磁気記録密度の大幅な向上を図る
方法のひとつとして、磁気記録媒体の基体の塗布面と垂
直な方向の磁化を用いる垂直磁気記録方式が開発されて
いる。この方式による磁気記録媒体は、従来の塗布面内
長手方向の磁化を用いた記録方式に比べて、高周波域に
おいて減磁界の問題が生じないので、高密度記録に適し
ている。
[0003] Therefore, in order to meet the recent demand for higher recording densities in magnetic recording media, one of the ways to significantly improve the magnetic recording density is to use perpendicular magnetization, which uses magnetization in a direction perpendicular to the coated surface of the base of a magnetic recording medium. Magnetic recording methods have been developed. A magnetic recording medium based on this method is suitable for high-density recording because it does not have the problem of demagnetizing field in a high frequency range, compared to a conventional recording method using magnetization in the longitudinal direction within the coated surface.

【0004】この垂直磁気記録に適した磁気記録媒体と
して、たとえば、磁化容易軸を基体に垂直な方向に向け
やすい六方晶系フェライト粉と樹脂バインダとを主成分
とする磁性塗料を基体に塗布した塗布型磁気記録媒体が
あげられる。塗布型磁気記録媒体に使用される六方晶系
フェライト粉としては、たとえば化学式BaFe12O
19で表されるM型のバリウムフェライトなどがある。
[0004] As a magnetic recording medium suitable for this perpendicular magnetic recording, for example, a magnetic paint mainly composed of hexagonal ferrite powder and a resin binder, which tends to orient the axis of easy magnetization in a direction perpendicular to the substrate, is coated on the substrate. Examples include coated magnetic recording media. For example, the hexagonal ferrite powder used in coated magnetic recording media has the chemical formula BaFe12O.
Examples include M-type barium ferrite represented by 19.

【0005】ところで、六方晶系フェライトの微粒子を
用いて塗布法により垂直磁気記録媒体を製造する場合、
六方晶系フェライトは保磁力が大きく記録時に磁気ヘッ
ドが飽和するため構成原子の一部を特定の原子で置換す
ることにより、その保磁力を垂直磁気記録に適する値ま
で低減することが必要である。そのように構成原子の一
部を特定の原子で置換された六方晶系フェライトとして
は、たとえば、化学式BaMe2 Fe16O27(M
eは置換金属元素を表す)で表されるW型のバリウムフ
ェライト、M型フェライトとスピネルフェライトを同時
に含むものなど、およびそれらの原子の一部が他の元素
で置換された六方晶系フェライトなどがあげられる。
By the way, when manufacturing a perpendicular magnetic recording medium by a coating method using fine particles of hexagonal ferrite,
Hexagonal ferrite has a large coercive force that saturates the magnetic head during recording, so it is necessary to reduce the coercive force to a value suitable for perpendicular magnetic recording by replacing some of the constituent atoms with specific atoms. . As a hexagonal ferrite in which some of the constituent atoms are replaced with specific atoms, for example, the chemical formula BaMe2 Fe16O27 (M
W-type barium ferrite, which contains M-type ferrite and spinel ferrite at the same time, and hexagonal ferrite in which some of these atoms are replaced with other elements. can be given.

【0006】また、上記した六方晶系フェライト結晶は
、粒径0.01〜0.3 μm の範囲のものが好適に
使用される。その理由は、結晶の粒径が0.01μm 
未満では磁気記録に要する強い磁性を呈し得ず、0.3
 μm を超えると高密度記録としての垂直磁気記録が
有利に行い難いからである。粒径がこの範囲にあれば、
面内磁気記録方式に対する垂直磁気記録方式の有為性が
明らかになる記録波長1μm 以下の領域において、十
分な記録・再生が行われる。
[0006] The above-mentioned hexagonal ferrite crystals preferably have a grain size in the range of 0.01 to 0.3 μm. The reason is that the grain size of the crystal is 0.01 μm.
If it is less than 0.3, it cannot exhibit the strong magnetism required for magnetic recording.
This is because if it exceeds μm, it is difficult to perform perpendicular magnetic recording as high-density recording advantageously. If the particle size is within this range,
Sufficient recording and reproduction can be performed in the recording wavelength region of 1 μm or less, which makes it clear that the perpendicular magnetic recording method is superior to the longitudinal magnetic recording method.

【0007】上記した六方晶系フェライト粉末を製造す
る方法として、一般には共沈法、水熱合成法、ガラス結
晶化法などがあげられるが、なかでもガラス結晶化法は
、他の方法に比べ、分散性のよい六方晶系フェライトが
得られる好ましい方法として知られている。
[0007] As methods for producing the above-mentioned hexagonal ferrite powder, there are generally coprecipitation methods, hydrothermal synthesis methods, glass crystallization methods, etc. Among them, the glass crystallization method is more effective than other methods. is known as a preferred method for obtaining hexagonal ferrite with good dispersibility.

【0008】このガラス結晶化法は、六方晶系フェライ
ト基本成分、保磁力低減化のための置換成分およびガラ
ス形成成分・修飾成分を含む原料混合物を加熱溶融し、
得られた溶融物を急速冷却して非晶質体を作製し、次い
でこの非晶質体に熱処理を施して六方晶系フェライトを
析出させ、そしてこれを抽出するという4段階の工程か
らなっている。
This glass crystallization method heats and melts a raw material mixture containing a hexagonal ferrite basic component, a substitution component for reducing coercive force, and a glass-forming component/modifying component.
The process consists of four steps: the resulting melt is rapidly cooled to produce an amorphous body, the amorphous body is then heat-treated to precipitate hexagonal ferrite, and this is extracted. There is.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、たとえ
ばバリウムフェライトなどの六方晶系フェライト微粒子
は、上記したガラス結晶化法により作製した場合であっ
ても、表面活性が大きいため凝集性が失われず堅固な凝
集塊が形成されることもあり、分散性のよいフェライト
粒子を安定して作製することが困難であった。
[Problems to be Solved by the Invention] However, even when hexagonal ferrite fine particles such as barium ferrite are produced by the above-mentioned glass crystallization method, they do not lose their cohesive properties and remain solid due to their high surface activity. Since agglomerates may be formed, it has been difficult to stably produce ferrite particles with good dispersibility.

【0010】本発明は上記事情を考慮してなされたもの
であり、高分散性六方晶系フェライト磁性粉末を安定し
て製造し得る方法を提供することを、その目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a method for stably producing highly dispersed hexagonal ferrite magnetic powder.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の目的を
達成するために六方晶系フェライトの乾燥工程を制御し
て粉末中の水分量を調節し、六方晶系フェライトの凝集
性を軽減し媒体化時の分散性を高めるものである。すな
わち、六方晶系フェライト基本成分と、保磁力低減化の
ための置換成分と、ガラス形成成分とを含む原料混合物
を加熱溶融し、得られた溶融物を急速冷却して非晶質体
を作製し、次いでこの非晶質体に熱処理を施して六方晶
系フェライトを析出させた後、酸処理を施して六方晶系
フェライトを分離抽出するにあたり、抽出された六方晶
系フェライト微粒子を含むスラリーを乾燥して、乾燥後
の六方晶系フェライト粉末に含まれる水分量が0.4 
〜5.0 wt%となるようにしたことを特徴としてい
る。
[Means for Solving the Problems] In order to achieve the above objects, the present invention controls the drying process of hexagonal ferrite to adjust the moisture content in the powder, thereby reducing the agglomeration of hexagonal ferrite. This improves the dispersibility when forming into a medium. That is, a raw material mixture containing a hexagonal ferrite basic component, a substitution component for reducing coercive force, and a glass forming component is heated and melted, and the resulting melt is rapidly cooled to produce an amorphous body. Then, this amorphous body is heat-treated to precipitate hexagonal ferrite, and then subjected to acid treatment to separate and extract the hexagonal ferrite. A slurry containing the extracted hexagonal ferrite fine particles is After drying, the amount of water contained in the hexagonal ferrite powder is 0.4.
It is characterized by having a content of ~5.0 wt%.

【0012】乾燥後の六方晶系フェライト粉末に含まれ
る水分量が0.4 wt%未満の場合には、フェライト
粒子間の凝集力が強くはたらき、堅固な凝集体を形成し
やすいので好ましくない。また水分量が5 %を越える
場合には、媒体作製時における磁性粉の樹脂バインダへ
の最終的な分散性が低下し、得られた媒体の磁気特性、
環境変化などの特性劣化を招くため、好ましくない。
[0012] If the amount of water contained in the hexagonal ferrite powder after drying is less than 0.4 wt%, it is not preferable because the cohesive force between the ferrite particles acts strongly and tends to form solid aggregates. Furthermore, if the water content exceeds 5%, the final dispersibility of the magnetic powder into the resin binder during media production will decrease, and the magnetic properties of the resulting media will deteriorate.
This is not preferable because it causes deterioration of characteristics due to environmental changes.

【0013】[0013]

【作用】上記構成につき、その作用を説明する。[Operation] The operation of the above structure will be explained.

【0014】六方晶系フェライト微粒子は平板状であり
、その板面に垂直な磁化容易軸方向に凝集しやすい。 粉末表面に付着する水分が少ない場合には、フェライト
微粒子間の凝集力が強く現れ、堅固な凝集体を形成しや
すくなる。一方、水分量が多い場合には、媒体作製時に
過剰な水分が分散剤の吸着を抑制することにより、磁性
粉の樹脂バインダへの分散性が低下する。したがって、
フェライト中の水分量を適切な範囲内に制御することに
より、六方晶系フェライト微粒子の分散性が向上される
The hexagonal ferrite fine particles are tabular and tend to aggregate in the direction of the axis of easy magnetization perpendicular to the plane of the plate. When there is little moisture adhering to the powder surface, the cohesive force between the ferrite fine particles appears strong, making it easier to form solid aggregates. On the other hand, when the amount of water is large, the excessive water suppresses the adsorption of the dispersant during the preparation of the medium, thereby reducing the dispersibility of the magnetic powder into the resin binder. therefore,
By controlling the water content in ferrite within an appropriate range, the dispersibility of hexagonal ferrite fine particles is improved.

【0015】[0015]

【実施例】以下、本発明を、六方晶系フェライトたとえ
ばマグネトプランバイト型バリウムフェライトに対して
実施した具体例にしたがって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to a specific example in which it is applied to a hexagonal ferrite, such as a magnetoplumbite barium ferrite.

【0016】実施例1〜4 バリウムフェライト中のFe3+イオンの一部をCo2
+、Ti4+イオンで置換して磁気記録媒体用磁性粉末
に要求される保磁力とした、化学式BaFe10.4T
i0.8 Co0.8 O19であらわされるフェライ
トを製造した。製造にあたり、バリウムフェライトのフ
ェライト成分Fe2 O3 と保磁力低減のための置換
成分TiO2 、CoOとガラス形成成分BaO、B2
 O3 とを、重量百分率で組成比:  Fe2 O3
  31.2 %、TiO2 2.58 %、CoO 
2.42 %、BaO 46.9 %、B2 O3  
16.9 %、となるように、Fe2 O3 、TiO
2 、CoO、BaCO3 、およびH3 BO3 、
を秤量した。
Examples 1 to 4 Some of the Fe3+ ions in barium ferrite were replaced with Co2
Chemical formula BaFe10.4T with coercive force required for magnetic powder for magnetic recording media by replacing +, Ti4+ ions
A ferrite represented by i0.8 Co0.8 O19 was produced. During production, the ferrite component Fe2O3 of barium ferrite, the substitution component TiO2 for reducing coercive force, CoO, and the glass forming components BaO, B2
Composition ratio by weight percentage: Fe2 O3
31.2%, TiO2 2.58%, CoO
2.42%, BaO 46.9%, B2O3
16.9%, Fe2O3, TiO
2, CoO, BaCO3, and H3BO3,
was weighed.

【0017】上記原料を十分に混合して白金容器に収容
し、高周波加熱装置を用いて1350℃に加熱溶解した
。その後、直径50cm、回転数500rpm、線圧5
ton の水冷双ロール上に上記溶融物を注いで圧延急
冷し、非晶質体を作製した。そしてこの非晶質体を所定
容器に充填し電気炉内で適切な温度条件のもとで結晶化
させた。得られたこの焼結体を、ブラウン型クラッシャ
ーなどの乾式粉砕機を用いて100 メッシュ以下の粉
砕粒度になるように粉砕した後、さらにボールミルによ
り湿式微粉砕した。
The above raw materials were thoroughly mixed, placed in a platinum container, and heated and melted at 1350° C. using a high frequency heating device. After that, the diameter is 50 cm, the rotation speed is 500 rpm, and the linear pressure is 5.
The above-mentioned melt was poured onto a ton of water-cooled twin rolls and rapidly cooled by rolling to produce an amorphous body. This amorphous material was then filled into a predetermined container and crystallized in an electric furnace under appropriate temperature conditions. The obtained sintered body was pulverized using a dry pulverizer such as a Braun type crusher to a pulverized particle size of 100 mesh or less, and then wet-pulverized using a ball mill.

【0018】このようにして得られた粉砕物から、液温
80℃以上に保った10%酢酸溶液を用いて、BaO・
B2 O3 相やBaO相を溶解除去した。酢酸処理終
了後、 pH 6.0以上になるまで水洗を繰り返した
。水洗を終了したバリウムフェライトのスラリーを、温
風乾燥機に収容してこれを乾燥した。乾燥時の水分の変
化は、カールフィッシャー型赤外線吸収型水分計によっ
て管理した。測定条件は、N2 ガスフロー、 175
℃であった。
From the thus obtained pulverized material, BaO.
The B2O3 phase and BaO phase were dissolved and removed. After the acetic acid treatment was completed, washing with water was repeated until the pH reached 6.0 or higher. The barium ferrite slurry that had been washed with water was placed in a hot air dryer and dried. Changes in moisture content during drying were monitored using a Karl Fischer type infrared absorption moisture meter. Measurement conditions were N2 gas flow, 175
It was ℃.

【0019】なお、乾燥時のフェライト中の水分量を変
えて4種の六方晶系フェライト粉末を作製し、これらを
本発明の実施例1〜4とした。
Four types of hexagonal ferrite powders were prepared by changing the amount of water in the ferrite during drying, and these were designated as Examples 1 to 4 of the present invention.

【0020】比較例1,2 また、フェライト中の水分量を0.4 wt%未満とな
るようにした他は実施例と同様にして六方晶系フェライ
ト粉末2種の作製を行ない、これらを比較例1および2
とした。
Comparative Examples 1 and 2 In addition, two types of hexagonal ferrite powders were prepared in the same manner as in the example except that the water content in the ferrite was set to less than 0.4 wt%, and these were compared. Examples 1 and 2
And so.

【0021】なお次の表1には、実施例1〜4、および
比較例1,2により得られた六方晶系フェライトの粉末
中の水分量と二次凝集径を示す。さらにこれらの磁性粉
末を使用して常法にしたがって作製した磁気記録媒体の
特性も合わせて示してある。
Table 1 below shows the water content and secondary agglomeration diameter of the hexagonal ferrite powders obtained in Examples 1 to 4 and Comparative Examples 1 and 2. Furthermore, the characteristics of magnetic recording media produced using these magnetic powders according to conventional methods are also shown.

【0022】[0022]

【表1】[Table 1]

【0023】表1からも明らかなように、本発明の実施
例1〜4のバリウムフェライト微粒子は、きわめて分散
性が良好であり、媒体保磁力、角型比が増大した。
As is clear from Table 1, the barium ferrite fine particles of Examples 1 to 4 of the present invention had extremely good dispersibility, and the medium coercive force and squareness ratio were increased.

【0024】なお、本実施例1〜4は、バリウムフェラ
イトに置換成分としてTi、Coを加えた場合であるが
、その他の置換成分Sn、Zn、Ni、Mn、Nb、T
aなどを加えた場合であってもほぼ同様な結果が得られ
た。
[0024] In Examples 1 to 4, Ti and Co were added as substitute components to barium ferrite, but other substitute components Sn, Zn, Ni, Mn, Nb, T
Almost similar results were obtained even when a was added.

【0025】[0025]

【発明の効果】以上説明したように、本発明は高密度磁
気記録媒体用に適する磁性粉末の製造方法であり、フェ
ライト粉末中の水分を乾燥工程時に 0.4〜5.0 
wt%の範囲に制御することにより、六方晶系フェライ
ト微粒子相互の強い凝集力を緩和させるので、高分散性
の六方晶系フェライト粉末を得ることができる。
As explained above, the present invention is a method for producing magnetic powder suitable for high-density magnetic recording media, and the water content in ferrite powder is reduced to 0.4 to 5.0 during the drying process.
By controlling the content within the range of wt%, the strong cohesive force between the hexagonal ferrite fine particles is relaxed, so that a highly dispersible hexagonal ferrite powder can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  六方晶系フェライト基本成分と、保磁
力低減化のための置換成分と、ガラス形成成分とを含む
原料混合物を加熱溶融し、得られた溶融物を急速冷却し
て非晶質体を作製し、次いでこの非晶質体に熱処理を施
して六方晶系フェライトを析出させた後、酸処理を施し
て六方晶系フェライトを分離抽出するにあたり、抽出さ
れた六方晶系フェライト微粒子を含むスラリーを乾燥し
て、乾燥後の六方晶系フェライト粉末に含まれる水分量
が0.4 〜5.0 wt%となるようにしたことを特
徴とする磁性粉末の製造方法。
Claim 1: A raw material mixture containing a hexagonal ferrite basic component, a substitution component for reducing coercive force, and a glass forming component is heated and melted, and the resulting melt is rapidly cooled to form an amorphous material. This amorphous body is then heat-treated to precipitate hexagonal ferrite, and then subjected to acid treatment to separate and extract the hexagonal ferrite. A method for producing a magnetic powder, comprising drying a slurry containing the hexagonal ferrite powder so that the amount of water contained in the dried hexagonal ferrite powder is 0.4 to 5.0 wt%.
JP3137550A 1991-06-10 1991-06-10 Method for producing magnetic powder Expired - Lifetime JPH0825745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137550A JPH0825745B2 (en) 1991-06-10 1991-06-10 Method for producing magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137550A JPH0825745B2 (en) 1991-06-10 1991-06-10 Method for producing magnetic powder

Publications (2)

Publication Number Publication Date
JPH04362018A true JPH04362018A (en) 1992-12-15
JPH0825745B2 JPH0825745B2 (en) 1996-03-13

Family

ID=15201328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137550A Expired - Lifetime JPH0825745B2 (en) 1991-06-10 1991-06-10 Method for producing magnetic powder

Country Status (1)

Country Link
JP (1) JPH0825745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340672A (en) * 2004-05-28 2005-12-08 Asahi Techno Glass Corp Magnetic powder for magnetic recording medium, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340672A (en) * 2004-05-28 2005-12-08 Asahi Techno Glass Corp Magnetic powder for magnetic recording medium, and manufacturing method thereof
JP4672287B2 (en) * 2004-05-28 2011-04-20 Agcテクノグラス株式会社 Method for producing magnetic powder for magnetic recording medium

Also Published As

Publication number Publication date
JPH0825745B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
US4493874A (en) Production of a magnetic powder having a high dispersibility
JPS6136685B2 (en)
JPH0690969B2 (en) Magnetic powder for magnetic recording medium and magnetic recording medium using the same
JPS6077129A (en) Magnetic powder of barium ferrite
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPH04362018A (en) Production of magnetic powder
JPS6324935B2 (en)
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH0312442B2 (en)
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JPH05326233A (en) Production of magnetic powder
KR100327646B1 (en) Oxide magnetic material and manufacturing method
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS6343359B2 (en)
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS60161341A (en) Preparation of hexagonal ferrite
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JPS6355122A (en) Magnetic powder
JPS6353134B2 (en)
JPS6340302A (en) Magnetic powder for high-density magnetic recording
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
KR0139118B1 (en) Method of preparing cubic ferrite powder for magnetic tape
JPH0341964B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107